forked from anonymous-15816/ART
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
72 lines (49 loc) · 3.49 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
# import deepspeed
def get_args():
########basic argument##################
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float, \
help="optimizer learning rate")
parser.add_argument("--memory_size", default=200, type=int, \
help="exemplar set memory size")
parser.add_argument("--nepochs", default=50, type=int, \
help="number of Epochs")
parser.add_argument('--schedule', type=int, nargs='+', default=[30,40],
help='learning rate decay epoch')
parser.add_argument("--batch_size", default=128, type=int,
help="batch size for training")
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1, 0.1, 0.1],
help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
parser.add_argument('--bft_lr', default = 0.01, type=float,
help='learning rate decay epoch')
parser.add_argument('--bft_schedule', type=int, nargs='+', default=[20,30],
help='learning rate decay epoch')
parser.add_argument('--bft_gammas', type=float, nargs='+', default=[0.1, 0.1, 0.1],
help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
parser.add_argument("--step_size", default=2, type=int, \
help="number class for one continual learning steps")
parser.add_argument("--start_classes", default=2, type=int,
help="number of class in one step")
parser.add_argument("--dataset", default="CIFAR10", choices=['CIFAR10', 'CIFAR100', "Imagenet"], type=str,
help='myData name')
parser.add_argument("--seed", default=1, type=float, help='seed for reproducibility')
parser.add_argument("--KD", default="naive_global", choices = ['naive_local', 'naive_global', "No"], type=str, help ="which distillation")
parser.add_argument("--trainer", default="vanilla", choices=["vanilla", "wa", 'icarl', 'eeil' "CTL", "bic"],
type=str, help="which CIL method use?")
parser.add_argument('--triplet', default=False, type=bool, help ='cctriplet or none')
parser.add_argument('--margin', default=0.5, type=float,
help='distance margin for tripelt loss')
parser.add_argument('--triplet_lam', default=1, type=float,
help = 'ratio of triplet loss')
parser.add_argument('--dict_type', default = "softmax", choices=["softmax", 'cosine'], help="which metric to define dictionary")
parser.add_argument('--dict_update', default=True, type=bool,
help="whether update dictionary or not")
parser.add_argument('--new_WA', default="False", type=bool,
help="wheter use new WA")
parser.add_argument('--distance', default ="Eucledian", choices=["Eucledian", "cosine"], help="which metric to use for the triplet loss")
parser.add_argument('--model', default= "resnet32", choices=["resnet32", "resnet18", "wideResnet"], help="model define")
parser.add_argument('--triplet_epoch', default = 10, type=float, help="when to start train using triplet loss")
parser.add_argument('--anchor_update_epoch', default = 10 , type=float, help="anchor update period")
args=parser.parse_args()
return args