-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathUpdate.py
334 lines (290 loc) · 12.1 KB
/
Update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import json
import datetime
import networkx as nx
import random
import os
import time
from Crypto.Cipher import AES
import requests
# Mock data for FBI updates, tailored for Jan 2 at 1:03 AM
mock_fbi_updates = {
"updates": [
{
"id": "update_1",
"content": "Ongoing investigation into New Year's Eve incident in New Orleans",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "update_2",
"content": "Cybersecurity alert for potential attacks on financial institutions",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}
# Mock data we want to send back to FBI, tailored for Jan 2 at 1:03 AM
mock_our_updates = {
"reports": [
{
"id": "report_1",
"content": "Enhanced security measures implemented in response to FBI alert",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "report_2",
"content": "Local intelligence suggests possible follow-up threats",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}
# Encryption utilities
def encrypt_data(key, data):
cipher = AES.new(key, AES.MODE_EAX)
nonce = cipher.nonce
ciphertext, tag = cipher.encrypt_and_digest(data.encode())
return nonce, ciphertext, tag
def decrypt_data(key, nonce, ciphertext, tag):
cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)
return data.decode()
# Secure data transmission with enhanced error handling
def send_to_api(url, data, headers):
for attempt in range(3): # PMLL EFLL, ARLL iterative retry logic
try:
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
print(f"Data successfully sent to {url}")
return True # Indicate success
except requests.exceptions.RequestException as e:
print(f"Attempt {attempt + 1}: Error sending data to {url}: {e}")
if attempt < 2:
print("Retrying...")
print(f"Failed to send data to {url} after 3 attempts.")
return False # Indicate failure
# Fetch updates from the FBI API
def fetch_updates_from_fbi():
FBI_FETCH_URL = "https://api.fbi.gov/updates" # Replace with the actual fetch endpoint
API_TOKEN = "your_api_token" # Replace with the actual API token
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
try:
response = requests.get(FBI_FETCH_URL, headers=headers)
if response.status_code == 200:
print("Successfully fetched updates from the FBI.")
return response.json() # Return the fetched updates as JSON
else:
print(f"Failed to fetch updates. Status code: {response.status_code}")
print(f"Response: {response.text}")
except requests.RequestException as e:
print(f"Error occurred while fetching updates from the FBI: {e}")
return None
# Simulate real-time data updates
class RealTimeDataSimulator:
def __init__(self, interval=1):
self.interval = interval
self.last_id = 0
self.current_time = datetime.datetime.strptime("2025-01-02T01:03:00Z", "%Y-%m-%dT%H:%M:%SZ")
def generate_update(self):
self.last_id += 1
self.current_time += datetime.timedelta(seconds=self.interval)
return {
"id": self.last_id,
"timestamp": self.current_time.isoformat(),
"data": f"Real-time update {self.last_id}"
}
def simulate_data_stream(self, duration=60):
end_time = time.time() + duration
while time.time() < end_time:
update = self.generate_update()
print(f"Real-time update: {json.dumps(update, indent=2)}")
yield update
time.sleep(self.interval)
# Log memory and events
class UnifiedMemory:
def __init__(self):
self.short_term = []
self.long_term = []
self.current_time = datetime.datetime.strptime("2025-01-02T01:03:00Z", "%Y-%m-%dT%H:%M:%SZ")
def log_event(self, event, source="unknown", confidence=1.0):
metadata = {
"timestamp": self.current_time.isoformat(),
"event": event,
"source": source,
"confidence": confidence
}
self.short_term.append(metadata)
if len(self.short_term) > 100:
self.archive_to_long_term()
def archive_to_long_term(self):
self.long_term.extend(self.short_term)
self.short_term = []
def retrieve_events(self, **criteria):
results = [event for event in self.short_term if all(event.get(k) == v for k, v in criteria.items())]
return results
def log_key(self, key):
print("Encryption key is being securely stored.")
self.short_term.append({"timestamp": self.current_time.isoformat(), "key": key.hex()})
def update_internal_time(self, minutes):
self.current_time += datetime.timedelta(minutes=minutes)
memory = UnifiedMemory()
# EventGraph to analyze relationships
class EventGraph:
def __init__(self):
self.graph = nx.DiGraph()
def add_event(self, source, target, relation, confidence=1.0):
self.graph.add_edge(source, target, relation=relation, confidence=confidence)
def analyze_path(self, start, end):
if nx.has_path(self.graph, start, end):
return nx.shortest_path(self.graph, start, end)
return []
def generate_relationships(self):
potential_nodes = list(self.graph.nodes)
for _ in range(random.randint(1, 3)):
source = random.choice(potential_nodes)
target = random.choice(potential_nodes)
if source != target:
self.add_event(source, target, "inferred", confidence=random.uniform(0.6, 0.9))
def calculate_centrality(self):
return sorted(nx.degree_centrality(self.graph).items(), key=lambda x: x[1], reverse=True)
def export_to_csv(self, filename):
with open(filename, 'w') as f:
f.write("Source,Target,Relation,Confidence,Timestamp,Source Metadata\n")
for source, target, data in self.graph.edges(data=True):
timestamp = datetime.datetime.now().isoformat()
f.write(f"{source},{target},{data['relation']},{data['confidence']},{timestamp},Generated Relationship\n")
def create_cluster_graph(self):
import matplotlib.pyplot as plt
pos = nx.spring_layout(self.graph)
nx.draw(self.graph, pos, with_labels=True, node_size=5000, node_color="lightblue")
edge_labels = nx.get_edge_attributes(self.graph, 'relation')
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels)
plt.show()
event_graph = EventGraph()
# Log events
memory.log_event("Truck explosion identified as a terrorist attack.", source="News Report", confidence=0.9)
memory.log_event("Driver died in explosion.", source="Police Report", confidence=0.95)
memory.log_event("Potential sodium bomb involved.", source="Forensic Analysis", confidence=0.85)
# Define entities and relationships
entities = [
("Truck", "Explosion", "caused"),
("Explosion", "Driver", "killed"),
("Sodium Bomb", "Explosion", "triggered"),
("Terrorist Group", "Sodium Bomb", "created"),
("Motive", "Division between parties", "targeted")
]
for source, target, relation in entities:
event_graph.add_event(source, target, relation, confidence=0.8)
# Generate relationships and analyze paths
event_graph.generate_relationships()
path_to_investigate = event_graph.analyze_path("Truck", "Motive")
# Export results
event_graph.export_to_csv("event_graph.csv")
event_graph.create_cluster_graph()
# Generate encrypted report
def generate_encrypted_report():
report = {
"Event Summary": memory.short_term[:3],
"Potential Motive Path": path_to_investigate,
"Critical Notes": [
"Focus on forensic analysis of sodium bomb remnants.",
"Interview survivors and witnesses at the scene.",
"Coordinate with xAI for deeper entity pattern analysis."
],
"Centrality Analysis": event_graph.calculate_centrality(),
"ORCID": "0009-0000-3414-7949" # ORCID included
}
key = os.urandom(32)
memory.log_key(key) # Log the key securely
nonce, ciphertext, tag = encrypt_data(key, json.dumps(report))
with open("analysis_report.enc", "wb") as f:
f.write(nonce + ciphertext + tag)
print("Encrypted report saved.")
# Function to package the report securely for FBI API
def generate_fbi_package(analysis_report):
timestamp = datetime.datetime.now().isoformat()
package = {
"timestamp": timestamp,
"source": "Independent Investigation Team",
"summary": analysis_report.get("Event Summary", []),
"potential_motive_path": analysis_report.get("Potential Motive Path", []),
"critical_notes": analysis_report.get("Critical Notes", []),
"additional_findings": {
"chemical_analysis": "Sodium explosion confirmed",
"modus_operandi": "Political division escalation",
"device_type": "Pipe bomb with aluminum-sodium reaction"
}
}
return package
# Function to send the packaged information securely to the FBI
def send_to_fbi(package):
FBI_API_URL = "https://api.fbi.gov/tip"
API_TOKEN = "your_api_token" # Placeholder for real token
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
try:
response = requests.post(FBI_API_URL, json=package, headers=headers)
response.raise_for_status()
print(f"Package successfully sent to FBI API. Status: {response.status_code}")
return True
except requests.RequestException as e:
print(f"Failed to send package to FBI API. Error: {e}")
return False
# Load the encrypted report and decrypt it
def decrypt_and_process_report():
with open("analysis_report.enc", "rb") as f:
data = f.read()
nonce, ciphertext = data[:16], data[16:-16]
tag = data[-16:]
# Retrieve the key from memory
key_entry = next((item for item in memory.short_term if 'key' in item), None)
if key_entry:
key = bytes.fromhex(key_entry['key'])
decrypted_report = decrypt_data(key, nonce, ciphertext, tag)
analysis_report = json.loads(decrypted_report)
# Send to FBI
fbi_package = generate_fbi_package(analysis_report)
if send_to_fbi(fbi_package):
print("FBI package sent successfully.")
else:
print("Failed to send FBI package.")
return analysis_report
else:
print("Encryption key not found in memory.")
return None
# Main execution
if __name__ == "__main__":
# Generate and encrypt the report
generate_encrypted_report()
# Simulate real-time data
simulator = RealTimeDataSimulator(interval=5)
for _ in range(6): # Simulate 6 updates (30 seconds total at 5-second intervals)
update = next(simulator.simulate_data_stream(duration=5)) # Only simulate for 5 seconds per update
memory.log_event(update['data'], source="Real-time Data", confidence=1.0)
# Update internal time by 6 minutes
memory.update_internal_time(6)
print(f"Internal time updated to: {memory.current_time}")
# Decrypt and process the report
decrypted_report = decrypt_and_process_report()
if decrypted_report:
print("Decrypted report:")
print(json.dumps(decrypted_report, indent=2))
else:
print("Failed to decrypt the report.")
# Transmit to APIs
api_urls = [
"https://api.fbi.gov",
"https://api.interchain.io",
"https://api.grok.com",
"https://api.openai.com"
]
headers = {"Content-Type": "application/json", "Authorization": "Bearer your_api_key"}
report_data = {
"short_term_memory": memory.short_term,
"long_term_memory_length": len(memory.long_term),
"centrality_analysis": event_graph.calculate_centrality()
}
for url in api_urls:
send_to_api(url, report_data, headers)