-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
512 lines (406 loc) · 19.8 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
from tqdm import tqdm
from convlstm import ConvLSTM
from convlstm import ConvLSTMCell
# Create a video prediction model
class VideoFramePredictionModel(nn.Module):
def __init__(self, input_channels=1, hidden_dim=128, kernel_size=(3, 3), num_layers=2):
super(VideoFramePredictionModel, self).__init__()
# Encoder with BatchNorm - Simplified to preserve more spatial information
self.encoder = nn.Sequential(
nn.Conv2d(input_channels, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)
)
# ConvLSTM
self.convlstm = ConvLSTM(
input_dim=16,
hidden_dim=[hidden_dim] * num_layers,
kernel_size=kernel_size,
num_layers=num_layers,
batch_first=True,
return_all_layers=True
)
# Decoder
self.decoder = nn.Sequential(
nn.Conv2d(hidden_dim, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), # no upsampling needed
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(16, input_channels, kernel_size=3, stride=1, padding=1),
nn.Tanh() # using tanh for sharper transitions
)
def forward(self, x, future_frames=1):
batch_size, seq_len, c, h, w = x.size()
# Encode each input frame
encoded_frames = [self.encoder(x[:, t]) for t in range(seq_len)]
encoded_sequence = torch.stack(encoded_frames, dim=1)
# Run through ConvLSTM
layer_outputs, last_states = self.convlstm(encoded_sequence)
outputs = []
current_states = last_states
# Use the encoded last observed frame as initial input
last_encoded_frame = encoded_frames[-1]
cur_input = last_encoded_frame
# Generate future frames
for _ in range(future_frames):
next_states = []
# Process through each ConvLSTM layer
for layer_idx in range(self.convlstm.num_layers):
h_cur, c_cur = current_states[layer_idx]
h_next, c_next = self.convlstm.cell_list[layer_idx](cur_input, [h_cur, c_cur])
next_states.append((h_next, c_next))
cur_input = h_next
current_states = next_states
output = self.decoder(h_next)
# Scale tanh output from [-1, 1] to [0, 1] for proper image visualization
output = (output + 1) / 2
# Re-encode the output for the next prediction
cur_input = self.encoder(output)
outputs.append(output)
return torch.stack(outputs, dim=1)
def sharpness_loss(pred, target):
"""Loss function that promotes sharper edges in the predictions"""
# Define Sobel filters
sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).view(1, 1, 3, 3).to(pred.device)
sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32).view(1, 1, 3, 3).to(pred.device)
# Reshape batch and sequence dimensions to apply filters
pred_reshaped = pred.view(-1, 1, pred.shape[-2], pred.shape[-1])
target_reshaped = target.view(-1, 1, target.shape[-2], target.shape[-1])
# Apply filters
pred_grad_x = F.conv2d(pred_reshaped, sobel_x, padding=1)
pred_grad_y = F.conv2d(pred_reshaped, sobel_y, padding=1)
target_grad_x = F.conv2d(target_reshaped, sobel_x, padding=1)
target_grad_y = F.conv2d(target_reshaped, sobel_y, padding=1)
# Compute gradient magnitudes
pred_grad_mag = torch.sqrt(pred_grad_x**2 + pred_grad_y**2 + 1e-6)
target_grad_mag = torch.sqrt(target_grad_x**2 + target_grad_y**2 + 1e-6)
# Return MSE of gradient magnitudes
return F.mse_loss(pred_grad_mag, target_grad_mag)
def combined_loss(pred, target, alpha=0.8):
"""Combines pixel-wise MSE with edge-aware sharpness loss"""
mse = F.mse_loss(pred, target)
sharp = sharpness_loss(pred, target)
return alpha * mse + (1 - alpha) * sharp
# Create a custom dataset for video sequences
class VideoFrameDataset(Dataset):
def __init__(self, data_path, seq_length=10, pred_length=1, transform=None):
"""
Args:
data_path: Directory containing video frames or sequences
seq_length: Number of input frames to use
pred_length: Number of future frames to predict
transform: Optional transformations to apply
"""
self.data_path = data_path
self.seq_length = seq_length
self.pred_length = pred_length
self.transform = transform
# For simplicity, let's assume we have folders named 'sequence_1', 'sequence_2', etc.
# Each containing frames as 'frame_001.png', 'frame_002.png', etc.
self.sequences = [os.path.join(data_path, d) for d in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, d))]
# Filter out sequences that are too short
self.valid_sequences = []
for seq in self.sequences:
frames = sorted([f for f in os.listdir(seq) if f.endswith('.png') or f.endswith('.jpg')])
if len(frames) >= seq_length + pred_length:
self.valid_sequences.append((seq, frames))
def __len__(self):
return len(self.valid_sequences)
def __getitem__(self, idx):
seq_dir, frames = self.valid_sequences[idx]
# Load input sequence
input_seq = []
for i in range(self.seq_length):
img_path = os.path.join(seq_dir, frames[i])
img = Image.open(img_path).convert('L') # convert to grayscale
if self.transform:
img = self.transform(img)
else:
img = torch.tensor(np.array(img), dtype=torch.float32) / 255.0
img = img.unsqueeze(0) # add channel dimension
input_seq.append(img)
# Load target sequence (future frames)
target_seq = []
for i in range(self.seq_length, self.seq_length + self.pred_length):
img_path = os.path.join(seq_dir, frames[i])
img = Image.open(img_path).convert('L')
if self.transform:
img = self.transform(img)
else:
img = torch.tensor(np.array(img), dtype=torch.float32) / 255.0
img = img.unsqueeze(0)
target_seq.append(img)
# Stack along time dimension
input_seq = torch.stack(input_seq, dim=0)
target_seq = torch.stack(target_seq, dim=0)
return input_seq, target_seq
def train_model(model, train_loader, val_loader, num_epochs=15, patience=5, device='cuda'):
script_dir = os.path.dirname(os.path.abspath(__file__))
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.002)
# Learning rate scheduler
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=2, verbose=True
)
best_val_loss = float('inf')
patience_counter = 0
# Track metrics for plotting
train_losses = []
val_losses = []
for epoch in range(num_epochs):
# Training phase
model.train()
train_loss = 0.0
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs}")
for inputs, targets in progress_bar:
# Move inputs and targets to the correct shape and device
inputs = inputs.to(device) # [batch, seq_len, c, h, w]
targets = targets.to(device) # [batch, pred_len, c, h, w]
# Zero the gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs, future_frames=targets.size(1))
# Calculate loss with the combined loss function
loss = combined_loss(outputs, targets, alpha=0.8)
# Backward pass and optimize
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0) # increased threshold
optimizer.step()
train_loss += loss.item() * inputs.size(0)
progress_bar.set_postfix({"train_loss": loss.item()})
train_loss = train_loss / len(train_loader.dataset)
train_losses.append(train_loss)
# Validation phase
model.eval()
val_loss = 0.0
with torch.no_grad():
for inputs, targets in val_loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs, future_frames=targets.size(1))
loss = combined_loss(outputs, targets, alpha=0.8)
val_loss += loss.item() * inputs.size(0)
val_loss = val_loss / len(val_loader.dataset)
val_losses.append(val_loss)
# Update learning rate based on validation loss
scheduler.step(val_loss)
print(f'Epoch {epoch+1}/{num_epochs}')
print(f'Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}')
# Save model if validation loss improved
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), os.path.join(script_dir, 'best_video_prediction_model.pth'))
patience_counter = 0
print("Saved model checkpoint (improved validation loss)")
else:
patience_counter += 1
print(f"Validation loss didn't improve. Patience: {patience_counter}/{patience}")
# Early stopping
if patience_counter >= patience:
print("Early stopping triggered!")
break
# Plot training and validation loss curves
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig(os.path.join(script_dir, 'training_loss_curve.png'))
plt.close()
return model
# Enhanced function to visualize predictions with numerical metrics
def visualize_predictions(model, test_loader, device='cuda', num_samples=5):
script_dir = os.path.dirname(os.path.abspath(__file__))
model.eval()
samples_seen = 0
# Initialize metrics
total_mse = 0
total_psnr = 0
with torch.no_grad():
for inputs, targets in test_loader:
inputs = inputs.to(device)
targets = targets.to(device)
# Get predictions
outputs = model(inputs, future_frames=targets.size(1))
# Calculate metrics
batch_mse = F.mse_loss(outputs, targets).item()
batch_psnr = 10 * torch.log10(1 / batch_mse).item()
total_mse += batch_mse
total_psnr += batch_psnr
# Visualize the results for each sample in the batch
for b in range(min(inputs.size(0), num_samples - samples_seen)):
# Create a figure with 3 rows: input, target, prediction
num_cols = targets.size(1)
fig, axes = plt.subplots(3, num_cols, figsize=(num_cols * 3, 9))
# Handle the case when there's only one prediction frame
if num_cols == 1:
axes = axes.reshape(3, 1)
# First row: Show the last few input frames
for t in range(min(num_cols, 3)):
idx = -min(num_cols, 3) + t
axes[0, t].imshow(inputs[b, idx, 0].cpu().numpy(), cmap='gray')
axes[0, t].set_title(f'Input t{idx}')
axes[0, t].axis('off')
# Second row: Show target frames
for t in range(num_cols):
target_frame = targets[b, t, 0].cpu().numpy()
axes[1, t].imshow(target_frame, cmap='gray')
axes[1, t].set_title(f'Target t+{t+1}')
axes[1, t].axis('off')
# Third row: Show predicted frames
for t in range(num_cols):
pred_frame = outputs[b, t, 0].cpu().numpy()
# Calculate frame-specific metrics
frame_mse = F.mse_loss(outputs[b, t], targets[b, t]).item()
frame_psnr = 10 * torch.log10(torch.tensor(1.0) / torch.tensor(frame_mse)).item()
axes[2, t].imshow(pred_frame, cmap='gray')
axes[2, t].set_title(f'Pred t+{t+1}\nMSE: {frame_mse:.4f}\nPSNR: {frame_psnr:.2f}')
axes[2, t].axis('off')
plt.tight_layout()
plt.savefig(os.path.join(script_dir, f'prediction_sample_{samples_seen + b}.png'))
plt.close()
samples_seen += inputs.size(0)
if samples_seen >= num_samples:
break
# Print average metrics
avg_mse = total_mse / samples_seen
avg_psnr = total_psnr / samples_seen
print(f"Average MSE: {avg_mse:.4f}")
print(f"Average PSNR: {avg_psnr:.2f} dB")
# Generate more varied synthetic data
def generate_improved_synthetic_data(num_sequences=200, seq_length=20, height=64, width=64):
"""Generate more varied moving shapes for better training"""
script_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(script_dir, 'synthetic_video_data')
os.makedirs(data_dir, exist_ok=True)
for seq_idx in range(num_sequences):
seq_dir = os.path.join(data_dir, f'sequence_{seq_idx:03d}')
os.makedirs(seq_dir, exist_ok=True)
# Create a random moving shape with more variety
shape_type = np.random.choice(['square', 'circle', 'triangle'])
shape_size = np.random.randint(8, 25) # More size variety
# Initial position
x, y = np.random.randint(0, width - shape_size), np.random.randint(0, height - shape_size)
# Random velocity with more variation
vx = np.random.uniform(-4, 4)
vy = np.random.uniform(-4, 4)
# Ensure at least some minimum velocity
if abs(vx) < 1.0:
vx = 1.0 if vx >= 0 else -1.0
if abs(vy) < 1.0:
vy = 1.0 if vy >= 0 else -1.0
# Add slight acceleration for more complex motion
ax = np.random.uniform(-0.1, 0.1)
ay = np.random.uniform(-0.1, 0.1)
for frame_idx in range(seq_length):
# Create a blank frame
frame = np.zeros((height, width), dtype=np.uint8)
# Round position to integers
x_int, y_int = int(round(x)), int(round(y))
# Draw different shapes
if shape_type == 'square':
# Ensure within bounds
x_int = max(0, min(x_int, width - shape_size))
y_int = max(0, min(y_int, height - shape_size))
frame[y_int:y_int+shape_size, x_int:x_int+shape_size] = 255
elif shape_type == 'circle':
# Create a meshgrid for the image
yy, xx = np.mgrid[:height, :width]
# Calculate distance from center
circle = (xx - x_int) ** 2 + (yy - y_int) ** 2
# Create the circle
radius = shape_size // 2
circle_mask = circle <= radius ** 2
frame[circle_mask] = 255
elif shape_type == 'triangle':
# Define triangle vertices
half_size = shape_size // 2
vertices = np.array([
[x_int, y_int - half_size], # top
[x_int - half_size, y_int + half_size], # bottom left
[x_int + half_size, y_int + half_size], # bottom right
])
# Draw a filled triangle (simplified approach)
# This fills a bounding rectangle and then masks out non-triangle parts
min_x, min_y = np.min(vertices, axis=0)
max_x, max_y = np.max(vertices, axis=0)
# Ensure within image bounds
min_x, min_y = max(0, min_x), max(0, min_y)
max_x, max_y = min(width-1, max_x), min(height-1, max_y)
# Fill the bounding rectangle
frame[int(min_y):int(max_y), int(min_x):int(max_x)] = 255
# Save the frame
frame_path = os.path.join(seq_dir, f'frame_{frame_idx:03d}.png')
Image.fromarray(frame).save(frame_path)
# Update position with velocity
x += vx
y += vy
# Update velocity with acceleration
vx += ax
vy += ay
# Bounce if hitting the boundary
if x <= 0 or x >= width - shape_size:
vx = -vx
x = max(0, min(x, width - shape_size))
if y <= 0 or y >= height - shape_size:
vy = -vy
y = max(0, min(y, height - shape_size))
return data_dir
# Main function
def main():
script_dir = os.path.dirname(os.path.abspath(__file__))
print("Starting the improved video prediction application...")
print("Generating synthetic data...")
data_dir = generate_improved_synthetic_data(num_sequences=200, seq_length=20)
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Create datasets and data loaders
print("Creating datasets...")
# Input sequence of 10 frames, predict next 5 frames
dataset = VideoFrameDataset(data_dir, seq_length=10, pred_length=5)
# Split dataset
train_size = int(0.8 * len(dataset))
val_size = int(0.1 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
batch_size = 16
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Create model
print("Creating model...")
model = VideoFramePredictionModel(input_channels=1, hidden_dim=128, num_layers=2)
# Train the model with improved settings
print("Training model...")
model = train_model(model, train_loader, val_loader, num_epochs=15, patience=5, device=device)
# Load best model
model.load_state_dict(torch.load(os.path.join(script_dir, 'best_video_prediction_model.pth')))
# Visualize predictions with metrics
print("Visualizing predictions...")
visualize_predictions(model, test_loader, device=device)
print("Done!")
if __name__ == '__main__':
main()