-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
271 lines (211 loc) · 9.51 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 10 20:10:24 2023
@author: chris
"""
import torch
import torch.nn.functional as F
from torch_geometric.typing import SparseTensor
from layers import QLinear, QBatchNorm1d, QDropout, QReLU
import sys
seed = 1 #1
def precompute_SIGN_aggregation(x, adj, max_hop):
x_hop = x
x_aggregated = x_hop
for i in range(max_hop):
x_hop = adj @ x_hop
x_aggregated = torch.cat((x_aggregated, x_hop),1)
return x_aggregated
# MLP model
class MLP(torch.nn.Module):
def __init__(self, hidden_channels, num_layers, in_channels,
out_channels, batch_norm = False, dropout = 0.0,
drop_input = False):
super().__init__()
torch.manual_seed(seed)
self.hidden_channels = hidden_channels
self.num_layers = num_layers
self.in_channels = in_channels
self.out_channels = out_channels
self.batch_norm = batch_norm
self.dropout = dropout
self.drop_input = drop_input
self.linear_layers = torch.nn.ModuleList()
self.batch_norm_layers = torch.nn.ModuleList()
# Adding input layer
self.linear_layers.append(torch.nn.Linear(in_channels, hidden_channels))
if self.batch_norm:
self.batch_norm_layers.append(torch.nn.BatchNorm1d(hidden_channels))
# Adding hidden layers
for i in range(num_layers-2):
self.linear_layers.append(torch.nn.Linear(hidden_channels, hidden_channels))
if self.batch_norm:
self.batch_norm_layers.append(torch.nn.BatchNorm1d(hidden_channels))
# Adding output layer
self.linear_layers.append(torch.nn.Linear(hidden_channels, out_channels))
def forward(self, x):
# if using input dropout
if self.drop_input:
x = F.dropout(x, p=self.dropout, training=self.training)
for i in range(self.num_layers-1): # exclude output layer
x = self.linear_layers[i](x)
if self.batch_norm:
x = self.batch_norm_layers[i](x)
x = x.relu_()
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.linear_layers[-1](x) # output layer
return x
# Quantized MLP model
class QMLP(torch.nn.Module):
def __init__(self, hidden_channels, num_layers, in_channels,
out_channels, batch_norm = False, dropout = 0.0,
drop_input = False):
super().__init__()
torch.manual_seed(seed)
self.hidden_channels = hidden_channels
self.num_layers = num_layers
self.in_channels = in_channels
self.out_channels = out_channels
self.batch_norm = batch_norm
self.dropout = dropout
self.drop_input = drop_input
self.linear_layers = torch.nn.ModuleList()
self.batch_norm_layers = torch.nn.ModuleList()
self.relu_layers = torch.nn.ModuleList()
self.dropout_layers = torch.nn.ModuleList()
if drop_input:
self.input_dropout_layer = QDropout(self.dropout)
# Adding input layer
self.linear_layers.append(QLinear(in_channels, hidden_channels))
self.relu_layers.append(QReLU())
self.dropout_layers.append(QDropout(self.dropout))
if self.batch_norm:
self.batch_norm_layers.append(QBatchNorm1d(hidden_channels))
# Adding hidden layers
for i in range(num_layers-2):
self.linear_layers.append(QLinear(hidden_channels, hidden_channels))
self.relu_layers.append(QReLU())
self.dropout_layers.append(QDropout(self.dropout))
if self.batch_norm:
self.batch_norm_layers.append(QBatchNorm1d(hidden_channels))
# Adding output layer
self.linear_layers.append(QLinear(hidden_channels, out_channels))
def forward(self, x):
# if using input dropout
if self.drop_input:
x = self.input_dropout_layer(x)
for i in range(self.num_layers-1): # exclude output layer
x = self.linear_layers[i](x)
if self.batch_norm:
x = self.batch_norm_layers[i](x)
x = self.relu_layers[i](x)
x = self.dropout_layers[i](x)
x = self.linear_layers[-1](x) # output layer
return x
# SIGN Model
class Original_SIGN(torch.nn.Module):
def __init__(self, single_scale_hidden_channels, MLP_hidden_channels,
MLP_num_layers, single_scale_in_channels, num_scales, out_channels,
batch_norm = False, dropout = 0.0, drop_input = False):
super().__init__()
torch.manual_seed(seed)
self.MLP_hidden_channels = MLP_hidden_channels
self.single_scale_hidden_channels = single_scale_hidden_channels
self.MLP_num_layers = MLP_num_layers
self.single_scale_in_channels = single_scale_in_channels
self.out_channels = out_channels
self.batch_norm = batch_norm
self.dropout = dropout
self.drop_input = drop_input
self.num_scales = num_scales
self.single_scale_linear_layers = torch.nn.ModuleList()
self.single_scale_batch_norm_layers = torch.nn.ModuleList()
# Adding input group layers
for i in range(self.num_scales):
self.single_scale_linear_layers.append(torch.nn.Linear(single_scale_in_channels, single_scale_hidden_channels))
if self.batch_norm:
self.single_scale_batch_norm_layers.append(torch.nn.BatchNorm1d(single_scale_hidden_channels))
# Adding MLP layers
self.MLP = MLP(hidden_channels=MLP_hidden_channels, num_layers=MLP_num_layers,
in_channels=num_scales*single_scale_hidden_channels,
out_channels=out_channels, batch_norm=batch_norm,
dropout=dropout, drop_input=drop_input)
def forward(self, x_scales):
assert(x_scales.shape[0] == self.num_scales)
# Scale input layer
x = torch.zeros((x_scales.shape[1],0)).to(x_scales.get_device())
for i in range(self.num_scales):
# if using input dropout
if self.drop_input:
x_scales[i] = F.dropout(x_scales[i], p=self.dropout, training=self.training)
h = self.single_scale_linear_layers[i](x_scales[i])
if self.batch_norm:
h = self.single_scale_batch_norm_layers[i](h)
x = torch.cat((x, h),1)
x = x.relu_()
x = F.dropout(x, p=self.dropout, training=self.training)
# MLP layers
x = self.MLP(x)
return x
# GCN Model
class GCN(torch.nn.Module):
def __init__(self, hidden_channels, num_layers, in_channels,
out_channels, batch_norm = False, dropout = 0.0,
drop_input = False, residual = False):
super().__init__()
torch.manual_seed(seed)
self.hidden_channels = hidden_channels
self.num_layers = num_layers
self.in_channels = in_channels
self.out_channels = out_channels
self.batch_norm = batch_norm
self.dropout = dropout
self.drop_input = drop_input
self.residual = residual
self.linear_layers = torch.nn.ModuleList()
self.batch_norm_layers = torch.nn.ModuleList()
# Adding input layer
if residual:
self.linear_layers.append(torch.nn.Linear(2*in_channels, hidden_channels))
else:
self.linear_layers.append(torch.nn.Linear(in_channels, hidden_channels))
if self.batch_norm:
self.batch_norm_layers.append(torch.nn.BatchNorm1d(hidden_channels))
# Adding hidden layers
for i in range(num_layers-2):
if residual:
self.linear_layers.append(torch.nn.Linear(2*hidden_channels, hidden_channels))
else:
self.linear_layers.append(torch.nn.Linear(hidden_channels, hidden_channels))
if self.batch_norm:
self.batch_norm_layers.append(torch.nn.BatchNorm1d(hidden_channels))
# Adding output layer
if residual:
self.linear_layers.append(torch.nn.Linear(2*hidden_channels, out_channels))
else:
self.linear_layers.append(torch.nn.Linear(hidden_channels, out_channels))
def forward(self, x, adj):
# if using input dropout
if self.drop_input:
x = F.dropout(x, p=self.dropout, training=self.training)
for i in range(self.num_layers-1): # exclude output
# aggregation phase
if self.residual:
x = torch.cat((adj @ x,x),1)
else:
x = adj @ x
# transformation phase
x = self.linear_layers[i](x)
if self.batch_norm:
x = self.batch_norm_layers[i](x)
x = x.relu_()
x = F.dropout(x, p=self.dropout, training=self.training)
# aggregation phase (output layer)
if self.residual:
x = torch.cat((adj @ x,x),1)
else:
x = adj @ x
# transformation phase (output layer)
x = self.linear_layers[-1](x)
return x