Skip to content

Latest commit

 

History

History
139 lines (101 loc) · 3.66 KB

README.md

File metadata and controls

139 lines (101 loc) · 3.66 KB

Torch-FEniCS

The torch-fenics package enables models defined in FEniCS to be used as modules in PyTorch.

Install

Install FEniCS and run

pip install git+https://github.com/barkm/torch-fenics.git@master

A clean install of the package and its dependencies can for example be done with Conda

conda create --name torch-fenics
conda activate torch-fenics
conda install -c conda-forge fenics
pip install git+https://github.com/barkm/torch-fenics.git@master

Details

FEniCS objects are represented in PyTorch using their corresponding vector representation. For finite element functions this corresponds to their coefficient representation.

The package relies on dolfin-adjoint in order for the FEniCS module to be compatible with the automatic differentiation framework in PyTorch

Example

The torch-fenics package can for example be used to define a PyTorch module which solves the Poisson equation using FEniCS.

The process of solving the Poisson equation in FEniCS can be specified as a PyTorch module by deriving the torch_fenics.FEniCSModule class

# Import fenics and override necessary data structures with fenics_adjoint
from fenics import *
from fenics_adjoint import *

import torch_fenics

# Declare the FEniCS model corresponding to solving the Poisson equation
# with variable source term and boundary value
class Poisson(torch_fenics.FEniCSModule):
    # Construct variables which can be in the constructor
    def __init__(self):
        # Call super constructor
        super().__init__()

        # Create function space
        mesh = UnitIntervalMesh(20)
        self.V = FunctionSpace(mesh, 'P', 1)

        # Create trial and test functions
        u = TrialFunction(self.V)
        self.v = TestFunction(self.V)

        # Construct bilinear form
        self.a = inner(grad(u), grad(self.v)) * dx

    def solve(self, f, g):
        # Construct linear form
        L = f * self.v * dx

        # Construct boundary condition
        bc = DirichletBC(self.V, g, 'on_boundary')

        # Solve the Poisson equation
        u = Function(self.V)
        solve(self.a == L, u, bc)

        # Return the solution
        return u

    def input_templates(self):
        # Declare templates for the inputs to Poisson.solve
        return Constant(0), Constant(0)

The Poisson.solve function can now be executed by giving the module the appropriate vector input corresponding to the input templates declared in Poisson.input_templates. In this case the vector representation of the template Constant(0) is simply a scalar.

# Construct the FEniCS model
poisson = Poisson()

# Create N sets of input
N = 10
f = torch.rand(N, 1, requires_grad=True, dtype=torch.float64)
g = torch.rand(N, 1, requires_grad=True, dtype=torch.float64)

# Solve the Poisson equation N times
u = poisson(f, g)

The output of the can now be used to construct some functional. Consider summing up the coefficients of the solutions to the Poisson equation

# Construct functional 
J = u.sum()

The derivative of this functional with respect to f and g can now be computed using the torch.autograd framework.

# Execute backward pass
J.backward() 

# Extract gradients
dJdf = f.grad
dJdg = g.grad

Developing

Install dependencies

conda env create -n torch-fenics -f environment.yml
conda activate torch-fenics

Install package in editable mode

pip install -e .[test]

The unit-tests can then be run as follows

python -m pytest tests