- input image (1x3x361x361)
(These images from https://github.com/Chenyu-Yang-2000/EleGANt/blob/main/assets/images/non-makeup/source_1.png)
- style image (1x3x361x361)
(These images from https://github.com/Chenyu-Yang-2000/EleGANt/tree/main/assets/images/makeup/reference_1.png)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 elegant.py
If you want to specify the input image, put the image path after the --input
option.
Style image can be specified with the --reference
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 elegant.py --input IMAGE_PATH --reference STYLE_IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video and convert it by the style image.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 elegant.py --video VIDEO_PATH --reference STYLE_IMAGE_PATH
By adding the --use_dlib
option, you can use original version of face and landmark detection.
EleGANt: Exquisite and Locally Editable GAN for Makeup Transfer
PyTorch = 2.2.0
ONNX opset = 16