(Image from https://mediapipe.page.link/pose_py_colab)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 mediapipe_holistic.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 mediapipe_holistic.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 mediapipe_holistic.py --video VIDEO_PATH
By adding the --model
option, you can specify pose model type which is selected from "lite", "full", "heavy".
(default is full)
$ python3 mediapipe_holistic.py --model heavy
By adding the --detector
option, you can add person detector model for multi person recognition.
$ python3 mediapipe_holistic.py --detector
By adding the --scale
option, you can resize input image for better viewing of the output.
$ python3 mediapipe_holistic.py --scale 4
By adding the --frame_skip
option, you can skip frames of input video for improve the performance.
$ python3 mediapipe_holistic.py --frame_skip 4
TensorFlow Lite
ONNX opset=12, 11
pose_detection.onnx.prototxt
pose_landmark_lite.onnx.prototxt
pose_landmark_full.onnx.prototxt
pose_landmark_heavy.onnx.prototxt
face_detection_short_range.onnx.prototxt
face_landmark_with_attention.onnx.prototxt
hand_recrop.onnx.prototxt
hand_landmark_full.onnx.prototxt