Skip to content

Latest commit

 

History

History

bert_ner_japanese

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

bert-ner-japanese

Input

A SENTENCE.

  • Example
株式会社Jurabiは、東京都台東区に本社を置くIT企業である。

Output

NER(named entity recognition)

[
  {
    "entity_group": "法人名",
    "score": 0.9949989716211954,
    "word": "株式 会社 Jurabi",
    "start": null,
    "end": null
  },
  {
    "entity_group": "地名",
    "score": 0.996607705950737,
    "word": "東京 都 台東 区",
    "start": null,
    "end": null
  }
]

Requirements

This model requires additional module.

pip3 install transformers

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample text,

$ python3 bert_ner_japanese.py

If you want to specify the input text, put the text after the --input option.

$ python3 bert_ner_japanese.py --input TEXT

Reference

Framework

Pytorch

Model Format

ONNX opset=17

Netron

model.onnx.prototxt