(Image from https://pixabay.com/photos/japan-tokyo-tower-landmark-343444/)
Shape : (1, 321, 321, 3)
Shape : (1, 98960)
- Top-K prediction
TopK predictions:
Tokyo Tower: 92.34%
Sapporo TV Tower: 84.53%
Yokohama Marine Tower: 81.77%
Hakata Port Tower: 81.05%
Nagoya TV Tower: 74.36%
Tamsui Fisherman's Wharf: 70.55%
Guangzhou TV Tower: 70.32%
Kobe Port Tower: 66.71%
Chikugo River Lift bridge: 65.11%
Oasis 21: 64.98%
Yamashita Park: 64.60%
Tokyo Skytree: 62.34%
Wakato Ohashi Bridge: 62.05%
Diamond Exchange District: 61.20%
Wat Arun: 58.97%
Zhongyuan Tower: 58.24%
Corregidor Island: 57.99%
田川市煤炭·历史博物馆: 57.88%
Kobe Maritime Museum: 57.17%
Zero Carbon Building: 56.78%
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 landmarks_classifier_asia.py
If you want to specify the input image, put the image path after the --input
option.
$ python3 landmarks_classifier_asia.py --input IMAGE_PATH
TensorFlow Hub
ONNX opset=11