(from https://www.cityscapes-dataset.com/)
Ailia input shape: (1, 3, 512, 1024)
Range:[0, 1]
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 hrnet_segmentation.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 hrnet_segmentation.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 hrnet_segmentation.py --video VIDEO_PATH
We have three pretrained-model:
- HRNetV2-W48
- HRNetV2-W18-Small-v1
- HRNetV2-W18-Small-v2 (default)
You can specify the architecture you want following--arch
/-a
option.
python3 hrnet_segmentation.py --arch HRNetV2-W48
If you want the segmentated image to be smooth, use --smooth
option.
By applying resize method interpolaation=cv2.INTER_LINEAR
, the visualisation will be more smooth.
python3 hrnet_segmentation.py -a HRNetV2-W48 --smooth
High-resolution networks (HRNets) for Semantic Segmentation
PyTorch 0.4.1
ONNX opset = 10