-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy patharguments.py
333 lines (315 loc) · 12.7 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
"""FSDP binary script arguments."""
import argparse
import os
def parse_args(): # pylint: disable=too-many-statements
"""Parse args."""
parser = argparse.ArgumentParser()
# hyperparameters sent by the client are passed as command-line arguments to the script.
### OPTIMIZATION
opt_grp = parser.add_argument_group(
title="optimization", description="arguments for optimization"
)
opt_grp.add_argument(
"--train_batch_size",
type=int,
default=2,
help="batch size per dp rank, for tensor parallelism degree 8 with pipeline parallel degree 1 this means 8*this batch size per node", # pylint: disable=line-too-long
)
opt_grp.add_argument("--max_steps", "--max_training_steps", type=int, default=5000)
opt_grp.add_argument(
"--epochs", type=int, default=3, help="times of iterating over the training dataset"
)
opt_grp.add_argument("--seed", type=int, default=12345)
opt_grp.add_argument("--same_seed", type=int, default=0)
opt_grp.add_argument("--bf16", default=1, type=int, help="automatic mixed precision training")
opt_grp.add_argument("--grad_clip", default=1.0, type=float, help="gradient clipping")
opt_grp.add_argument("--weight_decay", default=0.2, type=float, help="weight decay")
opt_grp.add_argument(
"--beta1", default=0.9, type=float, help="beta1 parameter for Adam optimizer"
)
opt_grp.add_argument(
"--beta2", default=0.95, type=float, help="beta2 parameter for Adam optimizer"
)
# Learning rate
lr_grp = parser.add_argument_group(
title="lr", description="arguments for learning rate schedule"
)
lr_grp.add_argument("--lr", type=float, default=0.0001, help="Initial learning rate.")
lr_grp.add_argument(
"--lr_decay_style",
type=str,
default="cosine",
choices=["constant", "linear", "cosine", "exponential", "plateau"],
help="Learning rate decay function.",
)
lr_grp.add_argument(
"--lr_decay_iters",
type=int,
default=47683,
help="number of iterations to decay learning rate over," " If None defaults to train iters",
)
lr_grp.add_argument(
"--min_lr",
type=float,
default=1e-05,
help="Minumum value for learning rate. The scheduler" "clip values below this threshold.",
)
lr_grp.add_argument(
"--warmup",
type=float,
default=0.0032,
help="Percentage of total iterations to warmup on "
"(.01 = 1 percent of all training iters).",
)
lr_grp.add_argument(
"--plateau",
type=float,
default=0.0,
help="Percentage of total iterations to keep at max if using plateau lr",
)
### MEMORY USAGE RELATED
mem_grp = parser.add_argument_group(title="memory usage", description="arguments for memory")
mem_grp.add_argument(
"--activation_checkpointing",
type=int,
default=1,
help="enable gradient checkpointing to reduce memory consumption",
)
mem_grp.add_argument("--offload_activations", type=int, default=0)
mem_grp.add_argument("--activation_loading_horizon", type=int, default=2)
mem_grp.add_argument("--patch_neox_rope", type=int, default=1)
mem_grp.add_argument("--delayed_param", type=int, default=1)
mem_grp.add_argument(
"--enable_memory_profiling", type=int, default=0, help="Enable memory profile"
)
mem_grp.add_argument(
"--clean_cache",
type=int,
default=0,
help="Clean torch reserved memory at he end of every step",
)
### LOGGING
logging_grp = parser.add_argument_group(
title="logging", description="arguments for logging metrics"
)
logging_grp.add_argument(
"--logging_freq", type=int, default=1, help="number of iterations between logging"
)
logging_grp.add_argument(
"--logging_freq_for_avg",
type=int,
default=50,
help="number of iterations between logging the running avg",
)
logging_grp.add_argument(
"--log_reduced_training_loss",
type=int,
default=0,
help="to log training loss after reducing across all data parallel ranks with logging_freq frequency", # pylint: disable=line-too-long
)
logging_grp.add_argument("--tensorboard_dir", type=str, nargs="+", default=None)
### CHECKPOINTS
ckpt_grp = parser.add_argument_group(title="checkpoints", description="checkpointing arguments")
ckpt_grp.add_argument(
"--num_kept_checkpoints",
nargs="+",
type=int,
default=[2],
help="how many checkpoints to keep before deleting",
)
ckpt_grp.add_argument(
"--checkpoint_freq",
nargs="+",
type=int,
default=[1000],
help="number of iterations between checkpointing",
)
ckpt_grp.add_argument(
"--checkpoint_dir",
nargs="+",
type=str,
default=["/opt/ml/checkpoints"],
help="Saves partial checkpoints (model, optimizer) to this dir, and loads latest checkpoint from this if load_partial is specified.", # pylint: disable=line-too-long
)
ckpt_grp.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="Checkpoint folder name to load from",
)
ckpt_grp.add_argument(
"--checkpoint_type", type=str, default="sharded", choices=["local", "sharded", "use_pg_with_util"]
)
ckpt_grp.add_argument(
"--model_dir",
type=str,
default=None,
help="If not passed, saves it to checkpoint_dir/model. Only saved when save_final_model is 1",
)
ckpt_grp.add_argument("--save_final_model", type=int, default=0)
### I/O
input_grp = parser.add_argument_group(title="inputs", description="location for data")
input_grp.add_argument(
"--dataset_type", type=str, default="gpt_jsonl", choices=["gpt_jsonl", "hf"]
)
input_grp.add_argument("--data_num_workers", type=int, default=0)
input_grp.add_argument("--data_type", type=str.lower, default="gpt", choices=["gpt", "bert"])
# dummy dataset
input_grp.add_argument("--use_synthetic_data", type=int, default=0)
# gpt dataset
input_grp.add_argument("--zipped_data", type=int, default=1, help="input data is zipped files")
input_grp.add_argument("--training_dir", type=str, default=os.getenv("SM_CHANNEL_TRAIN"))
input_grp.add_argument("--test_dir", type=str, default=os.getenv("SM_CHANNEL_TEST"))
### MODEL
model_grp = parser.add_argument_group(
title="model", description="arguments to describe model configuration"
)
model_grp.add_argument(
"--hf_pretrained_model_name_or_dir",
type=str,
default=None,
help=(
"For finetuning, pass the pretrained Huggingface model name or path where the model is downloaded. "
"Example: EleutherAI/gpt-neox-20b. or /path/to/downloaded/model. "
"This flag is used for loading both config and weights. "
"When this config is used, flags such as vocab_size, hidden_width etc are ignored in creating the model. "
"For finetuning you need to set this flag even when resuming from a checkpoint. "
),
)
model_grp.add_argument("--max_context_width", type=int, default=2048)
model_grp.add_argument("--vocab_size", type=int, default=50432)
model_grp.add_argument("--hidden_width", type=int, default=768)
model_grp.add_argument("--num_layers", type=int, default=12)
model_grp.add_argument("--num_heads", type=int, default=12)
model_grp.add_argument("--resid_pdrop", type=float, default=0.1)
model_grp.add_argument("--embd_pdrop", type=float, default=0.1)
model_grp.add_argument("--attn_pdrop", type=float, default=0.1)
model_grp.add_argument("--summary_first_pdrop", type=float, default=0.1)
model_grp.add_argument("--initializer_range", type=float, default=0.02)
model_grp.add_argument(
"--model_type", type=str, default="gpt_neox", choices=["gpt_neox", "llama_v2", "gpt2"]
)
model_grp.add_argument("--rotary_pct", type=float, default=0.25)
model_grp.add_argument("--rotary_emb_base", type=int, default=10000)
model_grp.add_argument("--use_smp_flash_attn", type=int, default=1)
model_grp.add_argument(
"--llama_intermediate_size",
type=int,
default=11008,
help="intermediate_size for Llama v2, a dimension associated with MLP",
)
model_grp.add_argument(
"--num_key_value_heads",
type=int,
default=None,
help="num_key_value_heads for Llama v2",
)
model_grp.add_argument(
"--use_smp_implementation",
type=int,
default=0,
help="Whether to use SMP optimized implementation of model. "
"All models may not be supported."
"When using tensor_parallel_degree, this is automatically enabled.",
)
model_grp.add_argument(
"--tensor_parallel_degree",
type=int,
default=1,
help="Whether to enable tensor parallelism. If degree > 1, then "
"--use_smp_implementation is assumed to be 1.",
)
### FSDP args
fsdp_grp = parser.add_argument_group(
title="fsdp", description="arguments for fully sharded data parallel"
)
fsdp_grp.add_argument("--limit_all_gathers", default=1, type=int)
fsdp_grp.add_argument("--forward_prefetch", default=1, type=int)
fsdp_grp.add_argument(
"--sharding_strategy",
type=str,
default="hybrid_shard",
help="options: no_shard, shard_grad_op, hybrid_shard, _hybrid_shard_zero2, full_shard",
)
fsdp_grp.add_argument(
"--use_orig_params",
default=0,
type=int,
help="This flag needs to be set when you need multiple param groups for optimizer, such as for weight decay",
)
# Note that `shard_degree` might rewrite `sharding_strategy`:
#
# 1. When there is no explicit `shard_degree` or `0`, will fall back to native PyTorch, for all
# `sharding_strategy` cases.
#
# 2. When there is explicit `shard_degree` and it's in `[1, world_size]`:
# - Will rewrite `sharding_strategy` to `HYBRID_SHARD`, when and only when it's not either of
# the two native hybrid strategies, i.e. `{HYBRID_SHARD, _HYBRID_SHARD_ZERO2}`.
#
# - Will use hybrid sharding implementation by SageMaker:
# - 1: Should be equivalent to native PyTorch's `NO_SHARD`.
# - Might have some issues when exporting checkpoints to the disk in native PyTorch.
# - 8: Should be equivalent to native PyTorch's `HYBRID_SHARD`.
# - $world_size: Should be equivalent to native PyTorch's `FULL_SHARD`, though throughput
# might be worse with unnecessary communications.
# - Other values e.g. 2, 4, 16, etc, as long as $world_size is divisible by them:
# - Newly supported sharding implementation by SageMaker.
fsdp_grp.add_argument(
"--shard_degree",
type=int,
default=None,
nargs="?",
help="Sharding degree for partial shard strategy",
)
fsdp_grp.add_argument(
"--backward_fetch_policy",
type=str,
default="backward_pre",
help="options: backward_post, backward_pre",
)
fsdp_grp.add_argument(
"--auto_wrap_policy",
type=str,
default="transformer_auto_wrap_policy",
help="options: size_based_auto_wrap_policy, transformer_auto_wrap_policy",
)
### VALIDATION
validation_grp = parser.add_argument_group(
title="validation", description="arguments for validation"
)
validation_grp.add_argument(
"--validation_freq",
type=int,
default=None,
help="number of iterations to print validation loss",
)
validation_grp.add_argument(
"--validation_batches",
type=int,
default=10,
help="number of batches to estimate validation loss",
)
validation_grp.add_argument(
"--preserve_np_state",
type=int,
default=0,
help="Perserve the numpy random state between validation",
)
validation_grp.add_argument(
"--fast_validation",
type=int,
default=1,
help="Running validation only with the last data file for faster speed",
)
validation_grp.add_argument("--val_batch_size", type=int, default=4)
### OTHERS
parser.add_argument(
"--distributed_backend",
type=str,
default="smddp",
choices=["smddp", "nccl"],
help="Distributed backend to use for collectives",
)
parser.add_argument("--profile_nsys", type=int, default=0)
parser.add_argument("--framework", type=str, default="fsdp")
return parser.parse_known_args()