-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTestGenerate.py
152 lines (119 loc) · 5.78 KB
/
TestGenerate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# =============================================================================
# Modified version of https://github.com/ricedsp/D-AMP_Toolbox
# Takes images from a folder and calculates avg psnr, time, ssim and mse
# =============================================================================
import numpy as np
import argparse
import tensorflow as tf
import time
import LearnedDAMP as LDAMP
from tensorflow.python import debug as tf_debug
from matplotlib import pyplot as plt
import h5py
from PIL import Image
from skimage import io
from psnr import psnr
from skimage.measure import compare_ssim as ssim
import os
import errno
import json
useSURE=False#Use the network trained with ground-truth data or with SURE
sigma_w=25./255.#Noise std, normalized
data_set ="NLM_XRAYS"
# some variables
n_DnCNN_layers=16
input_dir = "./TestImages/"+data_set
# cleaned images will be saved here.
if useSURE:
output_dir = "Results/"+data_set+"/SURE"
else:
output_dir = "Results/"+data_set+"/MSE"
test_image_names = os.listdir(input_dir)
#
avg_psnr = 0
avg_mse = 0
avg_time =0
avg_ssim = 0
avg_results = {}
for image_name in test_image_names:
test_images = Image.open(input_dir+"/"+image_name).convert('L')
test_images = np.array(test_images).astype("float32")/255
## Network Parameters
height_img = test_images.shape[0]
width_img = test_images.shape[1]
channel_img = 1 # RGB -> 3, Grayscale -> 1
filter_height = 3
filter_width = 3
num_filters = 64
## Problem Parameters
n=channel_img*height_img*width_img
## Training Parameters
BATCH_SIZE = 1
# Parameters to to initalize weights. Won't be used if old weights are loaded
init_mu = 0
init_sigma = 0.1
train_start_time=time.time()
## Clear all the old variables, tensors, etc.
tf.reset_default_graph()
LDAMP.SetNetworkParams(new_height_img=height_img, new_width_img=width_img, new_channel_img=channel_img, \
new_filter_height=filter_height, new_filter_width=filter_width, new_num_filters=num_filters, \
new_n_DnCNN_layers=n_DnCNN_layers, new_n_DAMP_layers=None,
new_sampling_rate=None, \
new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=None, new_training=False)
LDAMP.ListNetworkParameters()
# tf Graph input
x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE])
## Construct the measurement model and handles/placeholders
y_measured = LDAMP.AddNoise(x_true,sigma_w)
## Initialize the variable theta which stores the weights and biases
theta_dncnn=LDAMP.init_vars_DnCNN(init_mu, init_sigma)
## Construct the reconstruction model
x_hat = LDAMP.DnCNN(y_measured,None,theta_dncnn,training=False)
LDAMP.CountParameters()
assert (len(test_images)>=BATCH_SIZE), "Requested too much Test data"
x_test = test_images#np.array(test_images)#np.transpose( np.reshape(test_images[0:BATCH_SIZE], (BATCH_SIZE, height_img * width_img * channel_img)))
x_test =x_test.reshape(-1,1)
with tf.Session() as sess:
y_test=sess.run(y_measured,feed_dict={x_true: x_test})
## Train the Model
saver = tf.train.Saver() # defaults to saving all variables
saver_dict={}
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
sigma_w_min=sigma_w*255.
sigma_w_max=sigma_w*255.
save_name = LDAMP.GenDnCNNFilename(sigma_w_min/255.,sigma_w_max/255.,useSURE=useSURE)
save_name_chckpt = save_name + ".ckpt"
saver.restore(sess, save_name_chckpt)
print("Reconstructing Signal")
start_time = time.time()
[reconstructed_test_images]= sess.run([x_hat], feed_dict={y_measured:y_test})
time_taken=time.time()-start_time
result_folder = str(n_DnCNN_layers)+"L"+str(int(sigma_w_max))+"N"
save_directory_noisy = output_dir+"/"+result_folder+"/Noisy/"
save_directory_clean = output_dir+"/"+result_folder+"/Clean/"
# create directory if did not exists already
if not os.path.exists(os.path.dirname(save_directory_noisy)):
try:
os.makedirs(os.path.dirname(save_directory_noisy))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
if not os.path.exists(os.path.dirname(save_directory_clean)):
try:
os.makedirs(os.path.dirname(save_directory_clean))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
plt.imsave(save_directory_noisy+"/"+image_name,y_test.reshape(height_img,width_img), cmap='gray')
plt.imsave(save_directory_clean+"/"+image_name,reconstructed_test_images.reshape(height_img,width_img), cmap='gray')
avg_psnr += psnr(reconstructed_test_images,x_test,1)
avg_mse += np.linalg.norm(reconstructed_test_images-x_test)
avg_time += time_taken
avg_ssim += ssim(reconstructed_test_images.reshape(height_img,width_img),x_test.reshape(height_img,width_img))
avg_results = {"Average PSNR":avg_psnr/len(test_image_names), "Average SSIM":avg_ssim/len(test_image_names),
"Average MSE":avg_mse/len(test_image_names), "Average Time Taken":avg_time/len(test_image_names)}
result_dir = output_dir+"/"+result_folder+"/results.json"
with open(result_dir, 'w') as fp:
json.dump(avg_results, fp)
print("average psnr:",avg_psnr/len(test_image_names),"average mse",avg_mse/len(test_image_names),
"average time",avg_time/len(test_image_names), "average sso,",avg_ssim/len(test_image_names))