-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatapreprocessing.py
177 lines (141 loc) · 4.92 KB
/
datapreprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import csv
import re
import pickle
import numpy as np
import pandas as pd
from PIL import Image
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from sklearn.model_selection import train_test_split
from keras.preprocessing import sequence
import tensorflow as tf
df = pd.read_csv('Reviews.csv')
#cleaning
def cleanhtml(sentence): #function to clean the word of any html-tags
cleanr = re.compile('<.*?>')
cleantext = re.sub(cleanr, ' ', sentence)
return cleantext
def cleanpunc(sentence): #function to clean the word of any punctuation or special characters
cleaned = re.sub(r'[?|!|\'|"|#]',r'',sentence)
cleaned = re.sub(r'[.|,|)|(|\|/]',r' ',cleaned)
return cleaned
#storing in list
def LOW(l):
i=0
list_of_sent=[] # list to store all the lists.
for sent in l:
filtered_sentence=[] # list to store each review.
for w in sent.split():
for cleaned_words in cleanpunc(w).split():
if(cleaned_words.isalpha()):
filtered_sentence.append(cleaned_words.lower())
else:
continue
list_of_sent.append(filtered_sentence)
return list_of_sent
#using pickle for storing and retrieve data for future purpose
def save(o,f):
op=open(f+".p","wb")
pickle.dump(o,op)
# Method to retrieve the data.
def retrieve(f):
op=open(f+".p","rb")
ret=pickle.load(op)
return ret
#plotting training vs validation loss
def Plot(err):
x = list(range(1,11))
v_loss = err.history['val_loss']
t_loss = err.history['loss']
plt.plot(x, v_loss, '-b', label='Validation Loss')
plt.plot(x, t_loss, '-r', label='Training Loss')
plt.legend(loc='center right')
plt.xlabel("EPOCHS",fontsize=15, color='black')
plt.ylabel("Train Loss & Validation Loss",fontsize=15, color='black')
plt.title("Train vs Validation Loss on Epoch's" ,fontsize=15, color='black')
plt.show()
df = df[df.Score != 3]
def partition(x):
if x < 3:
return 0
return 1
actualScore = df['Score']
positiveNegative = actualScore.map(partition)
df['Score'] = positiveNegative
#data preprocessing
sorted_data=df.sort_values('Time', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first', inplace=False)
final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator]
print("Dimension of dataset - : ",final.shape,"\n")
print("________________________ Frequency of positive and negative reviews _________________________")
print(final['Score'].value_counts())
final = final.sample(50000)
final.sort_values('Time',inplace=True)
print("Dimension of dataset - : ",final.shape,"\n")
#How many positive and negative reviews are present in our dataset?
print("________________________ Frequency of positive and negative reviews _________________________")
print(final['Score'].value_counts())
#converting the data
total=[]
for i in range(50000):
l1=final['Text'].values[i]
l2=str(l1)
total.append(l2)
total = LOW(total)
all_=[]
vocab=[]
Vocab=[]
for i in total:
all_.extend(i)
for i in all_:
c=0
if i not in vocab:
vocab.append(i)
c = all_.count(i)
Vocab.append((i,c))
else:
pass
#vocabulary
l1 = sorted(Vocab,reverse=True, key=lambda x:x[1])
l2 = sorted(Vocab,reverse=False, key=lambda x:x[1])
mapped1 =[]
mapped2 =[]
for i in range(len(l1)):
mapped1.append(l1[i][0])
for i in range(len(l2)):
mapped2.append(l2[i][0])
keys=list(range(1,len(l1)+1))
data1 = dict(zip(mapped1, keys))
data2 = dict(zip(mapped2, keys))
wo= WordCloud(width = 2000, height = 1000)
wo.generate_from_frequencies(data2)
plt.figure(figsize=(20,10))
plt.imshow(wo, interpolation='bilinear')
plt.axis("off")
plt.show()
print("\n")
print("___________________ SIZE OF VOCABULARY ______________________")
print(len(vocab))
#converting according to rank
print("_______________________ FIRST REVIEW BEFORE CONVERTING ________________\n")
print(total[0])
for i in range(len(total)):
for j in range(len(total[i])):
rank = data1.get(total[i][j])
total[i][j]=rank
print("_______________________ FIRST REVIEW AFTER CONVERSION ________________\n")
print(total[0])
csvfile = "total.csv"
#Assuming res is a flat list
with open(csvfile, "w") as output:
writer = csv.writer(output, lineterminator='\n')
for val in total:
writer.writerow([val])
#Assuming res is a list of lists
with open(csvfile, "w") as output:
writer = csv.writer(output, lineterminator='\n')
writer.writerows(total)