Skip to content

Commit 53773bd

Browse files
Merge pull request #2128 from avinashkranjan/deepsource-transform-9deb9008
format code with autopep8
2 parents dfa4e56 + 3a217c3 commit 53773bd

File tree

1 file changed

+25
-15
lines changed

1 file changed

+25
-15
lines changed

Flask_Apis/Image_recognition_from_File_format.py

+25-15
Original file line numberDiff line numberDiff line change
@@ -1,26 +1,30 @@
11
import numpy as np
2-
from flask import Flask, request, jsonify, render_template,json
2+
from flask import Flask, request, jsonify, render_template, json
33
import cv2
44
from skimage.metrics import structural_similarity as ssim
55

66

7-
87
app = Flask(__name__)
98

10-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
9+
face_cascade = cv2.CascadeClassifier(
10+
cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
11+
1112

1213
@app.route('/')
1314
def home():
14-
return jsonify({'message':'Welcome to Flask Apis'})
15+
return jsonify({'message': 'Welcome to Flask Apis'})
16+
1517

16-
@app.route('/image_Compare',methods=['POST'])
18+
@app.route('/image_Compare', methods=['POST'])
1719
def predict():
1820
file1 = request.files['file1']
1921
file2 = request.files['file2']
2022

2123
# Read the images using OpenCV
22-
img1 = cv2.imdecode(np.frombuffer(file1.read(), np.uint8), cv2.IMREAD_COLOR)
23-
img2 = cv2.imdecode(np.frombuffer(file2.read(), np.uint8), cv2.IMREAD_COLOR)
24+
img1 = cv2.imdecode(np.frombuffer(
25+
file1.read(), np.uint8), cv2.IMREAD_COLOR)
26+
img2 = cv2.imdecode(np.frombuffer(
27+
file2.read(), np.uint8), cv2.IMREAD_COLOR)
2428

2529
# Resize the images to 256x256 pixels
2630
img1 = cv2.resize(img1, (256, 256))
@@ -37,25 +41,30 @@ def predict():
3741
similarity_percentage = score * 100
3842

3943
# Return the similarity percentage in a JSON response
40-
return jsonify({'similarity_percentage': similarity_percentage})
44+
return jsonify({'similarity_percentage': similarity_percentage})
4145

42-
@app.route('/face_recognize',methods=['POST'])
46+
47+
@app.route('/face_recognize', methods=['POST'])
4348
def predictface():
44-
# Get the uploaded files from the request
49+
# Get the uploaded files from the request
4550
file1 = request.files['file1']
4651
file2 = request.files['file2']
4752

4853
# Read the images using OpenCV directly from the request files
49-
img1 = cv2.imdecode(np.frombuffer(file1.read(), np.uint8), cv2.IMREAD_COLOR)
50-
img2 = cv2.imdecode(np.frombuffer(file2.read(), np.uint8), cv2.IMREAD_COLOR)
54+
img1 = cv2.imdecode(np.frombuffer(
55+
file1.read(), np.uint8), cv2.IMREAD_COLOR)
56+
img2 = cv2.imdecode(np.frombuffer(
57+
file2.read(), np.uint8), cv2.IMREAD_COLOR)
5158

5259
# Convert the images to grayscale
5360
gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
5461
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
5562

5663
# Detect faces in the images
57-
faces1 = face_cascade.detectMultiScale(gray_img1, scaleFactor=1.1, minNeighbors=5)
58-
faces2 = face_cascade.detectMultiScale(gray_img2, scaleFactor=1.1, minNeighbors=5)
64+
faces1 = face_cascade.detectMultiScale(
65+
gray_img1, scaleFactor=1.1, minNeighbors=5)
66+
faces2 = face_cascade.detectMultiScale(
67+
gray_img2, scaleFactor=1.1, minNeighbors=5)
5968

6069
# Compare only the first detected face in each image
6170
if len(faces1) > 0 and len(faces2) > 0:
@@ -81,5 +90,6 @@ def predictface():
8190
else:
8291
return jsonify({'similarity_percentage': 'Could not detect faces in both images.'})
8392

93+
8494
if __name__ == '__main__':
85-
app.run(debug=True)
95+
app.run(debug=False)

0 commit comments

Comments
 (0)