Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDA, TensorRT, CUDNN upgrade #5607

Open
17 of 19 tasks
amadeuszsz opened this issue Dec 24, 2024 · 2 comments
Open
17 of 19 tasks

CUDA, TensorRT, CUDNN upgrade #5607

amadeuszsz opened this issue Dec 24, 2024 · 2 comments
Assignees

Comments

@amadeuszsz
Copy link
Contributor

amadeuszsz commented Dec 24, 2024

Checklist

  • I've read the contribution guidelines.
  • I've searched other issues and no duplicate issues were found.
  • I've agreed with the maintainers that I can plan this task.

Description

Purpose

Incoming new packages requires TensorRT upgrade.

Possible approaches

  1. Refactor packages which uses TensorRT in autoware.universe and keep compatibility in current environment.
  2. Merge PR for autoware.universe.
  3. Wait for merge rosdistro PR. If fast integration needed, we can add tensorrt_cmake_module to autoware.repos temporary.
  4. Merge PR for CUDA, CUDNN, TensorRT upgrade in Autoware.

Definition of done

  • Update tensorrt_cmake_module.
  • Refactor autoware_tensorrt_common.
  • Refactor related packages.
    • autoware_image_projection_based_fusion.
    • autoware_lidar_apollo_instance_segmentation.
    • autoware_lidar_centerpoint.
    • autoware_lidar_transfusion.
    • autoware_shape_estimation.
    • autoware_tensorrt_classifier.
    • autoware_tensorrt_yolox.
    • autoware_traffic_light_classifier.
    • autoware_traffic_light_fine_detector.
    • autoware_tensorrt_rtmdet (refactor going to be merged before merging this package)
  • Merge autoware.universe PR.
  • Wait for rosdistro merge.
  • Merge autoware PR.
@razr
Copy link

razr commented Dec 28, 2024

Hi @amadeuszsz, I think I have a related question.

I have the following error, when I try to run a Carla Autoware example inside the ghcr.io/autowarefoundation/autoware:universe-cuda docker container

[component_container_mt-61] [ERROR] [1735397635.819246109] [perception.traffic_light_recognition.traffic_light.classification.car_traffic_light_classifier]: please install CUDA, CUDNN and TensorRT to use cnn classifier

I run this example

ros2 launch autoware_launch e2e_simulator.launch.xml map_path:=/tmp/autoware_map/Town01 \
  vehicle_model:=sample_vehicle sensor_model:=awsim_sensor_kit simulator_type:=carla carla_map:=Town01

and my docker is

$ docker inspect ghcr.io/autowarefoundation/autoware:universe-cuda | grep Created
        "Created": "2024-12-19T15:34:09.760888018Z",

what components shall be installed, it looks like tensorrt is missing inside the container?

$ docker run -ti --runtime nvidia --gpus all ghcr.io/autowarefoundation/autoware:universe-cuda nvidia-smi
Sat Dec 28 22:12:26 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.35.05              Driver Version: 560.35.05      CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti     Off |   00000000:01:00.0 Off |                  N/A |
|  0%   27C    P8              9W /  250W |    1038MiB /  11264MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+

it looks like it is built without ENABLE_GPU

@amadeuszsz
Copy link
Contributor Author

@razr your image contains TensorRT, you can check it by dpkg -l | grep nvinfer.
You can also check if libraries are linked properly:

ldd /opt/autoware/lib/libtraffic_light_classifier_nodelet.so | grep libnv
        libnvinfer.so.8 => /usr/lib/x86_64-linux-gnu/libnvinfer.so.8 (0x00007808ea97c000)
        libnvinfer_plugin.so.8 => /usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.8 (0x00007808e8500000)
        libnvonnxparser.so.8 => /usr/lib/x86_64-linux-gnu/libnvonnxparser.so.8 (0x00007808e8000000)

or if you use locally built workspace:

ldd /workspace/install/autoware_traffic_light_classifier/lib/libtraffic_light_classifier_nodelet.so | grep libnv                                                                                                                          
        libnvinfer.so.8 => /usr/lib/x86_64-linux-gnu/libnvinfer.so.8 (0x000074245a897000)                                                                                                                                                                                          
        libnvinfer_plugin.so.8 => /usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.8 (0x000074245841b000)                                                                                                                                                                            
        libnvonnxparser.so.8 => /usr/lib/x86_64-linux-gnu/libnvonnxparser.so.8 (0x0000742457e00000) 

If you use locally build workspace, I suggest to make a clean build and make sure you use CUDA-supported image.

Please create a separate thread if you issue still occurs.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
Status: In Progress
Development

No branches or pull requests

2 participants