-
Notifications
You must be signed in to change notification settings - Fork 6
/
Sunriset.cs
447 lines (394 loc) · 15 KB
/
Sunriset.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
using System;
public sealed class Sunriset
{
private Sunriset()
{
}
private const double SunriseSunsetAltitude = -35d / 60d;
private const double CivilTwilightAltitude = -6d;
private const double NauticalTwilightAltitude = -12d;
private const double AstronomicalTwilightAltitude = -18d;
/// <summary>
/// Compute sunrise/sunset times UTC
/// </summary>
/// <param name="year">The year</param>
/// <param name="month">The month of year</param>
/// <param name="day">The day of month</param>
/// <param name="lat">The latitude</param>
/// <param name="lng">The longitude</param>
/// <param name="tsunrise">The computed sunrise time (in seconds)</param>
/// <param name="tsunset">The computed sunset time (in seconds)</param>
public static void SunriseSunset(int year, int month, int day, double lat, double lng, out double tsunrise, out double tsunset)
{
SunriseSunset(year, month, day, lng, lat, SunriseSunsetAltitude, true, out tsunrise, out tsunset);
}
/// <summary>
/// Compute civil twilight times UTC
/// </summary>
/// <param name="year">The year</param>
/// <param name="month">The month of year</param>
/// <param name="day">The day of month</param>
/// <param name="lat">The latitude</param>
/// <param name="lng">The longitude</param>
/// <param name="tsunrise">The computed civil twilight time at sunrise (in seconds)</param>
/// <param name="tsunset">The computed civil twilight time at sunset (in seconds)</param>
public static void CivilTwilight(int year, int month, int day, double lat, double lng, out double tsunrise, out double tsunset)
{
SunriseSunset(year, month, day, lng, lat, CivilTwilightAltitude, false, out tsunrise, out tsunset);
}
/// <summary>
/// Compute nautical twilight times UTC
/// </summary>
/// <param name="year">The year</param>
/// <param name="month">The month of year</param>
/// <param name="day">The day of month</param>
/// <param name="lat">The latitude</param>
/// <param name="lng">The longitude</param>
/// <param name="tsunrise">The computed nautical twilight time at sunrise (in seconds)</param>
/// <param name="tsunset">The computed nautical twilight time at sunset (in seconds)</param>
public static void NauticalTwilight(int year, int month, int day, double lat, double lng, out double tsunrise, out double tsunset)
{
SunriseSunset(year, month, day, lng, lat, NauticalTwilightAltitude, false, out tsunrise, out tsunset);
}
/// <summary>
/// Compute astronomical twilight times UTC
/// </summary>
/// <param name="year">The year</param>
/// <param name="month">The month of year</param>
/// <param name="day">The day of month</param>
/// <param name="lat">The latitude</param>
/// <param name="lng">The longitude</param>
/// <param name="tsunrise">The computed astronomical twilight time at sunrise (in seconds)</param>
/// <param name="tsunset">The computed astronomical twilight time at sunset (in seconds)</param>
public static void AstronomicalTwilight(int year, int month, int day, double lat, double lng, out double tsunrise, out double tsunset)
{
SunriseSunset(year, month, day, lng, lat, AstronomicalTwilightAltitude, false, out tsunrise, out tsunset);
}
/* +++Date last modified: 05-Jul-1997 */
/* Updated comments, 05-Aug-2013 */
/*
SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
the length of the day at any date and latitude
Written as DAYLEN.C, 1989-08-16
Modified to SUNRISET.C, 1992-12-01
(c) Paul Schlyter, 1989, 1992
Released to the public domain by Paul Schlyter, December 1992
*/
/* Converted to C# by Mursaat 05-Feb-2017 */
/// <summary>
/// A function to compute the number of days elapsed since 2000 Jan 0.0
/// (which is equal to 1999 Dec 31, 0h UT)
/// </summary>
/// <param name="y"></param>
/// <param name="m"></param>
/// <param name="d"></param>
/// <returns></returns>
private static long daysSince2000Jan0(int y, int m, int d)
{
return (367L * y - ((7 * (y + ((m + 9) / 12))) / 4) + ((275 * m) / 9) + d - 730530L);
}
/* Some conversion factors between radians and degrees */
private const double RadDeg = 180.0 / Math.PI;
private const double DegRad = Math.PI / 180.0;
/* The trigonometric functions in degrees */
private static double sind(double x)
{
return Math.Sin(x * DegRad);
}
private static double cosd(double x)
{
return Math.Cos(x * DegRad);
}
private static double tand(double x)
{
return Math.Tan(x * DegRad);
}
private static double atand(double x)
{
return RadDeg * Math.Atan(x);
}
private static double asind(double x)
{
return RadDeg * Math.Asin(x);
}
private static double acosd(double x)
{
return RadDeg * Math.Acos(x);
}
private static double atan2d(double y, double x)
{
return RadDeg * Math.Atan2(y, x);
}
/// <summary>
/// The "workhorse" function for sun rise/set times
/// Note: year,month,date = calendar date, 1801-2099 only.
/// Eastern longitude positive, Western longitude negative
/// Northern latitude positive, Southern latitude negative
/// The longitude value IS critical in this function!
/// </summary>
/// <param name="year"></param>
/// <param name="month"></param>
/// <param name="day"></param>
/// <param name="lon"></param>
/// <param name="lat"></param>
/// <param name="altit">
/// the altitude which the Sun should cross
/// Set to -35/60 degrees for rise/set, -6 degrees
/// for civil, -12 degrees for nautical and -18
/// degrees for astronomical twilight.
/// </param>
/// <param name="upper_limb">
/// true -> upper limb, false -> center
/// Set to true (e.g. 1) when computing rise/set
/// times, and to false when computing start/end of twilight.
/// </param>
/// <param name="trise">where to store the rise time</param>
/// <param name="tset">where to store the set time</param>
/// <returns>
/// 0 = sun rises/sets this day, times stored at trise and tset
/// +1 = sun above the specified "horizon" 24 hours.
/// trise set to time when the sun is at south,
/// minus 12 hours while *tset is set to the south
/// time plus 12 hours. "Day" length = 24 hours
/// -1 = sun is below the specified "horizon" 24 hours
/// "Day" length = 0 hours, *trise and *tset are
/// both set to the time when the sun is at south.
/// </returns>
private static int SunriseSunset(int year, int month, int day, double lon, double lat,
double altit, bool upper_limb, out double trise, out double tset)
{
double d; /* Days since 2000 Jan 0.0 (negative before) */
double sr; /* Solar distance, astronomical units */
double sRA; /* Sun's Right Ascension */
double sdec; /* Sun's declination */
double sradius; /* Sun's apparent radius */
double t; /* Diurnal arc */
double tsouth; /* Time when Sun is at south */
double sidtime; /* Local sidereal time */
int rc = 0; /* Return cde from function - usually 0 */
/* Compute d of 12h local mean solar time */
d = daysSince2000Jan0(year, month, day) + 0.5 - lon / 360.0;
/* Compute the local sidereal time of this moment */
sidtime = revolution(GMST0(d) + 180.0 + lon);
/* Compute Sun's RA, Decl and distance at this moment */
sun_RA_dec(d, out sRA, out sdec, out sr);
/* Compute time when Sun is at south - in hours UT */
tsouth = 12.0 - rev180(sidtime - sRA) / 15.0;
/* Compute the Sun's apparent radius in degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if (upper_limb)
altit -= sradius;
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitude altit: */
{
double cost;
cost = (sind(altit) - sind(lat) * sind(sdec)) /
(cosd(lat) * cosd(sdec));
if (cost >= 1.0) /* Sun always below altit */
{
rc = -1;
t = 0.0;
}
else if (cost <= -1.0) /* Sun always above altit */
{
rc = +1;
t = 12.0;
}
else
{
t = acosd(cost) / 15.0; /* The diurnal arc, hours */
}
}
/* Store rise and set times - in hours UT */
trise = tsouth - t;
tset = tsouth + t;
return rc;
}
/// <summary>
/// Note: year,month,date = calendar date, 1801-2099 only.
/// Eastern longitude positive, Western longitude negative
/// Northern latitude positive, Southern latitude negative
/// The longitude value is not critical. Set it to the correct
/// The latitude however IS critical - be sure to get it correct
/// </summary>
/// <param name="year">
/// altit = the altitude which the Sun should cross
/// Set to -35/60 degrees for rise/set, -6 degrees
/// for civil, -12 degrees for nautical and -18
/// degrees for astronomical twilight.
/// </param>
/// <param name="month"></param>
/// <param name="day"></param>
/// <param name="lon"></param>
/// <param name="lat"></param>
/// <param name="altit"></param>
/// <param name="upper_limb">
/// true -> upper limb, true -> center
/// Set to true (e.g. 1) when computing day length
/// and to false when computing day+twilight length.
/// </param>
/// <returns></returns>
public static double DayLen(int year, int month, int day, double lon, double lat,
double altit, bool upper_limb)
{
double d; /* Days since 2000 Jan 0.0 (negative before) */
double obl_ecl; /* Obliquity (inclination) of Earth's axis */
double sr; /* Solar distance, astronomical units */
double slon; /* True solar longitude */
double sin_sdecl; /* Sine of Sun's declination */
double cos_sdecl; /* Cosine of Sun's declination */
double sradius; /* Sun's apparent radius */
double t; /* Diurnal arc */
/* Compute d of 12h local mean solar time */
d = daysSince2000Jan0(year, month, day) + 0.5 - lon / 360.0;
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Compute Sun's ecliptic longitude and distance */
sunpos(d, out slon, out sr);
/* Compute sine and cosine of Sun's declination */
sin_sdecl = sind(obl_ecl) * sind(slon);
cos_sdecl = Math.Sqrt(1.0 - sin_sdecl * sin_sdecl);
/* Compute the Sun's apparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if (upper_limb)
{
altit -= sradius;
}
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitude altit: */
double cost = (sind(altit) - sind(lat) * sin_sdecl) / (cosd(lat) * cos_sdecl);
/* Sun always below altit */
if (cost >= 1.0)
{
t = 0.0;
}
/* Sun always above altit */
else if (cost <= -1.0)
{
t = 24.0;
}
/* The diurnal arc, hours */
else
{
t = (2.0 / 15.0) * acosd(cost);
}
return t;
}
/// <summary>
/// Computes the Sun's ecliptic longitude and distance
/// at an instant given in d, number of days since
/// 2000 Jan 0.0. The Sun's ecliptic latitude is not
/// computed, since it's always very near 0.
/// </summary>
/// <param name="d"></param>
/// <param name="lon"></param>
/// <param name="r"></param>
private static void sunpos(double d, out double lon, out double r)
{
double M; /* Mean anomaly of the Sun */
double w; /* Mean longitude of perihelion */
/* Note: Sun's mean longitude = M + w */
double e; /* Eccentricity of Earth's orbit */
double E; /* Eccentric anomaly */
double x, y; /* x, y coordinates in orbit */
double v; /* True anomaly */
/* Compute mean elements */
M = revolution(356.0470 + 0.9856002585 * d);
w = 282.9404 + 4.70935E-5 * d;
e = 0.016709 - 1.151E-9 * d;
/* Compute true longitude and radius vector */
E = M + e * RadDeg * sind(M) * (1.0 + e * cosd(M));
x = cosd(E) - e;
y = Math.Sqrt(1.0 - e * e) * sind(E);
r = Math.Sqrt(x * x + y * y); /* Solar distance */
v = atan2d(y, x); /* True anomaly */
lon = v + w; /* True solar longitude */
if (lon >= 360.0)
{
lon -= 360.0; /* Make it 0..360 degrees */
}
}
/// <summary>
/// Computes the Sun's equatorial coordinates RA, Decl
/// and also its distance, at an instant given in d,
/// the number of days since 2000 Jan 0.0.
/// </summary>
/// <param name="d"></param>
/// <param name="RA"></param>
/// <param name="dec"></param>
/// <param name="r"></param>
private static void sun_RA_dec(double d, out double RA, out double dec, out double r)
{
double lon, obl_ecl, x, y, z;
/* Compute Sun's ecliptical coordinates */
sunpos(d, out lon, out r);
/* Compute ecliptic rectangular coordinates (z=0) */
x = r * cosd(lon);
y = r * sind(lon);
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Convert to equatorial rectangular coordinates - x is unchanged */
z = y * sind(obl_ecl);
y = y * cosd(obl_ecl);
/* Convert to spherical coordinates */
RA = atan2d(y, x);
dec = atan2d(z, Math.Sqrt(x * x + y * y));
}
private const double INV360 = 1.0d / 360.0d;
/// <summary>
/// This function reduces any angle to within the first revolution
/// by subtracting or adding even multiples of 360.0 until the
/// result is >= 0.0 and < 360.0
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
private static double revolution(double x)
{
return (x - 360.0 * Math.Floor(x * INV360));
}
/// <summary>
/// Reduce angle to within +180..+180 degrees
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
private static double rev180(double x)
{
return (x - 360.0 * Math.Floor(x * INV360 + 0.5));
}
/// <summary>
/// This function computes GMST0, the Greenwich Mean Sidereal Time
/// at 0h UT (i.e. the sidereal time at the Greenwhich meridian at
/// 0h UT). GMST is then the sidereal time at Greenwich at any
/// time of the day. I've generalized GMST0 as well, and define it
/// as: GMST0 = GMST - UT -- this allows GMST0 to be computed at
/// other times than 0h UT as well.
///
/// While this sounds somewhat contradictory, it is very practical:
/// instead of computing GMST like:
/// GMST = (GMST0) + UT * (366.2422/365.2422)
/// where (GMST0) is the GMST last time UT was 0 hours, one simply
/// computes: GMST = GMST0 + UT
/// where GMST0 is the GMST "at 0h UT" but at the current moment!
///
/// Defined in this way, GMST0 will increase with about 4 min a
/// day. It also happens that GMST0 (in degrees, 1 hr = 15 degr)
/// is equal to the Sun's mean longitude plus/minus 180 degrees!
/// (if we neglect aberration, which amounts to 20 seconds of arc
/// or 1.33 seconds of time)
/// </summary>
/// <param name="d"></param>
/// <returns></returns>
private static double GMST0(double d)
{
double sidtim0;
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
/* add these numbers, I'll let the C compiler do it for me. */
/* Any decent C compiler will add the constants at compile */
/* time, imposing no runtime or code overhead. */
sidtim0 = revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);
return sidtim0;
}
}