diff --git a/tutorials/synphot/ccd_QE.csv b/tutorials/synphot/ccd_QE.csv
new file mode 100644
index 00000000..287d2091
--- /dev/null
+++ b/tutorials/synphot/ccd_QE.csv
@@ -0,0 +1,69 @@
+100, 0.0, 0, 0
+309.4560021465238, 70.30747424892068, 16, 40
+319.539015188068, 73.11442326755378, 14, 30.35714285714286
+329.9917387078021, 75.26541144025542, 15, 35.46666666666667
+339.70504127115635, 76.58538173145493, 14, 30.35714285714286
+349.7880543127005, 74.70200948669466, 10, 16.1
+379.53294278525584, 77.10351031374742, 12, 23.66666666666667
+390.00376402070555, 81.79762370567437, 13, 26.153846153846164
+399.57293120532483, 84.52897199856781, 16, 41.1875
+409.3114413012829, 87.18136275806562, 15, 35.46666666666667
+419.59611460365807, 89.04058920481614, 15, 36.26666666666667
+429.14136694965316, 91.16038905508852, 10, 17.700000000000003
+439.5268703824437, 92.49142617037583, 12, 23
+449.97959390217784, 93.66048522401442, 15, 35.46666666666667
+459.69289646553193, 94.87582372383835, 14, 30.35714285714285
+469.6078592897171, 95.64295584810637, 12, 23.58333333333333
+479.8589225486203, 96.56602958452065, 14, 30.35714285714285
+489.5638226011066, 97.20551595368505, 16, 41.1875
+499.5983596184127, 98.01709917645256, 13, 28.615384615384617
+509.9916192150812, 98.32588678561568, 13, 26.153846153846157
+519.5607863997005, 98.26189461661147, 16, 41.1875
+529.3044672715774, 98.79719418907516, 13, 26.92307692307692
+539.8528501458082, 99.10133837554409, 14, 32.85714285714285
+549.5997627526343, 99.09379281366604, 12, 22.916666666666668
+559.5147255768194, 99.35788747939766, 12, 22
+569.9467659928786, 99.30100555139393, 13, 28.000000000000014
+579.6807516599077, 99.14661174681237, 12, 22
+589.5957144840928, 98.81209183688566, 12, 23.58333333333333
+599.9631202011678, 98.74843825078625, 13, 26.153846153846157
+609.5600803063503, 98.30855134089073, 15, 35.46666666666667
+619.6526962174579, 98.04495971261765, 14, 32.57142857142856
+630.0958168676286, 97.9845952175933, 16, 40
+639.6746792570956, 97.24513015354478, 16, 40
+649.5056169726012, 96.85779131047175, 12, 22.91666666666666
+659.840705340184, 96.40002722320364, 16, 40
+669.7685951041659, 96.0343576860368, 13, 28.000000000000014
+679.5025807711951, 95.87183789174043, 12, 23
+689.9637068017972, 95.09275862783217, 16, 41.1875
+699.7849493124552, 94.89671912596216, 13, 26.15384615384616
+709.5355553306517, 94.49854562993605, 14, 30.357142857142854
+719.8346329373718, 94.12126753603376, 14, 30.35714285714285
+729.728589484387, 93.52139536672911, 16, 41.1875
+739.8843165622885, 92.57268606752402, 13, 26.153846153846164
+749.9673296038327, 91.77633907547178, 13, 26.153846153846157
+759.6625344514713, 90.30410093890463, 17, 45.88235294117648
+769.5904242154533, 88.68846298384065, 13, 29.692307692307693
+780.3785430640984, 86.74856762101211, 11, 20.36363636363637
+789.5964794185556, 84.85909033073233, 16, 41.1875
+799.6067784237425, 82.8540023686008, 13, 26.153846153846164
+810.0775996591923, 80.76562301189239, 16, 40
+819.6564620486593, 78.18504084960068, 14, 30.35714285714286
+829.5234105250274, 75.90628116243079, 14, 30.357142857142854
+839.8224881317476, 72.63150730735885, 16, 40
+849.6894366081158, 68.93418198711632, 14, 30.357142857142854
+859.77244964966, 65.34249453316644, 14, 30.357142857142854
+870.0715272563801, 61.79608045048484, 14, 30.35714285714286
+879.7176097327907, 58.137992052008144, 15, 36.533333333333346
+889.8109643261723, 54.49429826388342, 13, 28.61538461538462
+899.9424533919547, 49.879751854580746, 16, 41.1875
+909.7313785531205, 45.18326838232029, 12, 24.583333333333332
+919.6943557251225, 41.57397461732164, 14, 32.857142857142854
+930.065454853568, 36.82027063415269, 16, 40
+939.644317243035, 32.80603171503223, 12, 22
+949.7273302845791, 28.791792795911775, 12, 22
+959.9586229296754, 25.094467475669248, 17, 45.882352941176464
+969.6772918024916, 21.397142155426735, 14, 30.357142857142854
+979.7603048440358, 18.43928189923271, 14, 30.357142857142854
+990.0593824507558, 14.892867816551103, 14, 30.35714285714286
+1100.0, 0.0, 0, 0
diff --git a/tutorials/synphot/requirements.txt b/tutorials/synphot/requirements.txt
new file mode 100644
index 00000000..54e7c0ce
--- /dev/null
+++ b/tutorials/synphot/requirements.txt
@@ -0,0 +1,5 @@
+synphot
+astropy
+astroquery
+numpy
+matplotlib
\ No newline at end of file
diff --git a/tutorials/synphot/skymodel.py b/tutorials/synphot/skymodel.py
new file mode 100644
index 00000000..b2bd5723
--- /dev/null
+++ b/tutorials/synphot/skymodel.py
@@ -0,0 +1,202 @@
+import os
+import json
+import requests
+
+import astropy.units as u
+from astropy.io import fits
+
+
+def get_atmospheric_transmittance(airmass=1.0, pwv_mode='pwv', season=0,
+ time=0, pwv=3.5, msolflux=130.0,
+ incl_moon='Y', moon_sun_sep=90.0,
+ moon_target_sep=45.0, moon_alt=45.0,
+ moon_earth_dist=1.0, incl_starlight='Y',
+ incl_zodiacal='Y',
+ ecl_lon=135.0, ecl_lat=90.0,
+ incl_loweratm='Y', incl_upperatm='Y',
+ incl_airglow='Y', incl_therm='N',
+ therm_t1=0.0, therm_e1=0.0,
+ therm_t2=0.0, therm_e2=0.0, therm_t3=0.0,
+ therm_e3=0.0, vacair='vac', wmin=300.0,
+ wmax=2000.0,
+ wgrid_mode='fixed_wavelength_step',
+ wdelta=0.1, wres=20000, lsf_type='none',
+ lsf_gauss_fwhm=5.0, lsf_boxcar_fwhm=5.0,
+ observatory='paranal'):
+ """
+ Returns the model atmospheric transmittance curve queried from the SkyCalc
+ Sky Model Calculator. The default parameters used here are the default
+ parameters provided by SkyCalc:
+ http://www.eso.org/observing/etc/doc/skycalc/skycalc_defaults.txt
+
+ Parameters
+ ----------
+ airmass: float (range [1.0,3.0])
+ Airmass. Alt and airmass are coupled through the plane parallel
+ approximation airmass=sec(z), z being the zenith distance
+ z=90°−Alt
+ pwv_mode: str
+ options: ['pwv','season'] (default is 'pwv')
+ season: int
+ Time of year if not in pwv mode.
+ options: [0,1,2,3,4,5,6] (default is 0)
+ (0 = all year, 1 = dec/jan, 2 = feb/mar...)
+ time: int
+ Period of night. options: [0,1,2,3] (default is 0)
+ (0 = all year, 1, 2, 3 = third of night)
+ pwv: float
+ Precipitable Water Vapor (default is 3.5).
+ options: [-1.0,0.5,1.0,1.5,2.5,3.5,5.0,7.5,10.0,20.0]
+ msolflux: float
+ Monthly Averaged Solar Flux, s.f.u float > 0 (default is 130.0)
+ incl_moon: str
+ Flag for inclusion of scattered moonlight. options = ['Y', 'N']
+ (default is 'Y')
+ Moon coordinate constraints: |z – zmoon| ≤ ρ ≤ |z + zmoon| where
+ ρ=moon/target separation, z=90°−target altitude and
+ zmoon=90°−moon altitude.
+ moon_sun_sep: float
+ Degrees of separation between Sun and Moon as seen from Earth
+ (i.e. the "moon phase").
+ options: [0.0,360.0] (default is 90.0)
+ moon_target_sep: float
+ Moon-Target Separation ( ρ )
+ Degrees in range [0.0,180.0] (defualt is 45.0)
+ # degrees float range [-90.0,90.0] Moon Altitude over Horizon
+ moon_alt: float
+ Moon Altitude over Horizon. Degrees in range [-90.0,90.0]
+ (default is 45.0)
+ moon_earth_dist: float
+ Moon-Earth Distance (mean=1) in range [0.91,1.08]
+ (default is 1.0)
+ incl_starlight: str
+ Flag for inclusion of scattered starlight.
+ options: ['Y', 'N'] (default is 'Y')
+ incl_zodiacal: str
+ Flag for inclusion of zodiacal light.
+ options: ['Y', 'N'] (default is 'Y')
+ ecl_lon: float
+ Heliocentric ecliptic in degree range [-180.0,180.0].
+ (default is 135.0)
+ ecl_lat: float
+ Ecliptic latitude in degree range [-90.0,90.0].
+ (default is 90.0)
+
+ incl_loweratm: str
+ Flag for inclusion of molecular emission of lower atmosphere.
+ options: ['Y', 'N'] (default is 'Y')
+ incl_upperatm: str
+ Flag for inclusion of molecular emission of upper atmosphere.
+ options: ['Y', 'N'] (default is 'Y')
+ incl_airglow: str
+ Flag for inclusion of airglow continuum (residual continuum)
+ options: ['Y', 'N'] (default is 'Y')
+
+ incl_therm: str
+ Flag for inclusion of instrumental thermal radiation.
+ options: ['Y', 'N'] (default is 'N')
+ Note: This radiance component represents an instrumental effect.
+ The emission is provided relative to the other model components.
+ To obtain the correct absolute flux, an instrumental response curve
+ must be applied to the resulting model spectrum.
+ See section 6.2.4 in the SkyCalc documentation at
+ http://localhost/observing/etc/doc/skycalc/
+ The_Cerro_Paranal_Advanced_Sky_Model.pdf
+ therm_t1, therm_t2, therm_t3 : float
+ Temperature in K (default is 0.0)
+ therm_e1, therm_e2, therm_e3: float
+ In range [0,1] (default is 0.0)
+
+ vacair: str
+ In regards to the wavelength grid.
+ options: ['vac', 'air] (default is 'vac')
+ wmin: float
+ Minimum wavelength (nm) in the wavelength grid.
+ Must be in range [300.0,30000.0] and < wmax
+ (default is 300.0)
+ wmax: float
+ Maximum wavelength (nm) in the wavelength grid.
+ Must be in range [300.0,30000.0] and > wmin
+ (default is 2000.0)
+ wgrid_mode: str
+ Mode of the wavelength grid.
+ options: ['fixed_spectral_resolution','fixed_wavelength_step', 'user']
+ (default is 'fixed_wavelength_step')
+ wdelta: float
+ Wavelength sampling step dlam in range [0,30000.0] (nm/step)
+ (default is 0.1)
+ wres: int
+ lam/dlam where dlam is wavelength step.
+ In range [0,1.0e6] (default is 20000)
+ wgrid_user: list of floats
+ default is [500.0, 510.0, 520.0, 530.0, 540.0, 550.0]
+
+ lsf_type: str
+ Line spread function type for convolution.
+ options: ['none','Gaussian','Boxcar'] (default is 'none')
+ lsf_gauss_fwhm: float
+ Gaussian full-width half-max for line spread function wavelength bins.
+ Range > 0.0 (default is 5.0)
+ lsf_boxcar_fwhm: float
+ Boxcar full-width half-max for line spread function wavelength bins.
+ Range > 0.0 (default is 5.0)
+
+ observatory: str
+ Observatory where observation takes place.
+ Options are 'paranal', 'lasilla', 'armazones' (default is 'paranal')
+
+ Returns
+ -------
+ trans_waves, transmission: tuple of arrays of floats
+ 'trans_waves' is an array of wavelengths in angstroms (float),
+ 'transmission' is an array of fractional atmospheric
+ transmittance (float).
+
+ """
+
+ params = locals()
+
+ if params['observatory'] == 'lasilla':
+ params['observatory'] = '2400'
+ elif params['observatory'] == 'paranal':
+ params['observatory'] = '2640'
+ elif (params['observatory'] == '3060m' or
+ params['observatory'] == 'armazones'):
+ params['observatory'] = '3060'
+ else:
+ raise ValueError('Wrong Observatory name, please refer to the '
+ 'skycalc_cli documentation.')
+
+ # Use the bit from skycalc_cli which queries from the SkyCalc Sky Model
+ server = 'http://etimecalret-001.eso.org'
+ url = server + '/observing/etc/api/skycalc'
+ response = requests.post(url, data=json.dumps(params))
+ results = json.loads(response.text)
+
+ status = results['status']
+ tmpdir = results['tmpdir']
+ tmpurl = server + '/observing/etc/tmp/' + tmpdir + '/skytable.fits'
+
+ if status == 'success':
+ try:
+ response = requests.get(tmpurl, stream=True)
+ data = response.content
+ except requests.exceptions.RequestException as e:
+ print(e, 'could not retrieve FITS data from server')
+ else:
+ print('HTML request failed', results)
+
+ # Create a temporary file to write the binary results to
+ tmp_data_file = './tmp_skycalc_data.fits'
+
+ with open(tmp_data_file, 'wb') as f:
+ f.write(data)
+
+ hdu = fits.open(tmp_data_file)
+ trans_waves = hdu[1].data["LAM"] * u.um # wavelengths
+ transmission = hdu[1].data["TRANS"]
+
+ # Delete the file after reading from it
+ os.remove(tmp_data_file)
+
+ return trans_waves.to(u.angstrom), transmission
diff --git a/tutorials/synphot/synphot-measured-spec.ipynb b/tutorials/synphot/synphot-measured-spec.ipynb
new file mode 100644
index 00000000..39d897dc
--- /dev/null
+++ b/tutorials/synphot/synphot-measured-spec.ipynb
@@ -0,0 +1,499 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# synphot: Predicting photometric fluxes of an object observed by SDSS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "Tiffany Jansen, Brett Morris, Pey Lian Lim, & Erik Tollerud"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Objectives\n",
+ "
\n",
+ "
Query data directly from other websites using astropy.coordinates, astroquery.sdss, and astropy.utils
\n",
+ "
Download spectral data and construct a source spectrum object using synphot.SourceSpectrum
\n",
+ "
Simulate bandpass throughput with synphot.SpectralElement
\n",
+ "
Simulate the photometric observation with synphot.Observation
\n",
+ "
Compute the expected fluxes from this observation with synphot's effstim() function\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Keywords\n",
+ "synphot, synthetic photometry, astropy, astroquery, astronomy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Summary\n",
+ "synphot is an astropy-affiliated package for creating synthetic photometry in Python. In this tutorial we will show how to use synphot to predict the photometric fluxes of a galaxy observed by SDSS. In particular, we will:\n",
+ "\n",
+ "
\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "import astropy.units as u\n",
+ "from astropy.coordinates import SkyCoord\n",
+ "from astropy.utils.data import download_file\n",
+ "\n",
+ "from astroquery.sdss import SDSS\n",
+ "\n",
+ "from synphot import units\n",
+ "from synphot.spectrum import SourceSpectrum, SpectralElement\n",
+ "from synphot.models import Empirical1D\n",
+ "from synphot.observation import Observation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### 1. Download an observed spectrum from SDSS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this example we choose the galaxy IRAS F15163+4255 NW which has a strong H-alpha emission line."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To download the spectrum, first set the coordinates for the object using astropy.coordinates.SkyCoord:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ra = 229.525575754 * u.degree\n",
+ "dec = 42.745853761 * u.degree\n",
+ "coords = SkyCoord(ra, dec)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then use these coordinates with astroquery.sdss to get a .fits file of the spectrum observed by SDSS:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "spectrum_fits = SDSS.get_spectra(coordinates=coords)\n",
+ "data = spectrum_fits[0][1].data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we can access the data by the keywords given in the .fits header. The wavelengths of the SDSS spectrum are given in a log scale in units of Angstroms, while the flux data from SDSS are scaled by 10-17 and given in units of ergs/s/cm2/Angstroms:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wavelengths = 10 ** data['loglam'] * u.angstrom\n",
+ "flux = data['flux'] * 1e-17 * units.FLAM # FLAM = ergs/s/cm^2/AA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### 2. Construct a `synphot` source spectrum object from the observed spectrum"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To do synthetic photometry with synphot, you must first make an object out of your target's spectrum with synphot.spectrum.SourceSpectrum. Since we are constructing the source spectrum from arrays of data, we specify that the model type is Empirical1D and pass in the arrays (e.g. points=wavelengths and lookup_table=flux):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAERCAYAAABowZDXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcHWWd7/HPtzvp7CEJCQGykLAIIlugWQRkkyWiEnXwkowoIl4cRxyXmXFgvCOKvu6gqLjBQEYjMleDiKJRdmRTNtNhS8IakpCEBNLZ9/T2u39UdXLSOd2nOumT6uX7fr3Oq6ueeqrOr/osv/M8VfWUIgIzM7NSKvIOwMzMugYnDDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLpNslDEnTJC2XNKeDtnevpDWS/tTK8h9L2tARz2Vm1pl1u4QB3AJM7MDtXQd8vNgCSdXAkA58LjOzTqvbJYyIeAxYVVgm6aC0pTBL0l8kHdaO7f0ZWN+yXFIlSTL5yu7GbGbWFfTKO4A9ZCrwDxHxmqQTgRuBs3Zzm1cAMyJimaTdDtDMrLPr9glD0kDgZOA3BV/sfdJlHwGuKbLamxFxXhvb3B/4KHBGhwZrZtaJdfuEQdLttiYijmm5ICJ+B/xuF7Y5ATgYmJcmof6S5kXEwbsVqZlZJ9btjmG0FBHrgAWSPgqgxNG7uc27ImLfiBgXEeOATU4WZtbddbuEIWk68CRwqKQlki4DPgZcJul5YC4wqR3b+wvwG+C96fZa7aoyM+vO5OHNzcwsi7K1MCSNkfSwpJckzZX0hSJ1JOlHkuZJekHSsQXLLpH0Wvq4pFxxmplZNmVrYUjaD9gvIp6RNAiYBXwoIl4sqHM+8HngfOBE4IcRcaKkYUANUA1Euu5xEbG6reccPnx4jBs3riz7Y2bWHc2aNWtFRIzIUrdsZ0lFxDJgWTq9XtJLwCjgxYJqk4BbI8laT0kakiaaM4AHImIVgKQHSK7ent7Wc44bN46ampoO3xczs+5K0htZ6+6Rg96SxpGcivp0i0WjgMUF80vSstbKi237ckk1kmpqa2s7KmQzM2uh7AkjvXDut8AX01Ncd1hcZJVoo3znwoipEVEdEdUjRmRqVZmZ2S4oa8KQ1JskWfwyvUiupSXAmIL50cDSNsrNzCwn5TxLSsDPgJci4vutVJsBfCI9W+okYG167OM+4FxJQyUNBc5Ny8zMLCflHBrkFJJhwWdLei4t+3dgLEBE3ATcTXKG1DxgE3BpumyVpG8CM9P1rmk+AG5mZvko51lSf6X4sYjCOgF8rpVl04BpZQjNzMx2QbcbGsTMzMrDCcOsi5i7dC3PLmrz2lWzsuoJw5ubdQvv/9FfAVh47ftzjsR6KrcwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLpGzDm0uaBnwAWB4RRxRZ/q/AxwrieCcwIr0960JgPdAINEREdbniNDOzbMrZwrgFmNjawoi4LiKOiYhjgKuAR1vct/vMdLmThZlZJ1C2hBERjwGrSlZMTAGmlysWMzPbfbkfw5DUn6Ql8tuC4gDulzRL0uUl1r9cUo2kmtra2nKGambWo+WeMIAPAo+36I46JSKOBd4HfE7Saa2tHBFTI6I6IqpHjBhR7ljNzHqszpAwJtOiOyoilqZ/lwN3AifkEJeZmRXINWFI2gs4HfhDQdkASYOap4FzgTn5RGhmZs3KeVrtdOAMYLikJcDVQG+AiLgprfZh4P6I2Fiw6kjgTknN8f0qIu4tV5xmZpZN2RJGREzJUOcWktNvC8vmA0eXJyozM9tVneEYhpmZdQFOGGZmlokThpmZZeKEYWZmmThhmJlZJk4YZmaWiROGmZll4oRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZeKEYWZmmThhmJlZJmVLGJKmSVouqej9uCWdIWmtpOfSx9cKlk2U9IqkeZKuLFeMZmaWXTlbGLcAE0vU+UtEHJM+rgGQVAncALwPOByYIunwMsZpZmYZlC1hRMRjwKpdWPUEYF5EzI+IOuA2YFKHBmdmZu2W9zGMd0t6XtI9kt6Vlo0CFhfUWZKWFSXpckk1kmpqa2vLGauZWY+WZ8J4BjggIo4Gfgz8Pi1XkbrR2kYiYmpEVEdE9YgRI8oQppmZQY4JIyLWRcSGdPpuoLek4SQtijEFVUcDS3MI0czMCuSWMCTtK0np9AlpLCuBmcAhksZLqgImAzPyitPMzBK9yrVhSdOBM4DhkpYAVwO9ASLiJuBC4LOSGoDNwOSICKBB0hXAfUAlMC0i5pYrTjMzy6ZsCSMippRY/hPgJ60suxu4uxxxmZnZrsn7LCkzM+sinDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLJOyJQxJ0yQtlzSnleUfk/RC+nhC0tEFyxZKmi3pOUk15YrRzMyyK2cL4xZgYhvLFwCnR8RRwDeBqS2WnxkRx0REdZniMzOzduhVrg1HxGOSxrWx/ImC2aeA0eWKxczMdl9nOYZxGXBPwXwA90uaJenytlaUdLmkGkk1tbW1ZQ3SzKwnK9nCkNQX+ADwHmB/YDMwB7grIububgCSziRJGKcWFJ8SEUsl7QM8IOnliHis2PoRMZW0O6u6ujp2Nx4zMyuuzRaGpK8DjwPvBp4GbgZuBxqAayU9IOmoXX3ydN2fApMiYmVzeUQsTf8uB+4ETtjV5zAzs45RqoUxMyK+3sqy76ctgLG78sSSxgK/Az4eEa8WlA8AKiJifTp9LnDNrjyHmZl1nDYTRkTcVWL5cmB5sWWSpgNnAMMlLQGuBnqn690EfA3YG7hREkBDekbUSODOtKwX8KuIuDf7LpmZWTm0mTAkzWhreURc0MayKSXW/TTw6SLl84Gjd17DzMzyVKpL6t3AYmA6yTEMlT0iMzPrlEoljH2Bc4ApwN8DdwHTO+LsKDMz61raPEsqIhoj4t6IuAQ4CZgHPCLp83skOjMz6zSyXIfRB3g/SStjHPAjkrObzMysByl10PsXwBEkV2F/IyKKDiRoZmbdX6kWxseBjcA7gH9KT3WF5OB3RMTgMsZmZmadSKnrMDrLWFNmZpazdicESQPSe1m0eVGfmZl1L5kShqQqSR+SdDuwDDgbuKmskZmZWadS6qB38zUY5wEPA/8DnBARl+6B2MzMrBMpddD7PuAvwKkRsQBA0g/LHpWZmXU6pRLGccBk4EFJ84HbgMqyR2VmZp1OqSu9n42If4uIg4CvAxOAKkn3lLoTnpmZdS+Zz5KKiMcj4gpgFPAD4MKyRWVmZp1Ou0+rjYimiLgPOKwM8ZiZWSflC/PMzCwTJwwzM8uk1HUYPwai2CJgSKmNS5oGfABYHhFHFFku4IfA+cAm4JMR8Uy67BLg/6RVvxURvyj1fGZmVj6lTqut2cVlzW4BfgLc2sry9wGHpI8Tgf8CTpQ0jOQe4NUkCWuWpBkRsTrDc5qZWRmUShi/jIiGXd14RDwmaVwbVSYBt0ZEAE9JGiJpP+AM4IGIWAUg6QFgIsmtYs3MLAeljmH8rXki7Z7qaKNI7hnebEla1lr5TiRdLqlGUk1tbW0ZQjQzMyidMFQwfUoZnl9FyqKN8p0LI6ZGRHVEVI8YMaJDgzMzs+1KJYyiX9IdaAkwpmB+NLC0jXIzM8tJqYRxmKQXJM0umH5B0mxJL3TA888APqHEScDaiFhGMujhuZKGShoKnJuWmZlZTkod9H7n7mxc0nSSA9jDJS0hOfOpN0BE3ATcTXJK7TyS02ovTZetkvRNYGa6qWuaD4CbmVk+SiWMRekZTK2SpNbqRMSUttZN1/tcK8umAdNKxGdmZntIqS6phyV9XtLYwsL0DnxnSfoFcEn5wjMzs86iVAtjIvApYLqk8cAaoC/JPTHuB66PiOfKG6KZmXUGbSaMiNgC3AjcKKk3MBzYHBFr9kRwZraz+sYmeld6GDjb89pzP4z6iFjmZGGWr0O+ek/eIVgP5Z8pZl1QiXNRzMrCCcOsC6pvdMKwPS9TwpB0eJGyMzo8GjPLJMo+CIPZzrK2MG6X9G/pFdn90oEI/7OcgZlZ69wjZXnImjBOJBnb6QmSq6+XUp7BCM3MrJPKmjDqgc1AP5LrMBZERFPZojIzs04na8KYSZIwjgdOBaZIuqNsUZlZm9wlZXkodaV3s8siovmWrG8BkyR9vEwxmVkJPuhteciaMJa3HE8KeLSjgzGzbNzCsDxkTRh3sf1OeH2B8cArwLvKFJeZtcH5wvKQKWFExJGF85KOBT5TlojMrCRf6W152KUrvSPiGZID4GaWA6cLy0OmFoakLxfMVgDHArVlicjMzDqlrC2MQQWPPiTHNCaVWknSREmvSJon6coiy6+X9Fz6eFXSmoJljQXLZmSM06xHcI+U5SHrMYxvtHfDkiqBG4BzgCXATEkzIuLFgu1+qaD+54EJBZvYHBHHtPd5zXoEJwzLQZsJQ9IfaeOtGREXtLH6CcC8iJifbus2klbJi63UnwJc3Wa0Zgb4OgzLR6kWxnd3Y9ujgMUF80tIxqTaiaQDSE7VfaiguK+kGqABuDYift/KupcDlwOMHdvyUhGz7sldUpaHUgljQUQs2sVtq0hZa2/zycAdEdFYUDY2IpZKOhB4SNLsiHh9pw1GTAWmAlRXV/tjZD2C3+iWh1IHvbf9qpf023ZuewnJCLfNRpOMclvMZGB6YUFELE3/zgceYcfjG2ZmtoeVShiFrYQD27ntmcAhksZLqiJJCjud7STpUGAo8GRB2VBJfdLp4SRDqbd27MOsx/GFe5aHUl1S0cp0SRHRIOkK4D6gEpgWEXMlXQPURERz8pgC3BY7fgLeCdwsqYkkqV1beHaVWU/ndGF5KJUwjpa0jqSl0S+dJp2PiBjc1soRcTdwd4uyr7WY/3qR9Z4AjmxZbmYJNzAsD20mjIio3FOBmFl2Pq3W8rBLY0mZWc6cLywHThhmXZDzheXBCcPMzDJxwjDrgnzQ2/LghGHWBfmgt+XBCcOsC3ILw/LghGHWBTlfWB6cMMy6IA8NYnlwwjAzs0ycMMy6IDcwLA9OGGZmlokThlkX5BaG5cEJw6wL8nUYlgcnDLMuyC0My4MThlkX5HxheXDCMDOzTMqaMCRNlPSKpHmSriyy/JOSaiU9lz4+XbDsEkmvpY9LyhmnWVfjC/csD6Vu0brLJFUCNwDnAEuAmZJmFLk3968j4ooW6w4DrgaqSVrfs9J1V5crXrOuxOnC8lDOFsYJwLyImB8RdcBtwKSM654HPBARq9Ik8QAwsUxxmnU5bmBYHsqZMEYBiwvml6RlLf2dpBck3SFpTDvXNeuhnDFszytnwlCRspbv8j8C4yLiKOBB4BftWDepKF0uqUZSTW1t7S4Ha9aVuIVheShnwlgCjCmYHw0sLawQESsjYms6+9/AcVnXLdjG1IiojojqESNGdEjgZma2s3ImjJnAIZLGS6oCJgMzCitI2q9g9gLgpXT6PuBcSUMlDQXOTcvMDHdIWT7KdpZURDRIuoLki74SmBYRcyVdA9RExAzgnyRdADQAq4BPpuuukvRNkqQDcE1ErCpXrGZdjbukLA9lSxgAEXE3cHeLsq8VTF8FXNXKutOAaeWMz6yr8lhSlgdf6W3WBbmFYXlwwjDrgpwwLA9OGGZdkLukLA9OGNaqWW+sZtyVd7Fs7ea8QzGzTsAJw1r1y6feAODxeStzjsRacpeU5cEJw1pVWZFccN/Y1JRzJGbWGThhWKu2J4ycA7GduIVheXDCsFZVNCcMfzvlbsGKjTvM+6C35cEJo4iHX17Od+59Oe8wcrdtBEgnjNyd+d1Hdpj3S2J5cMIo4tJbZnLjI6/nHYaZWafihGGtUrFB5q1TcAPD8uCEYSW19eW0cMVGX6eRA9/T2/JQ1sEHrWtT0ftY7eiMtG994bXvL3M0Vqi1dNGQntLWq9K/Ba3j+V1lJfnHbOfT2mty3Lce5NRvP7xng7Eewy0Ma1XzMQx3f3RGxV+TtZvrWbu5fg/HYj2FWxhmXZBzuOXBCcOsG3ro5bfzDsG6IScMa5XPqu28SjUwPnVLzR6Jw3qWsiYMSRMlvSJpnqQriyz/sqQXJb0g6c+SDihY1ijpufQxo5xxWtvc+9H5uEvK8lC2g96SKoEbgHOAJcBMSTMi4sWCas8C1RGxSdJnge8AF6XLNkfEMeWKz0qTr9zrtHwiguWhnC2ME4B5ETE/IuqA24BJhRUi4uGI2JTOPgWMLmM8tov83dT5+CWxPJQzYYwCFhfML0nLWnMZcE/BfF9JNZKekvSh1laSdHlar6a2tnb3IjbrIpzELQ/lvA6jWH9G0be5pIuBauD0guKxEbFU0oHAQ5JmR8ROIwJGxFRgKkB1dbU/RmZmZVLOFsYSYEzB/GhgactKks4GvgpcEBFbm8sjYmn6dz7wCDChjLEW5X7ihP8LnY/vh2F5KGfCmAkcImm8pCpgMrDD2U6SJgA3kySL5QXlQyX1SaeHA6cAhQfL94ieni98zLsT6+HvTctH2bqkIqJB0hXAfUAlMC0i5kq6BqiJiBnAdcBA4DfpGTmLIuIC4J3AzZKaSJLatS3Ortoj/JlMuKXV+fgVsTyUdSypiLgbuLtF2dcKps9uZb0ngCPLGVsWTRFU9uDL17KMVmv5cA63PPhK7zY0dZJP5WW3zOQLtz2bdxjWifgYhuXBCaMNnSRf8OeXl/OH53Y6X8B6sM7y3rSexQmjDY1N/lSamTVzwmhDYw//Gbf9fhg7lj+7aDXT/rpgzwdk2/Tsd6blxTdQakM05R1Bvlo75P3hG58A4FOnjt9zwdgOfOaa5cEtjDb09BZGMx9g7Xz8ilgenDDa0FnOkuqsfIyn/ebXbuiY1oH/9ZYDJ4w2NHXwF+IbKzeyeNWm0hU7iebdr2jlku9NdQ17MJqub8nqTZz1vUf57v2vtHvdEYP6cNi+g7bNb23Yub/UCdzKzQmjDR3dJXX6dY/wnu883KHbLKfmFlZrCWP9lu6VMLbUN5b1S3fFhjoAHn21/aMqb65r5OSDhnPTxccBSawt1Tf28INuVnZOGG3o6T/YmrtOWhtTqrsljJOvfYiv3jm7bNsv9iWfdb0NWxvYe2AVR43eq+i25tduYNXGut2OsZS6hiZ+8cRCNtft2r5Y1+aE0YbWuqSeX7yGiT94jO/d/0q37pYplS8XrNjQru3NW76BO2Yt2fWAymhrQyOrNtZx28zFpSvvouYE29xwfb12A//ym+dLJpI312wGYN/BfenXuxLYMWFsrmvkrO89ysU/e7oMUbNDInrwpbe5esZcbnxkXsn1nlm0mnFX3sWtTy4EYO7StWxt6HmJpnb9Vh588e3d3s6muobcE7VPq22hsEuiWPfE6o11TLrhcQBefms9j7xSy3UfPYp+vSv5Tc0SfvLwPP71vEMZ3LcXy9dv5a/zVrBqYx2nv2PEtm28vW4LX/vDHE4+aDijh/bju/e/yrmHj+SCY/ansSlYsWErx4wZQu/KCnpXbs/pr729nkNGDir45S8ighsfeZ3Jx49hc30jW+qbOHifgWypb2Tj1gb26tebN9dsZuXGOgZU9WLp2s2cMG4YazfXM3JwX7Y2NNK3VyV1jU3UNTZRVVlBVWUFFRXa1sXRWktr7tJ126YjouQtXSdPfYoVG7Yy8Yh9Gdhn+1uvobGJIDmNVxLXP/AqU04cy94Dqrbt/98WrOJdowbTt1clTRFsqW9k5cY6IoIh/auob2xiUN/ebNraQADL120lCPpXVdIUMHvJWu6b+xZ79evNR6vHsO/gvvy6ZhHL1m7htENG0Df9IgZYvGoTC1dupK6hiWcWreae2W/xnx85kgljh7Jo1SZmPPcmxx4wlJGD+3LoyEE7tMDa+h+8+vZ6AIb07019YxOf+NnfeHPNZo4eM4QPTxhFv96V217bCgkJ1m6u5+4XlgFw6L6D6FeVxPns4jUcvWg1fXtXcu09LwMwv3YjAOOHD2DBio2s3LCVColla7fw2vL1zFu+gepxwzh69F40NAWb65L/4YEjBtC7ooK/LVzFhi0NrNiwlUP2GciClRv54YOvsXz9Vq678Cg+Wj2GFRuSOxCs2LB12+ejskKs3LCVOUvXMWpIXzbXNXH9g6/y0MvJANRf+8Nc1m2u57v3vwrA+Ufuy+Tjx/KX12ppbII5b67lI8eO4pYnFnLO4SPZZ1AfkFi2ZjOfOe0g1m6uZ/TQflRU7Py/bWwKbnliIRceN5q9+vXe9l5M/ibHel5bvp4jR+21w2sTETRF8lmseWM1R47ai/5VlewzqM+2z9WT81cybu8BrNlUz/L1W5DExq0NLFixkTWb6vi3iYexqb6RtZvq2X9IPyorxIatDazaULct3hUbtvLpW2t4fvEanrzqLNZtbuDQfQexemMdg9N4z/n+o/SrqmRw395ceNxoTjl4OEP696ausYnbZy7mxaXr6FtVya+eXkRlhRg+sIq3123l6g8ezjOL1vDH55dy/UVH8+EJ5b9hqbrT+dzV1dVRU1OzW9tYuWErx33rQQD+8LlT+O0zS7j1yTc6IjyzXTZh7BB+99mTkcTEHzzGy2+tL1rvrMP2YfjAKm6v2XMtueEDq7Ydn7H8vPKtifTpVVm6YguSZkVEdZa67pIC3lq7hfvnvsW6LfX8v6cWbSufdMPjThYlnHTgsLxD2C0njh/Gee8a2e71jh07hP5V7f9wfnjCjncpPvud25/72LFDiq7z/qP24+efPH7bL+SfX3o8Y4b1A5L//yfefQDf/19H8/NLj+eGvz+Wb1xwBFWVFfSqEOcfuS/j9u4PwIA03tFD+23b9rAByXGRi6q33+vs8P0GM2xAFf9w+kGcdOCwnY5h7bdX3x3m61qcsfXR40Zz8D4DAfjLV87cVn76O0Ywdlh/Dh25/Wyvygpx5qEj+NLZ7+DMQ0dw3rtG8pnTDuSCo/cHSFobwKkHDy/6vynm+HFDt02Xeo2qerX/K7D5f7+nHDh8ABNavDdOK+ixALjl0uOpqiz/17lbGMC4K+9qV/1BfXrxd8eN5pYnFhZd/sGj9+fHU3a8QWB9YxOHfDW5ZfmfPn8qh4wcSIVEUwR9elVS19DEwpUbecfIQTQ1BVsbmli+fgt3z36Lb9+bdDk8fuVZPPX6Ss5Nv+DeWLmJUUP6MaBPL1ZtrGPfvfpS15B0LQ2oqtzWtG7ZFI9gh+Z9U1OwbN0Whg+sYnNdI4P79ub+F9/i9dqN/OG5N3n17Q1c/cHDGTusP1vqmzjn8JH0qhBvrtnMmGH9efL1lYwb3h8h9h5Yxdyl69h/r7688vZ6hvavYmCfXlx6y0w+e8ZBHDlqL9ZtruegfQZSKVFRoR26Egpjbe7ySLqq2u7uaSkiaGwKerXjQ/TF257l988t5SMTRvH9i47JvF6hl5at47B9B+30P4fkLKlhA6qoLNK10prGpmhX/e5u49YG+vWuZHN9IwP6ZO9RL+zGXb+lnqpeFTv9Go9IPneF3ZPtsaW+kb5pt+K9c97iPe8Ysa3rtXnbT7y+gt8/u5RvTjqCb/xpLqcdMoIPpT8i1m6qp3cvUVkh/v13c7jo+DGcML78P8ja08Lo8QkjIhh/1d2lKwJfPPsQfvDga1x34VFceNxoPj/9WS4+6QAO3mcgqzfWsamukYt/+jR3f+E9jBnWf6f1N9U1sHpTPaOGtP8XSpZjBLZ7Xnt7PRf/7Gluuvg4JowdWnoFs27ACaOd5i1fz/fuf5U/v7Scmz9+HCeMH8aiVZt2+qUI/uI2s+6lPQmjrGdJSZoI/JDkFq0/jYhrWyzvA9wKHAesBC6KiIXpsquAy4BG4J8i4r5yxXnwPoP4r/SCqGbv3G9w0bpOFmbWU5XtKImkSuAG4H3A4cAUSYe3qHYZsDoiDgauB76drns4MBl4FzARuDHdnpmZ5aSch9VPAOZFxPyIqANuAya1qDMJ+EU6fQfwXiU/4ScBt0XE1ohYAMxLt2dmZjkpZ8IYBRReNrskLStaJyIagLXA3hnXBUDS5ZJqJNXU1rZ/jB4zM8umnAmjWGd/yyPsrdXJsm5SGDE1IqojonrEiBHFqpiZWQcoZ8JYAowpmB8NLG2tjqRewF7AqozrmpnZHlTOhDETOETSeElVJAexZ7SoMwO4JJ2+EHgokvN8ZwCTJfWRNB44BPhbGWM1M7MSynZabUQ0SLoCuI/ktNppETFX0jVATUTMAH4G/I+keSQti8npunMl3Q68CDQAn4uInjfMpZlZJ+IL98zMerAee6W3pFpgT4wWOBxYsQeeJy/ev66vu++j96/jHBARmc4Y6lYJY0+RVJM1I3dF3r+ur7vvo/cvHx7e3MzMMnHCMDOzTJwwds3UvAMoM+9f19fd99H7lwMfwzAzs0zcwjAzs0ycMMzMLBMnjAKSKiU9K+lP6fx4SU9Lek3Sr9MhTkiHLPm1pHnp8nEF27gqLX9F0nn57MnOJC2UNFvSc5Jq0rJhkh5I9+8BSUPTckn6UbofL0g6tmA7l6T1X5N0SWvPlwdJQyTdIellSS9Jend32UdJh6avXfNjnaQvdpf9A5D0JUlzJc2RNF1S3272GfxCum9zJX0xLetar19E+JE+gC8DvwL+lM7fDkxOp28CPptO/yNwUzo9Gfh1On048DzQBxgPvA5U5r1faWwLgeEtyr4DXJlOXwl8O50+H7iHZNTgk4Cn0/JhwPz079B0emje+1awP78APp1OVwFDuts+pjFWAm8BB3SX/SO5fcECoF86fzvwye7yGQSOAOYA/UmGZHqQZIy8LvX65f7m7ywPkhFx/wycBfwpfaFWAL3S5e8G7kun7wPenU73SusJuAq4qmCb2+rl/aB4wngF2C+d3g94JZ2+GZjSsh4wBbi5oHyHejnv3+D0C0fddR8LYjoXeLw77R+vA0DqAAAHt0lEQVTb74EzLP1M/Qk4r7t8BoGPktymunn+P4CvdLXXz11S2/2A5AVsSuf3BtZEcmMn2PEmTrt946ccBHC/pFmSLk/LRkbEMoD07z5peWv70Zn370CgFvh52q34U0kD6F772GwyMD2d7hb7FxFvAt8FFgHLSD5Ts+g+n8E5wGmS9pbUn6QFMYYu9vo5YQCSPgAsj4hZhcVFqkaJZZlv/JSDUyLiWJJ7rH9O0mlt1O2K+9cLOBb4r4iYAGwkaeK3pivuI2kf/gXAb0pVLVLWafcv7bufRNKNtD8wgOS92lKX/AxGxEvAt4EHgHtJus0a2lilU+6fE0biFOACSQtJ7j1+FkmLY4iSGzvBjjdx6nI3foqIpenf5cCdJPdIf1vSfgDp3+Vp9db2o9PuH0lsSyLi6XT+DpIE0p32EZIv0Wci4u10vrvs39nAgoiojYh64HfAyXSvz+DPIuLYiDiNJNbX6GKvnxMGEBFXRcToiBhH0tx/KCI+BjxMcmMnSG709Id0ukvd+EnSAEmDmqdJ+sDnsON+tNy/T6RnapwErE2by/cB50oamv4iPDcty11EvAUslnRoWvRekvupdJt9TE1he3cUdJ/9WwScJKm/JLH99esWn0EASfukf8cCHyF5HbvW65f3waDO9gDOYPtZUgeSvNnmkXQB9EnL+6bz89LlBxas/1WSMzNeAd6X9/4U7Mfz6WMu8NW0fG+SA/2vpX+HpeUCbkj3YzZQXbCtT6X7PQ+4NO99a7GfxwA1wAvA70nOIuk2+0hyhs1KYK+Csu60f98AXib5MfM/JGc6dYvPYBrXX0iS4PPAe7vi6+ehQczMLBN3SZmZWSZOGGZmlokThpmZZeKEYWZmmThhmJlZJk4YlgtJ1zeP2JnO3yfppwXz35P05Q5+zg0dub10m8dIOr9g/uuS/iXDepL0kKTBBWUflhSSDitDnOMk/X1Hb7dg+1dIurRc27fOwQnD8vIEyZW8SKoAhgPvKlh+MvB4DnG11zEk4wK11/nA8xGxrqBsCvBXkotHO9o4oGjCKLiSendMA/6pA7ZjnZgThuXlcdKEQZIo5gDr0ytY+wDvBJ6VNFDSnyU9o+R+HpMAJH1b0j82byz9Zf/P6fS/SpqZ3kfgG8WevFid9Ff4S5L+W8k9C+6X1C9ddnxa90lJ1ym5r0EVcA1wkZJ7VFyUbv5wSY9Imi+ptS/Rj7H9ql4kDSQZouYyChKGpDPSbTXf5+OX6ZXQSDo/LfurknsnNN/H5XRtv2/Gs+lV/tcC70nLviTpk5J+I+mPJINSqmC/ZjfvS/r8j0q6XdKrkq6V9DFJf0vrHQQQEZuAhZJOKPXCWxeW99WPfvTcB8mQ62OBzwD/AHyT5Jf3KcBjaZ1ewOB0ejjJ1a0CJgCPFmzrxXRb5wJT0zoVJMNkn5bW2ZD+LVqH5Fd4A3BMWu924OJ0eg5wcjp9LTAnnf4k8JOCOL5O0nrqk8a7EuhdZN/fAAYVzF8M/CydfgI4Np0+g2Qk1tFprE8Cp5Jc6bwYGJ/Wm872EQr+SDLYJMDA9H94RvPygriXsP3K4r8jGRivEhhJMlTHful6a9LpPsCbwDfSdb4A/KBgm18F/jnv95Uf5Xu4hWF5am5lnEzyRfhkwfwTaR0B/1fSCyQ3nRlFMiT0s8A+kvaXdDSwOiIWkSSDc4FngWeAw0jGEyrUVp0FEfFcOj0LGCdpCMmXe3NMvyqxX3dFxNaIWEEymNzIInWGRcT6gvkpJANfkv6dUrDsbxGxJCKagOdIEtthwPyIWJDWKRxf6nHg+2nrZkhsHx68pQciYlU6fSowPSIaIxnY8FHg+HTZzIhYFhFbSYaquD8tn53G0mw5yUiz1k11RN+l2a5qPo5xJMkv+MXAPwPrSPrEIem6GQEcFxH1SkYU7psuu4Nk4Ll92f5lK+A/I+LmNp63aB0lt/ncWlDUCPSj+JDSbWm5jWKfswZJFRHRJGlvkhGSj5AUJL/yQ9JX2theqzFFxLWS7iJprT0l6exWqm4smG5rHwufv6lgvokd960vsLmN7VgX5xaG5elx4APAqvSX7SqS26q+m6S1Acmw1cvTZHEmyW1Jm91G0t9/IUnygGTkzk+lxwSQNErpKKEFstTZJiJWkxxfOSktKjwovR4Y1J6dTr1CMrAeafy3RsQBETEuIsaQ3D3w1DbWfxk4UNvvZd18/ARJB0XE7Ij4NslgjIdliPMxkmMxlZJGkHTRtXeU13eQJH7rppwwLE+zSfr5n2pRtjbtzgH4JVAtqYaktfFyc8WImEvyJfhmbL9r2f0kXUZPSppNkkh2+KLMUqeIy4Cpkp4k+TW+Ni1/mOQgd+FB7yzuIjk+AEn3050tlv+WVs5qSvdhM8l9re+V9Ffg7YKYvpgevH6e5Bf/PSQj+DZIel7Sl4ps8s60zvPAQ8BXIhkyvj1OIek2tG7Ko9WaZSBpYERsSKevJLkP8xd2Y3v7kbQqztndmNKzpm4AXouI63d1e7tD0gTgyxHx8Tye3/YMtzDMsnl/2oqYA7wH+NbubCxtEf23Ci7c2wX/W9JzJPc42Qto67hNuQ0H/iPH57c9wC0MMzPLxC0MMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vk/wO1Wc++gUrm8gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "spectrum = SourceSpectrum(Empirical1D,\n",
+ " points=wavelengths, lookup_table=flux)\n",
+ "\n",
+ "spectrum.plot(flux_unit='FLAM') # flux units can also be in Jy, PHOTLAM, etc"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### 3. Model the bandpasses"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next we want to model the effect of observing this object through the SDSS bandpasses. Similar to how we made the spectral data into a synphot object, we will also need to construct bandpass objects so that the two can be easily convolved using synphot."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To obtain the filter transmission functions of the SDSS bandpasses, we use astropy.utils.data.download_file to download the transmission file from the Spanish Virtual Observatory filter database. These transmission functions include the effect of the CCD's quantum efficiency on the spectrum."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To construct a bandpass from a file, use synphot.spectrum's SpectralElement with its from_file method:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# we leave out the u and z bands because they don't\n",
+ "# overlap with the spectrum provided\n",
+ "sdss_bands = ['g', 'r', 'i']\n",
+ "svo_link = ('http://svo2.cab.inta-csic.es/' +\n",
+ " 'theory/fps3/fps.php?ID=SLOAN/SDSS.')\n",
+ "\n",
+ "# since we are working with multiple filters I choose to organize\n",
+ "# using a dictionary, but you can do it however works for you\n",
+ "bandpasses = {}\n",
+ "for band in sdss_bands:\n",
+ " path_to_filt_file = download_file(svo_link + band)\n",
+ " bp = SpectralElement.from_file(path_to_filt_file)\n",
+ " bandpasses[band] = bp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can see how the spectrum overlaps with the bandpasses by plotting the bandpass objects like so:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0, 0.5)"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXeYo1XZ/z8nPVMydfvszGwvbIFl2aVJWVhZOoivNBGwICIoCkoVUEBRf4CCgOKL8tIEBV8BpangyyJFlmVhey8zs7M7vSeTdn5/PEkmM5NMMjNP8mSS87kurkySk+e5Ezbf3M/33Oc+QkqJQqFQKLILk9EBKBQKhUJ/lLgrFApFFqLEXaFQKLIQJe4KhUKRhShxVygUiixEibtCoVBkIUmJuxBilRBiqxBihxDixhjPXyaEaBRCrAv991X9Q1UoFApFslgSDRBCmIGHgJVALfChEOIlKeWmAUOfk1JenYIYFQqFQjFMksnclwE7pJS7pJRe4Fng7NSGpVAoFIrRkDBzB6YANVH3a4HlMcadJ4Q4DtgGfEdKWTNwgBDiCuAKgPz8/MPnzp07/IgVijFIsLMT7959kfuOBYcYGI1iLPPRRx81SSnHJRqXjLiLGI8N7FnwMvAHKWWvEOJK4H+AFYNeJOWjwKMAS5culWvWrEni9ArF2KfzzTepveqbkfvz1L99xQgRQuxNZlwytkwtMDXqfgWwP3qAlLJZStkbuvtb4PBkTq5QKBSK1JBM5v4hMEsIMQ2oAy4ALooeIISYJKWsD909C9isa5QKRSqQEpq2Q+1/oG0feDrCT4CvB3o7IeADZzFMOhTmnwMFCa+GFYqMIKG4Syn9QoirgdcBM/A7KeVGIcSPgDVSypeAbwkhzgL8QAtwWQpjVihGz+634c27oeb90AMC7IVEXEirU7tvtkJPM3z8FLxxK5xyNyz9CohYbqVCkTkkk7kjpXwFeGXAY7dF/X0TcJO+oSkUKaC3E169EdY9BUVTYdU9MPNkKJkG5iG+Dgc3aeL+t+tg3wdw1oNgdaQvboWu+Hw+amtr8Xg8RocSF4fDQUVFBVardUSvT0rcFYqsoP5T+NOl0LoHjv0OHH+DlqEnw4T5cPHzsPpeeOsuaK+FL74AtryUhqxIDbW1tRQWFlJdXY3IwKswKSXNzc3U1tYybdq0ER1DtR9Q5Abrn4fHPgs+D1z2Nzj5juSFPYzJBMd/D857DPa9p/1QBAOpiFaRYjweD2VlZRkp7ABCCMrKykZ1ZaEyd0V2IyW8/XN4626oPAq+8AQUjB/dMRd+Hroa4PWbYO+7MO0zycWhyCgyVdjDjDY+lbkrspfeLnj+ck3YF50PX3px9MIe5rCLQZi0iVmFIgNR4q7ITuo/hUdPgE0vwsk/hHN/Axa7fsd3FMHkw2D3/+l3TIVCR5Qto8geggGo/RA+fhLWPQP54+GSv8D041NzvmnHw7sPaBU49sLUnEOhGCFK3BVjm5ZdmpDvXg31n4DfDWYbLL8Sjvse5JWm7tzTjoN37oN978Oslak7jyIrufPOO3n66aeZOnUq5eXlHH744Vx//fW6HV+Ju2Js4u2B126EtU9o3vfkw2Dp5TDlcE1oHUWpj2HqcjBZtMoZJe5jlh++vJFN+zsSDxwG8ye7uP3M+M3h1qxZwwsvvMDHH3+M3+9nyZIlHH64vl1blLgrxh5dDfDU5+DAejjyKjj6W+CalP44bHngmqy1LlAohsE777zD2WefjdOpleOeeeaZup9DibtibNHVAI+fAe01cNEfYfYpxsbjqoD2OmNjUIyKoTLsVCHTUBqrqmUUYwdPBzx1nibsF//JeGEHKJoCHbVGR6EYYxx77LG8/PLLeDweurq6+Nvf/qb7OVTmrhgbBHzaitCDG+Gi56D6WKMj0nBNgY79WqWOyRx/nFrEpIjiiCOO4KyzzmLx4sVUVVWxdOlSior0nSdSmbsi85ES/not7HwTzvxlZk1eFlVA0K/ZRQrFMLj++uvZunUrf/nLX9i6dauaUFXkIG//P63l7nHfgyWXGB1Nf1xTtNuOOmMmdRVjliuuuIJNmzbh8Xi49NJLWbJkia7HV+KuyGzWP691YVx0Ppx4i9HRDKaoQrttr4WKpcbGohhTPPPMMyk9vrJlFJlL7Ufwl6ug6hg461eZuUFGWNw7VMWMIrNQ4q7ITHpa4LkvQuEE+MKTYLEZHVFsnCVgcapySEXGoWwZReYhJbz4TehuhK/+A/LLjI4oPkKockhFRqLEXZF5fPIsbH0FTvkxTD7U6GgS45qiMndFxqFsGUVm0dOi7VVasQyWf8PoaJIjXOs+BOlYkahQRKPEXZFZ/OsecLfCGfdp29qNBfLLoadZLVRSjAgpJcFgUPfjjpFvjyInaK+Dj36v7XI0caHR0SRPXikEesHXY3QkijHCnj17mDdvHldddRVLliyhpqZG93Moz12ROay+V8t+P6NfT+u0kBea8O1pBlu+sbEohs+rN2odRvVk4kI49Z4hh2zdupXf//73PPzww/qeO4TK3BWZQU+Ltgr10IugpMroaIaHM7QhSE+LsXEoxhRVVVUceeSRKTu+ytwVmcGnf9SsjWVfMzqS4ROduSvGHgky7FSRn5/aqzyVuSuMR0pY+z8wecnY8trDhLfyc7caG4dCEYUSd4Xx7F8LDZtgyZeMjmRkqMxdkYEocVcYz5a/gTDDIecYHcnIcBRrtyny3JvcTRz/3PG8suuVlBxfkX6qq6vZsGFDSs+hxF1hPNvegMqjtD4tYxGzRRN49xDiPooa+Oe2PkeLp4VHPnmEoNS/HlqRnShxVxhLey0cXA+zP2t0JKMjrzQltkxvoJc/bv0jZY4y9nTs4a2at3Q/hyI7UeKuMJZtr2u3s1cZG8doyStLiS3zxp43aPG08JPP/IQpBVN4bstzup9DkZ0ocVcYy843obgSymcbHcnocKYmc1/XsI5CWyFHTjqSZROXsaNth+7nUGQnStwVxiEl7Htf24wjEzfiGA55ZSkphdzWuo3ZJbMRQlDpqqTR3UiPanOgSAIl7grjaNkFPU0wdbnRkYyeFHjuQRmMiDvA1MKpANR06t+HRJF9KHFXGEfNB9ptZeqWYKeNvFKtcZjPrdsh6zrr6PH3MKdkDgCVhZUA7Ovcp9s5FMZw9NFHp/wcSYm7EGKVEGKrEGKHEOLGIcZ9XgghhRBqp2BFYmo+AEcRlM8xOpLRk4L+MttatwEMytz3dShxH+u8++67KT9HQnEXQpiBh4BTgfnAhUKI+THGFQLfAj7QO0hFlrLvA21TjrHSt30owqtU49W6j6DMfWvrVgSCmSUzASiwFVDqKFW2TBZQUFCQ8nMk0zhsGbBDSrkLQAjxLHA2sGnAuDuBnwFjrF+rwhB6O6FxMyz4nNGR6EO4v4yOvvvWlq1UuapwWpyRxyoLK5UtozM//c9P2dKyRddjzi2dyw3LbtD1mMMlmZRpChCdKtSGHosghDgMmCql/OtQBxJCXCGEWCOEWNPY2DjsYBVZRMNm7XYsNgqLhaNIu/V06HbIXe27mFk8s99jla5K9nbs1e0ciuwlmcw9Vo1a5CJTCGEC7gcuS3QgKeWjwKMAS5cuVXuS5TIHQ301xg9y+MYmEXFv1+VwgWCA2q5aTqw8sd/jUwun8tLOl3D73f0yesXIMTrDThXJZO61wNSo+xVA9G7AhcAC4F9CiD3AkcBLalJVMSQHN4GtUFvAlA3YXdptrz6Z+8Geg/iD/sgkaphqVzXQN6kqpeSTxk8IBAO6nFeRPSQj7h8Cs4QQ04QQNuAC4KXwk1LKdilluZSyWkpZDbwPnCWlXJOSiBXZwcGNMOGQsb94KYzdBQjdMvfazlqAQeI+o3gGQGSl6ht73+CLr3yRa968hi5vly7nVmQHCcVdSukHrgZeBzYDf5RSbhRC/EgIcVaqA1RkIVKGxD1LLBnQKn7sLt3EPVwRU1FQ0e/xalc1FmGJiPvre14nz5LHu/vf5c7374yMu/v9u/nWm9/i3f2pL7lTDJ+urtT/ECe1zZ6U8hXglQGP3RZn7AmjD0uR1XTUQW+7lrlnEw6XbhOqNZ01WISFifkT+z1uNVupclWxo3UHPb4eVteu5pyZ55BnzeP3G37PlYuvpMvbxbNbn8VhdvBWzVs8ceoTHDb+MF3iUowdsqDAWDHmOLhRux2fbeJepJ8t01XL5ILJWEyD86+ZJTPZ3radt+vexhPw8Nnqz/Kl+V/Cbrbzi49+wa/W/YoiexGvnvcqE/Mncuf7d+IL+nSJSzF2UOKuSD9N2spLxmXBytRohhL3YW7WUdNZM8hvDzOzeCZ1XXU8t+U5yhxlLBm/hDJnGZcecilv1rzJu/vf5ZJ5l1DuLOfGZTeyvXU79625DzmKDUOykUz/PEYbX1K2jEKhKy27tJ2Lwgt/sgW7S9t8RAdqOmtYWB57DcCs4lkArDm4hm8d9i3MJjMA3zz0m6ysWsm21m18tlrb/GTF1BVcNPcintr8FC67iysXXYnIlknsUeBwOGhubqasrCwjPw8pJc3NzTgcjhEfQ4m7Iv207IbS6UZHoT+OImjYOOrDtPe20+ntjJ+5h9oRuGwuLpx7YeRxIQRzSucwp3ROv8duWHYDnd5OHl73MO297Xz/iO9jErl90V5RUUFtbS2ZvJjS4XBQUVGReGAclLgr0k/LLqg4wugo9Ecnz722S8v+B1bKhKkoqKCysJIL515IgS1xjxKTMHHXsXdR4ijhiU1P4Av4uPXIWzMyY00XVquVadOmGR1GSlHirkgvfi+018CiLxgdif44irRqmWBwVM3Q6rvqAZhcMDnm82aTmb+e+9dhibNJmLh+6fVYTVYe2/AY4/LGceXiK0ccoyLzye1rM0X6aa8BGcxSW8YFSPB2juowdV11QHxxB0aUdQsh+PaSb3PqtFP5zSe/YWPz6C0kReaixF2RXlp2abdZKe76NA+r764n35qPy+bSIaj+CCG4ZfktlDpKue3ftxGUQd3PocgMlLgr0kvLbu22JAv9Tp2ah9V11TEpf1LKPPEiexHfXfpdtrVu4x97/5GScyiMR4l7DtLj9RMMGlTj27ILrPlQMN6Y86eScPOwmOKe/Odd31U/pCWjB6uqV1HtqubXn/5aZe9ZippQzRE+3NPCU+/v5f+2NdLW48NmMXHo1GK+fMw0Vs6fgNmUpsqJ1t1QOi17GoZFo1Pmvr97f8rbBZhNZr6++OvctPom/rbrb5w548yUnk+RfpS4ZzlbD3Ry1982sXp7Ey6HhVMOmUh1eT7tbh+vrK/nyqc+orI0j5tPm8uqBZNSH1BbDZRUpf48RhAW91G0/e30dtLp7Ux55g5w2rTTeHrT09z/0f2sqFxBvjU/5edUpA8l7llKrz/AL/6xnUff3kWhw8Ktp8/j4uVVOG3myJjvnzKHNzYd5ME3d3DlU2v55okz+N4pc1MbWEcdVB2V2nMYhQ6Z+/4ubauESQWp/6E1CRM3Lb+Ji1+5mEtevYSvLPgKp08/PeXnVaQH5blnIZv2d3DWg//mkX/t5HOHTeHN607gq5+Z3k/YASxmE6ctnMSL3zyG0xdN4jf/t4tOTwobTHm7wdMGrimJx45FhvTck6O+W6txn5Kfns9o0bhF/PjYHyOl5OZ3bo78uCjGPkrcswgpJU+8t4dzHvo3LT1efn/ZEfz8vxZTmm8b8nU2i4lLj6rGH5Ss3t6UugA7QsKRreJusYE1b1TiHq5xT0fmHubMGWfy0EkPAfD8tufTdl5FalHiniV0eHxc84ePue3FjRwzs4zXrz2OE+cmX5GypLKYIqeVf25uSGGQmnDhSr2fbBh2l3Z1MkIOdB/AbrZT5ijTMajETC6YzHFTjuOF7S/gC6j2wNmAEvcsYENdO2c88A6vbjjA91fN4bFLj0iYrQ/EYjZxwpxx/GtrQ+rKJMOZe1GWZu6grVLtHfkuO/Xd9SmtcR+K82afR4unhTUH1Q6Z2YAS9zGMlJIn39/L5x55F18gyB+/fiRXnTAT0wjLGlfMHU9zt5dN9frsJjSI9lDmXpjNmXsh9I68/UB9dz0T8ifoGFDyTMrXrKAef48h51foixL3MUpLt5crn/qIH/xlA0dNL+Ov1xzL4VWj648+d6I2Ibi7qVuPEAfTUQd5ZWAdeY/qjCeeuCe58cKBrgMRkU03ZqFNuAeCAUPOr9AXVQo5xpBS8tqGA9z20kbae3zccto8vnLstBFn69FMKXECUNfmHvWxYtKxP3snU8PYC6Hz4Ihe6gv4aHQ3GifuoU0/AlKJezagxH0Msa+5hx++vJF/bmngkMku/ufyZcyfrF9zqQK7hSKnlbrWFIp70cg3HxgT2F0jtmUa3A1I5KBNsdOFRWhy4A/6DTm/Ql+UuI8Berx+HnprB79dvRuLSXDzaXP58jHTsJj1d9WmFDtTmLnXwtRlqTl2pjAKzz3cx90ocVeZe3ahxD3D+fumg9zx0kbq2tyce9gUblg1l4lFqfOsp5Q42ducAs/d2wPu1uyulIGQuHdoHvswK17CC5iU567QAyXuGUq728ct/7uev35az5wJhTx/5VEsrU79htJTip28u6MJKaW+5XhdB7TbQmOEK23YC9E27OgGe+It8KI50K19RpmWuW9u3kxABlhQvsCIsBQjRIl7BrJxfztXPPERBzs8XLdyNleeMANrCiyYWFSUOOn2Bmh3+yjOG16t/JB0hTYizs/CVr/R2Au1297OEYl7sb0Yp8WZgsASE89z/9mHP2Nzy2aeP/N5KgqzfM4ki1ClkBnG29sa+a9fv0dQSv505VFcc9KstAk7aJk7QK3ek6rdoZWvBeP0PW6mEe4vMwLfPbyAySjiZe6d3k66fd3ctPomtXp1DKHEPYN4b2czX3tiDVVl+fzlm8dwWGVJ2mNIWTlkV0jccylzjyaJOncjFzBBfM+9x9/D+LzxrGtcx42rb1TVNGMEJe4Zwq7GLq54Yg2VpXk8/dXlTHAZs9AnnLnrXg7ZHbZlyvU9bqZhC1kxI+jp3tDTwIQ848TdYgrZMrK/ePf4eji+4ni+t/R7vLH3DX7x0S+MCE8xTJS4ZwDdvX6+/uRHWC0mHv/ysmH3hdGT0nwbTqs5NZm7sxTMVn2Pm2nEy9wT4Av66PB2UOpI/aR5PIbK3PMseXzpkC9x/pzz+Z9N/8N7+98zIkTFMFDingHc9uJGdjZ28eCFh0UyZ6MQQjDeZaexs1ffA3c3QH6W++0wYnFv79XaBBsp7iahyUG05x4IBnD73eRZ8wC4bul1TC+azq3/vpUu78gbpClSjxJ3g3lxXR0vrK3lmhWzOGZmZlgWpfk2Wrq9+h60qzE7N8UeyAgnVJvdzQCUONI/zxJGCIFFWPp56p6AByCyBZ/T4uTOY+6ksaeRX637lSFxKpJDibuB1LT0cMv/buCI6hKuWTHT6HAilKVC3HMmcw977sMT99beVsDYzB20ipnozL3bpy1oiy7PXDRuEefPOZ9nNj/DxqaNaY9RkRxK3A3CHwhy7XPrEMD95x+aklYCI6UkT2XuI8ZiB7MdvMMUd0+GiLsw9/Pce3xa+9+wLRPmW0u+RamjlLs/uJugDKY1RkVyZI6i5Bj3/X0bH+1t5a5zF1BRkpf4BWmktEATd5lkm9qE+Nya2OVC5g4j6i/T4mkBjLVlYHDmHu7tnm/J7zeu0FbIdUuvY33Tev68/c9pjVGRHEmJuxBilRBiqxBihxDixhjPXymEWC+EWCeEeEcIMV//ULOHt7Y28PC/dnLBEVM5+9DM67VSlm/DGwjS1atTPXO4DDIXMncYsbgLBEW2ohQFlRwDPfd4mTvAGdPP4PAJh3P/R/dHfpwUmUNCcRdCmIGHgFOB+cCFMcT7GSnlQinlocDPgPt0jzRL2NPUzbf/8DHzJrm4/cxDjA4nJqX5dgD9rJlcaT0QJoa4J7oKavW0UuIoiawSNYp4mXueZbC4CyH4wZE/oMfXw71r7k1bjIrkSCZzXwbskFLuklJ6gWeBs6MHSCmjV2zkAynahHNs0+Hx8bUn1mAyCR695HCcNmO/yPEozddq0XUT91xpPRBmBD3dWzwtlNiNtWQg5LnLxJ57mBnFM7h8weW8tPMlVteuTkuMiuRIRtynADVR92tDj/VDCPFNIcROtMz9W7EOJIS4QgixRgixprGxcSTxjln8gSDffHotu5u6efjiJUwtzSyfPRr9M/ccaT0QJtz2N4rut98e8iWtnlZKncZOpoK2SrWfLRP23K358V7ClYuvZGbxTG5/9/bIxLDCeJIR91h9Xwdl5lLKh6SUM4AbgFtjHUhK+aiUcqmUcum4cTmSxYW459UtrN7exN3nLuDoGZlRzx6PstAK2WbdMvccaT0QJoYt0/7iS0O+JFMz91ilkAOxmW38+Ngf097bzrVvXUtvQOcFcIoRkYy41wJTo+5XAPuHGP8scM5ogso2XlxXx3+/s5vLjq7m/CMqjQ4nIeH2B7pl7j0tYM0Dq7Grb9PGCCdUja6UgZDnnkQp5EDmlc3j7mPvZm3DWq755zWRRVkATe4m1jeup7Ent67WjSaZfu4fArOEENOAOuAC4KLoAUKIWVLK7aG7pwPbUQCw/WAnN76wnmXVpdxy+jyjw0mKPJsZm8VEq17i7m7R+srkCvZC8CTfOCzcV6bMUZbCoJJjkOfu78FmsmE1Je4JtGraKtx+N3e9fxen/vlUphZOpcnd1K+S5uwZZ3P7UbdjzfYeQxlAQnGXUvqFEFcDrwNm4HdSyo1CiB8Ba6SULwFXCyFOBnxAK3BpKoMeK3h8Aa56ei35djO/uuiwtPZlHw1CCMrybfrZMj0tkJdL4l4AQR/4e7VFTQkI95XJhMx9kOfu60mYtUdz7qxzWVC+gBe2v8C+jn0sKF/AzOKZTCmYwkcHP+KJTU/Q7m3ngRMf0HenL8UgktqJSUr5CvDKgMdui/r72zrHlRX84h/b2d7QxeOXH8F4g1r4jhRd+8u4c0zcbeHmYV1JiXsm9JUJEytzj1UGORSzSmZx47JBy2FYUbmCUkcpv1j7C1bXrea4iuNGHa8iPmMjlRyDrK9t59G3d3L+0qmcMGfsVYmU6p2555QtE+ovk2QLgkzpKwOxPffhZO6J+NL8L1HlquLeNfeqTT9SjBL3FBAISm7+3/WUFdi5eYz47AMpzbfp67nnUuZuj8rckyBsyxTZjV2dCqEVqrJ/KaSe4m41W/n2km+zq30X/6r5l27HVQxGiXsKeOaDvayva+cHZ8ynyDk2J450s2WCAXC35VbmbhteZ8gOrzb5anTrAYiTuQ/TlknEiVNPZJxzHH/Z8Rddj6vojxJ3nWnt9vL/3tjG0TPKOHORcZsdj5Zip42uXj++wCg7/nnaAZmbmXuSm1lkUuY+qM7d3627uFtMFs6acRar61ar8sgUosRdZ+7/xza6ev3cfuYhY7oaoMipzbV3uEe5231PqAxOZe5x6ejtwG6247AYP+keK3MfanXqSDln5jkEZZC/7vqr7sdWaChx15FtBzt56v29XLy8kjkTC40OZ1QU5Wl2Uvtoxd0dEneVucel3dueEZYMDPbco7fY05Pqomrmls7l7dqh2zIoRo4Sdx358SubybdbuPbk2UaHMmqKndoq1VGLey5m7pHdmJK3ZVzh7fkMZuBmHd0+/W2ZMEdNOop1jesiq2AV+qLEXSfe2d7Ev7Y2cs2KmZHl+2MZl1PvzN34Gu60YRveJtntve24bBki7iZzpETRH/TTG+hNSeYOcOTkI/EH/aw5uCYlx891lLjrQDAo+cmrm5lS7OTSo6uNDkcXivQS91zM3M0WsDiSrnNv97ZnxGQqaLZMeELV7XcDsXu568GS8UuwmWy8t/+9lBw/11HirgMvf7qfjfs7uP6U2dgtmdmjfbjoJu7uFhBmcGSGeKUNe2HStkxHbwdF9iIC7e10vPZaigMbmujMPdwRMlWZu8PiYMmEJbxf/35Kjp/rKHEfJV5/kHvf2Ma8SS7OXpx5W+aNlIi49+iQuTtLYAxXDo0IW0HSE6od3g6KbEXUfe971F37Hbz79qU4uPhEl0KGxb3AWpCy8y0at4jd7bvxBUf570wxCCXuo+S5NTXsa+nh+6vmYDJlj4DZLCacVrM+mXsuVcqEsRcklbn3Bnpx+90U2Yvw1x8AIOh2pzq6uFhMlsiEapdPi7/Aljpxr3JVEZAB6jrrUnaOXEWJ+yhwewM88M/tLJtWygmzs2/zkSKnVR/PPZf89jC2vp7uQ+2f2hHascllc4FFW1sg/cb1XDELc6QUsit05ZHKzL2yUNvfYG/H3pSdI1dR4j4KnnhvD42dvXzvlDljesFSPHQRd3drjmbuhUlNqEavThXm0HxNIDDEK1JL9AbZkcw9heJe5aoClLinAiXuI6TT4+PX/7eT42eP44jq7BQv3cTdmUNlkGGibZkhMvd2rybuLrsrIu7SSHGPqnOPZO4ptGWK7cW4bC4l7ilAifsIeeK9vbT2+PjuyrG/YCkeRXl6iHtbbop79ITqUOIe3VfGFPo6BkfZz2cUWEyWtGbuQgiqXFXs7VTirjdK3EdAj9fPf6/exQlzxrF4arHR4SSFDAaH7eUWOa2j6y3j94KvGxxj4zPSlehSyKE89+iOkBlg7ZlFXylkl68LgUhZKWSYSlcl+zqMqxDKVpS4j4BnPthHa4+Pa1bMNDqUpNl32eVsWbBwWK8ZtS3jadNunTkq7r5ureVxEpl7xrQfiPbcvV3kW/MxidTKRFVhFfXd9Xj8npSeJ9dQ4j5MfIEgj72zm+XTSjm8aux47T3/+c+wX1PktNLtDYy87a87LO45astAwlr39t52TMKUUutjOFiEhaAMEpRBunxdKekIOZDwpGpNZ03Kz5VLKHEfJn/7tJ76dg9fP3660aGknFGvUnVr28flpi0T1TwsgS3jsrn6Z8dDjE81ZpM2qRuQAbq8XRTaUt/dtKKwAoC6LlXrridK3IeBlJL/fmcXM8blc8Lssbcv6nAZtbh7VOaOt4uhpLpf07CQ5x5oa0ttbENgFiFxDwbSlrmPc2prRMIbhSv0QYn7MPhobysb6jr48rHTsmo1ajzz7/YXAAAgAElEQVRGn7nnsuceEuwkMveBTcNqr74mlZENicWkLaQKZ+6pLIMMU+YsA6DJ3ZTyc+USStyHwdMf7KPQbuHcw7Knh8xQjLrtr7JlILQCNR6Z1Msd+jJ3f9BPl6+LQmvqbRmb2YbL5lLirjNK3JOkpdvL39bX87klU8izWYwOJy2EM/cRl0OGbZlc6wgJ/SdUk/DcAciAi8F+nnuabBmAcmc5zR5ly+iJEvck+fPaWrz+IBctrzI6lLThCu+j6hlhrxN3m2ZPmHPjx7AfSU6o9vPcjZtHjRDtuXf7utMyoQqauKvMXV+UuCfJn9fWsbiiaMzvjTocXI5RZu7u1ty0ZKDPcx8icw/KIJ3ezozZqAP6PHdPwIPb705b5l7mLFPirjNK3JNg64FONtV35IzXHsZhNWO3mOjwjMKWycXJVOizZXo74op7l68LicwsWyaUuYdXzqYzc1fVMvqixD0J/vfjOswmwRmLJxsdStpxOa10uEdqy7Tmrrhb7GCyDNnTvV9fmQwh7Lm3e7TY0um59/h71GbZOqLEPQFSSl7+ZD/HzSqnvMBudDhpx+WwjDxzz9WmYaDVrNsLtTr3OF56ODvOlM2xQVuhCn3dKtNRLQOauIOqddcTJe4JWF/XTl2bm9MWTjI6FENwjaZ5mKctdz13iNqwI7a6Z3Lm3tarVTrl29LkuTtCte4e5bvrhRL3BLy+8QBmk+DkeROMDsUQXA7ryKplpMxtWwZCPd0743ruAzN3kQGme9hzD4t7ujN3NamqH0rcE/DahgMsn1ZKSb7N6FAMweW00jmSzN3nhoA3d20ZiNgy8QhvsZdJmXu4WiYcWzqrZUCJu54ocR+CHQ1d7Gzs5pRDJhodimGM2HOPLGDK4czdNrzMPRMYmLmno/0AQIm9BJMwKXHXESXuQ/CvrQ0AnDQv+5uExcMV6uk+1CbPMQm3Hsh5WyZ+nXtHbwc2kw2HxaE9kAmbdYSrZULzAelqRWw2mSl1lKoJVR1R4j4Eb29vYvq4fCpKUrsTTSbjcljxBSQe3zB7uudyL/cwtsIhFzG1e9v7WzJR44b9Y6oT0XXuFmHBbk5fhVipo5RWT2vazpftJCXuQohVQoitQogdQogbYzz/XSHEJiHEp0KIfwohxvwafY8vwAe7mjlu1jijQ0kLwe5uOl57fdDjfS0IhmnNKFum/1Z7Mejo7YhvyRgk7hHP3duB0+pEpPFqosReErGDFKMnobgLIczAQ8CpwHzgQiHE/AHDPgaWSikXAc8DP9M70HTzn90t9PqDHD87N8T94D33UHfttbg/+aTf4yNuQZDL7X7D2AvA24kMxvfc+2Xu0UJqdObe25G2ydQwxY5iWntV5q4XyWTuy4AdUspdUkov8CxwdvQAKeVbUsrw0rL3gQp9w0w/7+xowmY2sXz62NlKbzT4Gxq12+b+nme47e+wM/dcbvcbxlYAMghxVl32axo2EKPE3dRny+Rb0izu9mLaPCpz14tkxH0KEL25YW3osXh8BXg11hNCiCuEEGuEEGsaGxuTj9IAPtjVzKGVxTnT3jfeZJ7LEbpMH24LAk8bIPoaaOUi9lCNeBxrpsPbEb+Xu1G2TGiFqi/oS3/mbi+m3dtOIBhI63mzlWTEPda3Pua/PCHEF4GlwM9jPS+lfFRKuVRKuXTcuMy1O7p7/WzY38Gy6tzI2oH44j7izL1N6+NuyuE5+wTiPihzzyBbBiDPmt5CghJHSaRTpmL0JPPNqwWmRt2vAPYPHCSEOBm4BThLStmrT3jGsHZfK4GgZNm0HBL3OGIyYs89lztChols2DFYrHwBHz3+nrgLmIxq7R62ZSB9C5jCFNu1fy/Kd9eHZMT9Q2CWEGKaEMIGXAC8FD1ACHEY8Bs0YW/QP8z08p/dLZhNgiVVOVzGF6LQMcINO3K5aViYSObePeipcGOusKANwmBbBiDPkubM3a79e1EVM/qQUNyllH7gauB1YDPwRynlRiHEj4QQZ4WG/RwoAP4khFgnhHgpzuHGBB/sbmHBZBcF9hzx2yGuLRPp6T6SzD2XJ1MhajemwZl7eOIw08Q9OnNPty1THPr3omrd9SEp9ZJSvgK8MuCx26L+PlnnuAzDFwjySU0bXzxyzJfq64bLaR2Z51405oumRkdoowvpHZy5h7PTTC2FhPTbMipz15ccnu2KzdYDnfT6gyyemqNZZwxRcTkstA+7zj2Ht9gLE7ZlYjQPCy/vz+TM3Yg6d1CZu14ocR/Ap7Xal25xReZ06jOaouHuxiSlmlCF/ptkDyCcnfYT92hBzwDPPd3i7rQ4cZgdKnPXCSXuA/i0to3iPCuVpTnaTyaG9z5sW8bbDUG/ytyteSBM2ucxgHBFSHGcz8ggbe/vuad5QhVCq1RV5q4LStwH8EltO4sqitPaUyOjiKEqRaHOkEnjUa0HAO2H0lYQu1qmtx272Y7T4ozzYuM993RPqILqL6MnStyjcHsDbDvYmZuWzBA/Zi7HMLfaUx0h+4izYUdbb9vQm3QY3DgM0m/LgGZTqTp3fVDiHsWm+nYCQcmiihzMOIcQE5fTQofHn3wbWtURsg9bQVxxjzuZCjlZLQOqv4yeKHGPYtN+bWecQybncD+UGBQ5rQSCkm5vkj0/VEfIPuyFcW2ZTBR3k+iTBMM8d5W560LOiLu3pmZQx8OBbDnQicthYVKRI01RZRAJbBkged9ddYTsI464Z6otI4SIVMwYkbmX2Evo9HbiD45gU3ZFP3JG3Heu/CzbP3PckGO2HOhk7kRX7k6mQtwJVRhGfxk1odpHHM89ZuZuVInMAMIVM0aIe/gHL7wOQDFyckbcAQjG3ypOSsm2A53MmViYxoDGBq7hiru7TSsBtKnPErsLmay4R2HUNnvQ57sbkrk71CpVvcgtcR+CujY3nb1+5k7KbkFKKBoxrlrCmXvStoxHtfuN4HDFtGUCMjC0LWMgZmHGIixYTda0nzv8mShxHz3q2xdiS73W3GlutmfuicQ9ZvuBcE/3JH3QnhZw5lC75KGwF8ZcxAQxWg9kwApV0GyZPGueIfZkpL+MqpgZNTnU9nBoth7UxH32hCwX93gM8UUedububoU8Je5AqL9MbKEOWxAxMdiWib+4KrWEf/BU5j56VOYeYsuBTqYUOyl0pP9SNK3EE40hxKQgstXeMMRdLWDSsBfGXWyaidUyoGXuRvjt0NeOQYn76FHiHmJnQxczxxcYHUZGYjYJCofTGVKJex9D7CGbiXXuoDUPM6L1AGjNw+xmuxJ3HVDiDgSDkt1N3cwYlwPiHk80EvirLscwmoe5W5XnHmYIcS91xP+MDK2WMZnJtxiTuYN2RaPEffQocQfqOzy4fQGmjzPuH3TaGKFoaG1/kxD3gA96O1TmHsZeGPMjt5lsFFiHSCYMLHm3m+0UGljGWmIvUROqOqAmVIFdjVodck5k7gmIlzG6nJbkerp7QotPlLhr2GOLZKmzNEE1inHqfttRt1FkM65Ms9herDJ3HVCZO5rfDjBDZe5xSbrtb0+LdqvEXSOeuA9hyQCGeu6HjT+M6cXTDTt/sUOJux4ocQd2NXVTaLcwrtBudCiGEy+bTNpzD/eVyVPiDmiLmBj8mWayuBuNytz1QYk7sLOxi+nj8nOip0wiyYhnyySduYfFXWXuGraCmB+6Evf4FNuL6fB2EAgm2YVUERMl7sCuxhyplIEhqmWGfpnLaaXHG8AXiN+fB1DiPhCTWdtubwBljrKhX5fj4h6UQTq9nUaHMqbJeXHv8fqpb/fkRqXMUCTQkuK8JFepupXnPgjb4H9bsTJ3GfU/IYe1XS1k0omcF/c9TT0AVJfniLiPYkIVoK0nkbi3ah0hM7QpliHEyNxLE64DyF11Vy0I9CHnxX1vs9bUqbosx8U9gS1TnGcDoN3tHXqgu1XbpEN1hIwgbYMtP+W5x0eJuz7k/Ddwd1jccyVzHyHFyWbuPS3KkhlIjD4tStzjExb3Vo/abm805Ly472nqprzAToE9R9ZzjaDlL/R57knZMqojZH9sMWwZJe5xCX82LZ4WgyMZ2yhxb+5hWrkxTZLGEsVOzZZp7UnCllGZe38GtBkIosR9KJwWJw6zQ2Xuo0SJe1M3Vbnit0Ni0YhT61/osGASyVTLKHEfxMAJVQE2s23IlxjZOMxohBCUOEpo7VXiPhpyWtx7vH4aOnuZlkN+e0LNiDPAZBIUOa1Jeu7KlumHvf+/L5n9a+VGTamjlGZPs9FhjGlyWtwjZZC5lLnHIZnVucV5NtqGytz9veDthPwEC3RyDetAcU9C3XM3cQe0XaqULTM6clvcQ5UyVWW55LnHVo1kbAAtcx/Cc+9u0m7zykcSWPYycBGTKZnUPbfVvdRRqsR9lChxR5VBJktxXgJbpick7vlK3KOR1gGdIeNl7tF6nsOeO2ji3uJpyem5h9GS0+K+t6knt8ogIa5oJGPLlOTZaBtqEVN3o3arMvf+DGz7a03i31uOi1qJo4TeQC9uv9voUMYsSYm7EGKVEGKrEGKHEOLGGM8fJ4RYK4TwCyE+r3+YoyPer/+e5m6qc8qSYVSikXBCtTs0AZY/bsTnyEoGiXucTdij/9/kurjbtYorVes+chKKuxDCDDwEnArMBy4UQswfMGwfcBnwjN4B6kIwdifDvc09uVUGOUqK86x0evz443WGjNgyakK1HwMmVIVt6DJIyO1SSIAyp/ZvSIn7yEkmc18G7JBS7pJSeoFngbOjB0gp90gpP0Vbn5F5xPiiuL0BDnR4VOY+DMItCDo8cbbb624Ck0XrLaPoY4C4m4U58WtyW9sjmbuaVB05yYj7FKAm6n5t6LFhI4S4QgixRgixprGxcSSHGBkxMvd9LVoZZFWaJ1Ol18v+W27BV1+f1vPqQbh5WNxVqj1NkFcWf8IwR5Hm/jt8mZIS7txW93DXTJW5j5xkxD3WN3VE//KklI9KKZdKKZeOG5c+XzZWsJFKmTRn7l3v/Jv2F/7MgTt+mNbzRkjYWyb+Uwn7y3Q3q8nUWAxILkQwia9PjtsyynMfPcmIey0wNep+BbA/NeGkiBiZe7jVb1Vpmj330E+lNCgzG+jlNj/+ON7aOvoCix9Xwra/PU1Z77c3PfIIvbt2D+s1MjRH8a8Lilk3z56ccOe4uOdZ81R/mVGSjLh/CMwSQkwTQtiAC4CXUhuWzsT4ouxp7qEkz0pRXpzKhRQhwn3OM+DL629qouGen1Lzta+RzMVYwra/3U1ZnbkHu7tp/OUD7L3wwmG+UNsLtMnsxVucD4Ek9gbNgH8fRlPqKFX9ZUZBQnGXUvqBq4HXgc3AH6WUG4UQPxJCnAUghDhCCFEL/BfwGyHExlQGPWziZO6VRlTKhP3oZC7NU4wMfS6Brui9KuPHVRLK3Fu642Tu3U1ZXQYZ+bza24f3ulDm3oYPuy0vcpwhX6PEXesv4zamv4xn06ZRH6Nn7ccE3cbV6SdV5y6lfEVKOVtKOUNKeXfosduklC+F/v5QSlkhpcyXUpZJKQ9JZdDDJdb3ZE9TD9ONWJkqMidz709iW8bltGAxCZpjibvfC73tWb06VfrjVAklIpS5t4ggDpszbmlu/5ON7FTZRHleOQ3uhrSft+O119j9ufPoeOWVER/D39jI3osuYv9NN+sY2fDIjRWqsv+XyeMLUNfmNqZhWDhzlwZVjcYRbxmOZwhxF0JQVmCjuat38JM9oQwrL4s992TslBhIn2ZjtVgkDmv8zF0Gon48UvDjH/R6CXZ3637cVDEhbwINPekX994dOwHwbN8e83l/ayuBjo4hjxH0eABwf/oJzb/7PZ6tW7XHvV4CbenZPjBHxL3/F2Vvs1YGOW2ckQuYDCoX7LcKMurxeAuTBlCWb6e5K0bmngN9ZUaaucte7cew1ypw2vLi/0j4ox/XX9z3XfIlth6+VPfjporxeeNp723H4/ek98QJvprbjzqabcuWx51Yl8FgpNTZv7+ehp/9jN1nn0PXO/9m66LFbDvyKPxNTXpHPYjcEPcBmdLuJi17mWbo6tQMuO6OZOtEPqNEXm9ZgY2mWLZMDnSElP6RZe7BXu3z8pkh3+oYInOPOn4KMnf3J58kNU5KSfvLL4eqqIxjfN54ABp70rgmBqKurof+f7DrtNPoevvtyH0ZCLD1iGVsmX8I+7506aDxNV/9auTv1j/+UZ9YhyAnxH2gYIXFvToXt9eL/iyixCRSmplAU8YV2GPbMl0HtdvCiaMMMIMJjC5z91kg32RN0nM37se/57332P+977Pz5JMNndgd79TE/WDPwVEfy7N1G/7mYU7OBoJ0vPZavx/j7vff7zek5oqv0/LU0/jq69lyyAKCnZ0DjxITc0Fh4kGjJCfEfeAXJbwpdqEjvWWQGUHUZ9EvgwxX7ySRuce0ZTpDK24LJow2woxFjtRz92ri7rVAgdk6yJbZf+utbFm0uK9MFlIq7okE29cQ5XP7fBz8+c/peOONlMUTj3DmnqzvLgMB/FEr33eddTYN993P9hUr2H322Ww/5lgA2l96KVLxFGhvZ8/FX8S7dy8ALU8+RdMDDwLQ/NvfUnftd2h74QU2z53HngsupOaKrw8678G77mLHiSuG9d5KLr5oWONHQm70uo2RuRtSKQOGWe0xiRaZJIWrrMCO2xegx+snzxb1z6fzANhdYC+I/+IUI6Wk6eGHKT7nHKxTRtQhY+jjj9BzD4Yyd7MpiANJF9oPa1jM259/QRsXVTaX0ow5EABL/K9+eAIYtPfc8tjvAHBt2axbCJ5Nmwh0dJB/5JFxx4zPjy3uPWs/Zu9FFzHlF7+g4MQTEFYrwmSi8YEHaf7Nb/qN7d22rd/9zXPnRf6ecOutmJwO3B99xM5TVlF+1VU0PfzwoDgO/OA2ANzr1iX13sZffx0N/+/eyH1zaSmOBYfQ/fZqAGatfhthTqK/0CjJDXEf6Lk3d3PiHGPrsY263JX9MveovyPVOwky93yt1r25y0teabS41xtuyfhqa2l68Fd0v72a6uee1f8EI8zcg93dBAWUiCAEQ1c9wSCYTIPGWadMwVdXN+JzRdNw7720/e9fmP3O6n6PS58PMYS4B7v6KmqCPT1xx/Ws/RjH/Hl0v/8+ZlcRpoJ8vLt2429uovTii4eMbffnzgNg3oAfDCklvZs3s/tz51HyxYtxTnNysOcgMhjEu2cP3e+8w8Ef/wSAumuvBcAyYQL2GdPpfve9Ic85kIN33dXvfixhHy6Vv/8d+UcdRcdrr+PZsIGSL36RCTfegLBYaHzwVzjmzcWSptYrOSHu0YLW1eunsbNX7b4Ekfpr7e/kbJnyAq0JVlNXL1NLo+YsOg8YLu7hzNrflppVjQMzd++ePTQ/9jsm3n7b0GLZ3YPXbmJiwIsIaFm8DAYHXcT5m5txzJ+Pr66OoCfGvMYwaf7tf2vnkrLfZixDXYF0vvkWDT/9ad/9f/wz8vfW5UdS9fvf0fDLX9L9f2/HenmE3u3bsZSVU3LRhVjK4pfH+ltb6XztNQ788EeDnmt96mm+uzCfxesfZwuPxz/GwYP4Dw7hy5vNCJOp3xVJqshbvhyA6j88gwwEMDkckefGXXN1ys8fTU6Ie7Rg7WzoAmB6uXH2ASS381FKiK6EjC5/DCaucwfNcwdoGui7d9bD1PiX2GkhFLtIkfcVsU1Cm23sv/kW3GvXUnze53Aeemj813V347bBBL8f/KFMOFZmHghgnTwZz/r1EZ9+uPEJmw1hNvfLuKXbjcjr+yHuZ7v4fGxZuEj7gbLZqL/l1n7HPHDHHX3Hb2+PZNyJaHv2OQCaHnoIgEk/+Qm2qkp6t23vd8ztRx095HEWrx9+Xf74G26g9EuX4G9uRlitWEq0JmRd7/wbW+VUvLt3U/P1KyPjiz5/XsQam3jnjxBWK8Hubg7eeVfM40/78wvY58xhx4krcJ16Kp1//zu+/fuxz58XsdqE1YqItylLmsg5cd8REvdZE4wVd+OqEKLOGxxcepe4FFLL3PtVzEgJnQczJnNPFWHBjHxpw59ZgvN699fRXCCZKOyYpHaMoMeDyekcNNZWWak9n2CxkfT7CXR2Yikpwb1hI56NGzlw++0xx7a98GdKL/li5H73v/8NwSCu006LVH/Eypz1pP6mm4Y13lpZiW/fvkGPOxYvwrlgIa1PP82Em2+m9Zln8O7ZQ9UzT+NctAhMpojAWseP7/fagmOPAbTPeN6WzXR/8B+k10vBZ46NiHvJf/1XZHzpxRdHPPrJP/8Z+7/3fQDs8+YhhGDW2/+nHfeE49l3+ZcRIrPqU3JD3KM89+0NXVjNgqrSHCyDHEAkc5cyqX4nEOW5R9e6u1sh0AuFk/QOcXjo4FMPefjQwhNzcZH2gFn7MgfdQy+y6d2zh/oymGh1YUZLLgJtbVhKSiJVGmGchy4GoP7WH2Crrqb9xZdofeqpvueXLMG9fj0Mw2I4ePfdHLz77sj9sEjtv2HQjpkR7HPn0rtlS//YDjsM98cfYy4pYcr992GtmIp1ymTw+wn29Gg/ViYTjQ/+CnNJMW3PP4/ZVYR77dpBx8874giQEl99PYUnn0TZ17+OpbS035j2F19kz49u52tXC556rABTfh7TnnsOGQhQ/o0rsZSX4zr9NDybNpO3ZEnSn0eY/OXLIn9PvON2iDHJOemuO6m/9Qc4Fy4EwDZzxqCrbvvcuVjGj2fCLca1GohFboj7gMy9uiwfizmzfmXThoyduUeWvie4oHBYzRTYLTRFZ+6dB7RbwzP30PtJkeUVLrOzFGuX+WH7J9gVv7bZ39hI8MBBGqYL5jpLMUlt6fmuU0+LOd4ZEinZ28ue//rCoOdjCaVeVL/wPI55fdZCoKuLfZddzsQf3oHzkCHaRVmtmIuKInfHf0eb6Cy77DIAth11NIHWVjCZKDzpJCoefCCpeIrOPpsNs7tw/+ceSl5/gXKntkBOmM1YyrW/LWVlFHzm2OG+1UGUXHBBzMeLP/95ij+vbQs95YFfaj9KA7CUlESy+EwiJ8Q92mrY2djFvEn6LCDofu89gt3dFJ58ctKvMcxrj0VUti7DHm0SdtGgWvdwjbvBmbv0p3bCLFJDbTLR+eZb9KxZA0Ddd75L3Xe+y9T//m9a//AHuv75z0Gv3TNB8IX8ieQV7SbW8pKSSy4h/5ijI/7wsLBYcC5eTP7yZTgWLCD/mGMw2TX7LOj1UnvlN+h+910ACj/7WcylJRFP3DZjBpPvuQfnwgWDDmsuKGDa838afjwDmP3euyN+bUVBBQB13fsZlz8+wejU4vrsZw09/3DJCXGPFqy9zd2cuUgfEdp3+ZeBweVcycWkSwgjOG/sRUyBzq5Bz8fj8LY9nPjPV5Ff+INWr5vmzN29bh3WiopI9tb+179RuOLE/ituAwF89fU03Hsvna++BkDl7x7DMn48u844MzLOVl3N+O9/H3ORC3NREeaSEixlZQTdblqffY7ClSdjq9AEJizung0bqL3qqkFxRS8vH8gHc01MclVh9r2I87BTcX/8MQBTf/NrCo4/vt/YGa+9Stc7mi9eePJJWCZMiNRFBz2efhUYiTDZbFT+7rFBj0+KmtTMZKa6tH2CajprOHR8/ElrxWByQ9yjRCwoYcZ4YxfaGEq0uHtDma4QSS+bBrjw9Ucp6GrD39CAddKkqMxdX3H31tbSu20btqlTEU4n9TfeFMmWAQpPOYXO118f/Lo9e9hyyOBMdN+XvxJzbCyhDhNdFhgL+7x59G4e+sf9uce+QEnNWxQWVYIMUv2be8EVP8GwVVdTWl0d87nhCHs2UFFQgUBQ01mTeLCiHzkh7gMnC2caKO6RevIMcGfCS7DNBQV4W7S9KmUS/VOETZtUDXR1YQUtc3cUgbWv+sPf2krbn56n7Ktf6fNw29roWbuWghNPJNjdTaCtjZ0nr8TkcmEuLibY3Y2ltITe7TuSij+WsKeTqb99lILPfCZyP+h2E/R4kG431smTqf3Odyg88UT2df2FSldln23VWT+kuCv6sJltTMyfyL7OwZUziqHJCXGPvlw3CZgxzkBxj+7EaMj5+04c7ittcrn6ukImsXjGFBL3lgPNTJ41CzrqwDWF3l27QtUUpZFsuPG++8g74gh6Pvww7vGCHR0EQ/2xA8Nt7gRM/n//j9Znnuk32WgeV87kH/8Y9yef4jzsUGxTp7Ln/AsItLYy443XIyWHUkq8e/ZgKSnBt39/vzruikcexjphQr/HJt3zE4rPOSf25+J0ahUjId+84v77Adj7p19y5KQj+65swlc6iqSoLKxUmfsIyAlxj65Dnj6uAIc19X0d4geTAa1+Q/gOhEQm6ipi4EYC0asbe3fsINDRifNALQBNm7ZS4nLS+PsNdO/zwwOnxzzPUMKeLOaSEibcfDPmkhKkx40pP599l3+Zqb/9LQWfOZaiM07HW1vHztDktmPuPAo+85l+mXWsiT0hBPZp07RzFBdT8etHsJSPw7mgrzpkRHMqIdx+Nw09DVQWDsjcFUlTUVjBm/veNDqMMUeOiHtf5j5/kivmmN5duzEXFqS870Oy9eSJCHR20rttG/ZZswh0dGAZPx7pdoPZQu+2rQirDe/evbhWndJvaby/pYXenTuxlJfT/MivAfB88mnk+aaHH6bz73+nN84uNNFY77+HPaN4D5ZJk6h+9g+YHA6kz4elvDzyYyKDQQLNzew46WSqnnwC5+LFg14/UHRtFVOwzZyBd8fOEf9/LDzhhBG9Lh77OjQ7ocpVpe0vK0x9E9CKpKh0VdLa20qnt5NCW+pb5WYLOSHu0X24D5kcW9x3nabVHY+77ruUf+1rfS/t6sKUn9+/N0cggPTG3iRaBoNIvz9iXQweELrxerUGTgOWKG87+hgCLS1UPv579l12OVXPPIMwm9hzfuw63ETsv/76fueIVTs9kGSEPR6u006la/U7FK5cSYBK7ToAAA9vSURBVNnll2GZNJkDt/2AonPPxb3uE/KOOAL7nNlxS/7Cn7MwmbCMG8fcT5PbYGLg6y0TjC2bCxP2iitdlWC2QP54lbkPk8pCzUKr6axhftl8g6MZO+SEuEfbMvNjiHt0BUvjvfdFxN1bW8vOk1cy4Qe3UnzeeXS/8w6OhQvZ9+Wv4N25M/Iab00Ney68iLzDD+83yVdy0UW0PvMMABPvuAPXGadHPHf32rVsWbgoMnbcd75DY8ijBdh32eUA7L1o9H2fU9kwqfjMFeS3PI/lzDvIO+cbMcdMue8+gH4WSaoI9mj9XwYuPTeKvR3aCtQqV5X2QOFElbkPk6mFfeWQStyTJzfEPSrLjmXLeAZsP9b8+OMUrlhBw89/DsDBO++K20QIYOdKbXHDwOqNsLCD1oDpwBC1xdHCPlwsEyYM3RVvCOZ8so7O11/HNm06vgP1uNd+zPjrvouwWPAdOIC5uBgRWhCD38+WhYuY9JOfcHFNGeMK7Ty+dB+88BQcfeKI49cTk8sFdXVpa6uaiH0d+yhzlJFvDXUhLZ4KDfr1Rc8FphZORSDY1b7L6FDGFDkh7tG9P8KNr0Dzn6Xfz54LLuw3vuGen9Jwz9D1zemg4pGHqf3GVVjGj6figV/irakh/+ijIy1UZTBIoL19kMUR7O7GlN/X0rh3xw68tbXUXqll1rM//A/mwj7vsuisswBwLlyAa+XKyOPWiQPq1q3WiM9d8eQadjZ2Q2tok+DiSn3e9CixTplM7+bNiBhNuYxgb8fevqwdYMIC2PxX8HaDTbWdToY8ax5Vriq2NG9JPFgRISfEXfb2b+wUvRtLqhAOB9LjYdpLL+Jet44Dtw3u2Dfuuu/SeO99zPn0EzyffIK/uQXXqlP6+fzRk4YD28oKkymmdx0t7AD2mTOxzZjBhJtuxHXWWf2EfaRUlOTx9rYmZMseRMEEsGVGI7ZJt99O85QK8mP0AEk3QRlka+tWzph+Rt+DExcCEg5ugqnGxzhWmFc6j3WNye2EpNDICXFvevHlyN/bEvSPjkfBySdR/LnPUXDiiQgh8B08yI7jTwDAdfrpTPrx3ZHFPUIIbUFLdzeW8nIcs2dT8gVtIjPQ1sa2I48CoPxrX4v4+9ENicwF+tfhCyEovXTwjuwjpaLEidsXwNe8B1tJtW7HHS2WceOYcFP8bofpZE/7Hrp93Swoj1otO1HrLsiBT5W4D4P5ZfN5dc+rtHpaKXGMoP9ODpITrRHbOvo2Lgi0xt6lp+rpp2I+Hmbqr35F4YoVkWoM64S+jaDHX38dJrsdIUTkeZPTGel9Eo25uJgpv7ifaS+9OOz3kUnMnqBl/4GW3VBclWB0brK+aT0AC8sX9j1YNFVbzXtgvUFRjU3mlWlX25tb1HxFsmStuNffcQeb585j+wkn4lz7QcLx9lmzIn9P/pnmtzsWDO5PEk3l7x7T+lAP9KYT4Fq1Csfs2cN6TaZxWGUxeSYf9u56yKDMPZPY0LSBPEse1a7qvgeFgAkL4eAGw+Iai8wtnQvA5mYl7smSlbZMoLMz0tLUfyC5sjNTQUGkCZTrzDOxVVfjWLiQLfPm41x6eMzX5B99NPlHj8zmGevk2SycMaEVU2uwz2pQ9GND0wbml83HbBqwInriQlj7P1o//YHPKWJSZC9iSsEUNjVvMjqUMUNWZu7hWuehyFu+nLJv9O2jKEwmqp58khl/fwMhBM5FixBCMOMff6fyt79NZbhjlhVF2mIcT7kS94F4A162tm7tb8mEmbQIfD3KmhkmC8sX8nHDxwSlPqu8s52szNwt4wZ73e1XXccMeij/xjf6rdgc/+1vR/42F+RjLuhfaRLu5a0YzELzHtpkPps6Cjg6M9YMZQzrGtbhC/pYNG7R4CdnrwKzHT5+EiarHuXJclzFcby25zU2Nm1k4TiVUCQiK8VdmEzM27KZjlde4af7nbxc08uHV63EblGXwHoysXsr78tpvLbhIEfPzIxFQ5nCa3tew2lxcvTkGLZdXikccg58+kdY+SNV754kx1Uch1mYeavmLSXuSZCVtkwY28pTeLHGy6qFk5Sw643fi7lxE4EJi3jmP/vYfjD5zT6yHV/Qx9/3/p0Tpp5AnjVO/f/hl0NvB6x9Ir3BjWGK7EUcPuFw1SEySbJa3N/a0kBXr58zF082OpTso3ELBLwsWX4C+TYzt/5lA76A8kIB3t//Pm29bZxafWr8QZVHwrTj4Y1bYacSq2RZUbmCne072di00ehQMp6sFXdfIMiDb+5gosvBUdPLjA4n+9j3HgAF05Zy+5mH8MHuFm58YT3BYOb0qzcCf9DPI588Qom9hGOmHBN/oBBw/pMwbi48cz68/0hG9frPVM6YfgZljjJ++N4P8QcT7xqWy2StuP/6XzvZVN/BHWcdgsWctW/TOD59TqvXLpvBeYdXcO3Js3hhbS3ffm4dHl8g8euzlMc3Ps76pvXcuOxGbOY4bZ/DOIrg0pdhxgp47UZ48hxo2Z2eQMcoRfYibl5+M5tbNnP7u7fT6VV2YDySUj0hxCohxFYhxA4hxKC13UIIuxDiudDzHwghqvUONFl2NHRyw/Ofcu/ft3H6okmsWqDvps0KoHEb1H0Ei/t6zH/7pFncsGouL3+yn9MfWM3rGw/klE3T6mnlh+/9kF+u/SUrq1Zy6rQhLJlo8krhwmfh9Pugdg38aim8eLX2t04bu2QbK6tW8rWFX+Ovu/7K6X8+nd9++lvaPG2JX5hjCJngUlAIYQa2ASuBWuBD4EIp5aaoMVcBi6SUVwohLgDOlVKeP9Rxly5dKtdE7WQ/HKSUtPb42NXYxc7GLrYd7GLT/g62N3TS1OXFJOCK42Zw7cmzjN1SLxvxueGV62HdH+C7m6FwQr+n39rawI9e3sTupm5K8qwsqSxhWnk+ZQV2ipxWnDYTdosZh9WEy2HFYTWTZzNT5LTiclqxZtBVlj/op8vbhSfgISADCAQ2sw2TMBEIBuj0dbKrbRdv177Na3tew+P3cNmCy7j60KsTZ+2x6NgPq++Fj58Gv1vL7CcugrIZ2hZ9zlLtx6BggtYX3lkKDheYrYmPnYVsbN7Igx8/yL/r/o3NZOPIyUcyv2w+45zjcFqcWE1WEGA32SlxlFDuLKfMWYbD7Oi3+c5YQwjxkZRyacJxSYj7UcAdUspTQvdvApBS/iRqzOuhMe8JISzAAWCcHOLgIxX3x97ZzU9f3YI3Kit0WE3MnehizoRCFkxxsXL+RCYWOYZ9bEUCmnfCYyuhpxkO+yKc/VDMYV5/kH9tbeC1jQfYUNdOTYsbd5JWjc1soqzAxns3naRn5MPi3BfPZW/HXnzB5DY5KbAWcFLlSXx5wZeZXjx99AF42mHLK9q8RsMmaNmlfebxsObDJf8LlctHf+4xyLbWbfxp65/44MAH7G5PbGtZTVa+uvCrXHXoVWmITn/0FPfPA6uklF8N3b8EWC6lvDpqzIbQmNrQ/Z2hMU0DjnUFcEXo7hxga/JvKaWUA00JR41NsvW9Zev7gux9b9n6viC9761KSplwYUkyi5hiXb8M/EVIZgxSykeBR5M4Z1oRQqxJ5pdwLJKt7y1b3xdk73vL1vcFmfnekjE4a4GpUfcrgP3xxoRsmSKgRY8AFQqFQjF8khH3D4FZQohpQggbcAHw0oAxLwHhnSA+D7w5lN+uUCgUitSS0JaRUvqFEFcDrwNm4HdSyo1CiB8Ba6SULwGPAU8KIXagZewXxD9iRpJxVpGOZOt7y9b3Bdn73rL1fUEGvreEE6oKhUKhGHtkTlGxQqFQKHRDibtCoVBkIVkt7uL/t3c2oXFVURz//Uloa4KaD1Gi9SMBKYgLDSKJhSBWUipSQRBSBGvFjbqwupCG4sJlxUURxBYqIoLVWvwioDF+LMRFpVHTJrYh0YY2WpsqWMGVi+PinmnexEzbjZl51/OD4Z573p2X989998x79745IzVJ+k7SiNe7PT3CjKdLWOX+mukTJA27f1rSxvooqUbSnKSjkr6XdNh9HZLGXNuYpHb3S9LLruGIpN7CfrZ6+xlJW2v9vZVEUpukg5KOSzomqb/s2iSt876qvP6UtL3suipIekbSlKRJSfslrclhrEl62jVNSdruvvL0mZll+wKeBd4CRrx+ABhyew/whNtPAnvcHgLecfsWYAJYDXQDPwJNDaBrDrhqie9FYIfbO4Bdbt8HfEz6LkIfcMj9HcBPXra73d4A2t4AHnd7FdCWizY/tibSN7hvzEEXcB1wArjM6weAR8s+1oBbgUmghfTgyWfAzWXqs7qf7P9h56wFPgfuAUb8n/4b0Ozb+4FRt0eBfrebvZ2AYWC4sM/z7eqsbY5/B/dpoMvtLmDa7b2kXEBV7YAtwN6Cv6pdnXRd4YFCuWkrHMsg8HUuukjB/ZQHr2YfaxvLPtaAh4B9hfrzwHNl6rOcp2V2kzqjkoSmE/jDzCpJoOdJJyYsnqD49nPe/rx/mffUEwM+lTSulNIB4BozOw3gZeVXTWtpaERtPcBZ4HWfTtsnqZU8tFUYAva7XXpdZvYz8BJwEjhNGjvjlH+sTQIDkjoltZCuzK+nRH2WZXCXdD+wYGbjRfcyTe0i2y4prUIdWG9mvcAm4ClJAxdoWyZtzUAv8KqZ3Q78Rbr1rUWZtOHzzpuBdy/WdBlfQ+ryOecHSFMp1wKtpPNyKaUaa2Z2DNgFjAGfkKaMLvTrIA2nK8vgDqwHNkuaA94mTc3sBtqU0iNAdRqFWukTLiX1wopjZr94uQC8D9wJnJHUBeDlgjevpaERtc0D82Z2yOsHScE+B22Qgt63ZnbG6znouhc4YWZnzexv4D3gLjIYa2b2mpn1mtkA6RhnKFGfZRnczWzYzNaa2U2k2+AvzOxh4EtSegRI6RI+dLtW+oSPgCFf4e8mLah8s0IylkVSq6TLKzZpDneSag1LtT3iq/l9wDm/nRwFBiW1+9XXoPvqhpn9CpyStM5dG4AfyECbs4XFKRnIQ9dJoE9SiySx2Gc5jLWrvbwBeJDUd+Xps3otWKzUC7ibxadlekgnzCzp1ni1+9d4fda39xTev5O0cj8NbGoAPT2kW8QJYArY6f5O0gLyjJcd7hfwims4CtxR2NdjrnkW2FZvbX5MtwGHgSPAB6QnDEqvjfTUxe/AlQVf6XX5Mb0AHCddZLxJeuIlh7H2FemDagLYULY+i/QDQRAEGZLltEwQBMH/nQjuQRAEGRLBPQiCIEMiuAdBEGRIBPcgCIIMieAeBEGQIRHcgyAIMuQfrjk5Wm8bJ9wAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# this is only done in a separate for-loop for example's sake\n",
+ "for band in sdss_bands:\n",
+ " waveset_band = bandpasses[band].waveset\n",
+ " plt.plot(waveset_band, bandpasses[band](waveset_band),\n",
+ " label=band)\n",
+ "\n",
+ "waveset_spec = spectrum.waveset\n",
+ "# just so the spectrum overlaps nicely:\n",
+ "scale_down = np.median(spectrum(waveset_spec)) * 20\n",
+ "\n",
+ "plt.plot(waveset_spec, spectrum(waveset_spec) / scale_down)\n",
+ "plt.legend(loc='upper right')\n",
+ "plt.ylim(0, 0.5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### 4. Model the observation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can then model the observation by convolving the object's spectrum with the filter transmission functions using synphot.observation:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING: Source spectrum will be extrapolated (at constant value for empirical model). [synphot.observation]\n"
+ ]
+ }
+ ],
+ "source": [
+ "obs_obj = {}\n",
+ "for band in sdss_bands:\n",
+ " obs_obj[band] = Observation(spectrum, bandpasses[band], force='extrap')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can then use the synphot.observation method effstim to calculate the total flux obtained in each band. In order to compare our synthetic fluxes to those measured by SDSS, we need to convert the flux to units compatable with SDSS data. SDSS uses nanomaggies as a flux unit, which we can convert to with the astropy.units methods to and zero_point_flux given the zero point of this magnitude scale (3631.1 Jy):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "g = 144 nmgy\n",
+ "r = 256 nmgy\n",
+ "i = 397 nmgy\n"
+ ]
+ }
+ ],
+ "source": [
+ "zero_point_star_equiv = u.zero_point_flux(3631.1 * u.Jy)\n",
+ "\n",
+ "fluxes = {}\n",
+ "for band in sdss_bands:\n",
+ " flux = obs_obj[band].effstim('Jy')\n",
+ " fluxes[band] = flux.to(u.nanomaggy, zero_point_star_equiv)\n",
+ " print(band + ' =', str(int(fluxes[band].value)) + ' nmgy')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### 5. How well does synphot do?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To compare the g,r,i empirical fluxes to what we predict with synphot, we first get the fluxes measured by the SDSS fibers by using astroquery.sdss.query_crossid and setting the photoObj to \"fiberFlux_band\". For a full list of photoObj fields, see here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/tiffanyjansen/anaconda3/lib/python3.7/site-packages/astroquery/sdss/core.py:856: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.\n",
+ " comments='#'))\n"
+ ]
+ }
+ ],
+ "source": [
+ "model_flux = ['fiberFlux_' + band for band in sdss_bands]\n",
+ "flux_table = SDSS.query_crossid(coordinates = coords, photoobj_fields=model_flux)\n",
+ "sdss_fluxes = {}\n",
+ "for band in sdss_bands:\n",
+ " # sdss fluxes are given in units of \"nanomaggies\"\n",
+ " sdss_fluxes[band] = flux_table['fiberFlux_' + band] * u.nanomaggy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'g': ,\n",
+ " 'r': ,\n",
+ " 'i': }"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sdss_fluxes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Compare the synphot fluxes to the observed fluxes by plotting on a 1-1 line:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG1CAYAAAAfhDVuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8zdcfx/HXkYRYsUftau1SI/YIMWrPJlYQe1bNWi1qr6J27U1i7xhBmiJmiNFWFUXtTYaMe35/3NTPCILc+834PB+P+5B85zuR8ck553uO0lojhBBCCBFfJTI6gBBCCCGEJUmxI4QQQoh4TYodIYQQQsRrUuwIIYQQIl6TYkcIIYQQ8ZoUO0IIIYSI16TYEUIIIUS8JsWOEEIIIeI1KXaEEEIIEa/ZGh3AmtKnT69z5cpldAwhhBAvCAoKwsbGhiRJkhgdRcQBJpOJq1evcvfuXYC7WusM7zonQRU7uXLl4tixY0bHEEIIEeno0aPUqFGDokWLsm/fPqPjiFjur7/+wsXFhbt37zJo0CDGjh37T3TOk24sIYQQhjh8+DDVqlUjTZo0LFq0yOg4IpZbs2YNJUqU4OrVq2zfvp0xY8ZE+1wpdoQQQljdwYMHqV69OhkyZGD//v3IEAPxJs+ePeObb77B1dWVQoUK4e/vT61atd7rGlLsCCGEsCqtNUOHDiVz5szs37+fHDlyGB1JxFKXLl2iQoUKzJgxgz59+uDj4/NBXy8JasyOEEII4ymlWLNmDcHBwWTJksXoOCKW2rx5M23atEFrzfr162nUqNEHX0tadoQQQljF3r17adSoESEhIaRJk0YKHRGlsLAw+vfvT4MGDcidOzcnTpz4qEIHpNgRQghhBbt376ZOnTpcuHCBJ0+eGB1HxFLXrl2jcuXKTJo0iW7dunHgwAFy58790deVbiwhhBAW5eXlRcOGDcmXLx979uwhQ4Z3TosiEqCdO3fi5uZGSEgIq1atolmzZjF2bSl2ovDo0SPu3r1LaGio0VFEPGNjY0PKlClJmzatTKAmEgQvLy8aNGhAwYIF2bNnD+nSpTM6kohlIiIiGD58OKNHj+aLL75gzZo15MuXL0bvIcXOK0JCQrh16xbZsmUjadKkKKWMjiTiCa01YWFhPH78mCtXrpAjRw4peES8lzVrVqpUqcLKlStJmzat0XFELHPz5k1atGjBvn37aNeuHdOnTydZsmQxfh8Zs/OKO3fukCFDBpIlSyaFjohRSikSJ05M+vTpSZMmDffv3zc6khAWc/bsWbTWFC5cGC8vLyl0xGv27dtH0aJF8fPzY9GiRSxYsMAihQ5IsfOakJAQUqRIYXQMEc85ODjIIE0Rb61du5aiRYsyb948o6OIWMhkMjF69GiqVatG6tSpOXLkCO7u7ha9p3RjvSI8PBxbW/m0CMuys7MjIiLC6BhCxDgPDw9atmxJ6dKlY3SAqYgf7t69i5ubGzt37qRFixb88ssvVmlgkN/qUZDuK2Fp8jUm4qOVK1fSqlUrypcvz7Zt20iZMqXRkUQscvDgQVxdXbl79y5z5syhU6dOVvtZKN1YQgghPtqVK1dwd3enUqVK7NixQwod8ZzWmp9++gknJyfs7e05dOgQnTt3tuoffdKyI4QQ4qPlyJGDrVu3UqFCBYsNMhVxz4MHD2jbti2bNm2icePGLFy4kFSpUlk9h7TsCCGE+GALFixgy5YtANSoUUMKHfHcsWPHKF68ONu2bWPq1KmsXbvWkEIHpNhJsP78809atmxJgQIFSJUqFcmSJSN//vz06dOHGzduvPGchg0bkiZNGpInT07FihXZu3fva8f9/fff1KxZEwcHB3Lnzs3PP/8c5fV69uzJl19+SXh4eIx+bEII6/jll1/o0KEDCxYsQGttdBwRS2itmTlzJuXLl8dkMuHr68u3335r6FhF6cZKoK5du8aNGzdo1KgR2bJlw9bWltOnTzN37lxWr17NyZMnyZgx4/Pj//77b8qVK4etrS3fffcdqVKlYt68eXz11Vfs2LGDatWqAeZHChs1akRwcDDjxo3j7Nmz9OrVi2zZstGkSZPn1zt8+DBz5szhwIED8vSbEHHQzJkz6dGjB3Xq1MHDw0MG3QsAHj9+TMeOHfH09KROnTosWbIkdsyarbVOMK8SJUrodzl37tw7j4nPPD09NaDHjx//0nYXFxedKFEi7e/v/3zbkydPdI4cOXTevHm1yWTSWmv9xx9/aEDv27fv+XGVKlXSLVq0eP5+aGioLly4sO7Vq5dlP5goBAUF6bCwsDfuf/z4sVXuo7V8rYm46+eff9aAbtCggQ4JCTE6joglTp48qfPkyaNtbGz0+PHjdUREhMXvCRzT0fj9L91Y4iU5c+YEzIPK/hMYGMjmzZupXLkyRYsWfb49RYoUdOjQgfPnz3P06FEAgoODAV6aLTVt2rQEBgY+f3/ChAk8evSIUaNGfVDGv/76i1atWvHJJ5+QOHFicuXKRf/+/V+6B4C7uztKKe7cuUO7du3IlCkTyZMn59q1a1y+fBmlFMOHD8fDw4MSJUqQNGlSvvnmm+fnBwQE0KhRI9KlS4e9vT0FCxZkwoQJr82P87b7CBEf/fXXXzRu3BhPT09Z8kSgtWbBggWUKVOGwMBA9u3bx3fffUeiRLGnxJD+gwQuJCSEp0+fEhISwrlz5xgwYAAAtWvXfn5MQEAAz549o2zZsq+dX6ZMGQCOHj1KqVKlyJcvH2nTpmXkyJFMmDCBc+fO4eXlxY8//gjA+fPnGTVqFOvWrSN58uTvnff48eM4OzuTOnVqOnfuTNasWTl16hTTpk3jwIED+Pj4YGdn99I51atXJ3PmzPzwww8EBgaSIkUKnj59CsDGjRuZNm0aXbt2pUuXLjg4OADmgXVOTk7Y2dnRvXt3MmfOzJYtWxgwYACnTp1ixYoVr2WL6j5CxCcPHz4kderUTJs2jYiICOmCFgQGBtKtWzeWLl1KtWrVWLFixUtDIGKN6DT/WOIFDAY0MOOFbQoYDlwHgoH9QKFXzksDLAMeRb6WAamjc8+P7cZycnJ67TVz5kyttdaBgYFR7l+0aJHWWus7d+5EuX/16tVaa62vXLkS5f7Nmzdrrc3dQ6/uiwnTp0/Xkf8PGtC5cuXSy5cvf+mYtWvXakDPmjXrtfPPnj2rAT1o0KDn2zZs2KAdHByeX/Orr77SwcHB2mQy6cqVK+vmzZt/cN4iRYrofPnyvdbdtH79eg08/3xrrXWbNm00oFu2bPnadS5duqQBbWtrG+X/ebly5bSNjY0+derU820mk0m7uLhoQO/Zsyda93kb6cYSccmYMWN01qxZ9bVr14yOImKJc+fO6YIFC2qllB4+fLgODw+3egZiczeWUqoM0BEIeGXXd0Bf4BugJHAb2K2UenF2qpVAcaAWUDPy7WWWzhxfNWzYkN27d7NhwwaGDh1K6tSpuXPnzkvHBAUFAUTZXG1vb//SMf9d89q1axw+fJi//voLLy8v7O3tWbBgAQEBAUydOpXg4GB69uxJrly5KFSoEDNmzHhn1tOnTxMQEECLFi149uwZd+/eff6qUKECyZMnZ9euXa+d169fvzdes06dOhQoUOClbbdv3+bgwYPUr1+fIkWKPN+ulGLw4MEAbNiw4b3uI0RcNnLkSAYPHkzlypXJlCmT0XFELLB8+XIcHR25c+cOu3btYtiwYdjY2Bgd682iUxHF5AtIBfwNOGNuuZmh/9+qcwMY8sKxSYEnQOfI9wtgbi0o/8IxFSK35XvXvWWA8rudOnVKJ06cWI8ZM+b5tvdt2YnKjRs3dOrUqZ+3vHTp0kXnzp1b+/j46JUrV2p7e3vt4eHx1mt4eHi81AoV1cvZ2fn58f+1uAQGBr52rf9advr37//aPj8/Pw3o77///rV9z54904kSJdK1atWK1n3eJqF/rYmYc+XRFT3y0EhdekVpXXhxYV16RWk98tBIfeXRlY+6rslk0kOHDtWAbt26tSF/uYvYJSgoSHfs2FEDulKlSvrff/81NA/RbNkxosN1LrBWa71XKTX0he2fApmB53+aa62DlVK/AuWAX4CywFPg4AvnHQACI4/508LZ470iRYpQrFgxZs2axaBBgwDIkiULAP/+++9rx/+3LWvWrG+9bs+ePSlevDju7u6YTCYWL17M9OnTqVSpEgDbtm1jwYIFuLq6vvEa5q9r6Nu3LzVr1ozymDRp0ry27W2TnEW177/7vC+ZTE0YwfeaL318+hAeEU64Ns9ZFRgWyLrz69j09yYmO02mYraKH3Tt+fPnM2LECNq1a8fcuXNj91/uwuL++usvXFxcOHXqFIMGDWLEiBFxZtyWVVMqpToCnwOtotidOfLfW69svwVkfeGYO/qF30Zaa62Uuv3C+a/esxPQCczTmYt3Cw4O5v79+8/fL1y4MEmSJOHQoUOvHevn5weAo6PjG6+3ZcsWtm7dSkCAudfy7t27hISEkD179ufHZM+enRMnTrw1V548eQCwsbF5Pq+PJeTOnRuAs2fPvrbvjz/+wGQyPT9GCCNdfXyVPj59CAkPeW1fuA4nPDycPj59WF9vPdkdskdxhbdr2rQpjx49ok+fPrHqyRphfWvWrKF9+/bY2dmxbdu2lx5iiQus9tWrlMoHjAFaaq1D33Loq39Wq1e2RfVn96vH/P9gredqrR211o4ZMmR4n8jx2s2bN6Pcvm/fPs6cOfP8KSswP2Jer1499u/fz6lTp55vf/r0KfPnzydPnjyUKlUqyus9efKEbt26MWzYMD7//HMA0qVLR+LEiTl9+vTz406fPv28BelNihUrxhdffMGcOXO4ePHia/vDw8NfKtI+VMaMGSlXrhxbtmzhzJkzz7drrRk7diwAjRo1+uj7CPGxlpxbQnjE22cgD48IZ+m5pdG+ptaaOXPmEBgYiIODA/369ZNCJwELDQ2lZ8+euLq6UqhQIfz9/eNcoQPWbdkpC6QHzrww06YNUEkp1QUoFLktM3D1hfMy8v/WnptARqWU+q91R5kvloHXW4TEW3Tt2pUbN27g7OxMzpw5CQkJ4fjx46xevZqUKVPy008/vXT82LFj8fb2pkaNGvTu3RsHBwfmzZvHv//+y7Zt2944e+rgwYNJly4dffv2fb7NxsaG5s2bM3LkSLTWXL9+ne3bt7No0aK3ZlZKsWzZMpydnSlSpAjt2rWjUKFCBAUFceHCBdavX8/YsWNxd3f/6M/Pzz//jJOTExUrVnz+6PnWrVvZuXMnLVq0oGrVqh99DyE+1taLW593Xb1JuA5n68WtDCkz5J3X01rTu3dvfv75ZyIiIujevXtMRRVx0OXLl2natClHjhyhd+/ejBs3jsSJExsd64NYs9jZCBx7Zdsi4C/MLT7nMRcz1YGjAEope6Ai0D/y+ENACsyF03/jdsoCyXl5HI94h+bNm7NkyRKWLVvGnTt3UEqRM2dOOnfuTP/+/V/r8vv88885cOAAAwcOZNy4cYSGhlK8eHG8vLze2KXk5+fHL7/8wsGDB1/r1502bRoA48aNI3ny5IwePZrWrVu/M3fRokXx9/dn7NixbN68mTlz5pAyZUpy5cqFu7t7jBUhjo6OHDx4kGHDhjFr1iwCAwPJnTs348ePf6lwE8JIQWFB7z4I8xied9Fa88033zBz5ky+/fZbunXr9rHxRBy2ZcsW2rRpQ0REBOvXr4/zrdnqQwdjxsjNldoPnNFa94h8fwAwBHDHXPx8D1TC/KTVk8hjdgDZMD+6rjAPeL6sta73rvs5OjrqY8derbde9vvvv7/2KLIQliBfa+JjlVlZJlqFTAq7FBxq8fqYu/+YTCa6d+/OnDlz6Nu3LxMnTpS1rhKosLAwhgwZwsSJEylWrBhr1qzhs88+MzrWGymljmut3zxoNFJs64idAEwGZmJuBfoEqPFfoROpJXAK81NbOyPfjmrAsxBCxGt1c9fFVr29gd5W2VI3d923HnPjxg02bNjAgAEDpNBJwK5du0aVKlWYOHEiXbt25eDBg7G60Hkfhj4zprWu/Mr7GvMMysPfcs59wM2SuYQQIi5oU7ANm/7eRHj4m8ft2NrY0rpg1F3EJpMJpdTzZVcyZswohU4CtWvXLlq2bElwcDArV66kefPmRkeKUbGtZUcIIUQ0ZXfIzmSnydjb2r/WwmOrbLG3tWey0+QoHzuPiIjA3d2d7777Dq01mTJlkkInAYqIiGDo0KHUrFmTzJkzc+zYsXhX6IAUO0IIEadVzFaR9fXW83Xer0lhlwKFIoVdCr7O+zXr662PckLB8PBwWrduzbJly3BwcJAiJ4G6efMm1atXZ+TIkbi7u3P48GHy589vdCyLiBtTHwohhHij7A7ZGVJmSLQeLw8PD8fNzQ0PDw9Gjx79fL03kbDs37+f5s2b8+jRIxYuXEjbtm2NjmRR0rIjhBAJSOvWrfHw8GD8+PFS6CRAJpOJMWPGULVqVVKlSsXhw4fjfaED0rIjhBAJSpMmTShZsiS9e/c2Ooqwsrt379KqVSu8vLxo1qwZc+fOJWXKlEbHsgopdoQQIp579uwZR44coWLFijRp0sToOMIABw8epGnTpty+fZvZs2fTuXPnBDVWS7qxhBAiHgsJCaFx48ZUrVqVy5cvGx1HWJnWmsmTJ+Pk5ETixIk5dOgQXbp0SVCFDkjLjhBCxFvBwcE0btwYLy8v5syZQ65cuYyOJKzo4cOHuLu7s2nTJho1asTChQtJnTq10bEMIcWOEELEQ0FBQTRs2JA9e/Ywf/582rdvb3QkYUXHjh3D1dWVq1evMmXKFL799tsE15rzIunGEkKIeGj58uXs2bOHhQsXSqGTgGitmTVrFuXLlyc8PBxfX1969eqVoAsdkJYdIYSIlzp27EixYsUoWbKk0VGElTx58oSOHTvi4eFB7dq1Wbp0KenSpTM6VqwgLTtCCBFPPHnyBFdXV/744w+UUlLoJCABAQE4OjqyZs0axo4dy5YtW6TQeYEUO0IIEQ88fvyYWrVqsX79en7//Xej4wgr0VqzcOFCSpcuzZMnT9i7dy8DBw4kUSL59f4i+WwIIUQc9+jRI7766isOHz6Mh4cHjRo1MjqSsILAwEDatm1L+/btKV++PP7+/jg5ORkdK1aSYsdK/rkXyPcbT/PFsJ18OnAbXwzbyfcbT/PPvUDDMl2+fJkmTZrg4OBAqlSpaNCgAZcuXSJXrlxUrlzZsFxCiOh7+PAh1atX5/jx46xdu1YmDUwgfv/9d0qXLs3SpUsZNmwYO3fuJFOmTEbHirVkgLIV7PvzNt2WnyAswkS4SQPw9Fk4q49cZd3xf5nlVpwq+TJaNdO9e/eoWLEit27dokuXLhQoUABfX1+qVKlCYKBxBZgQ4v3Y2dmRJk0a1q1bR7169YyOI6xgxYoVdO7cmWTJkrFz506qV69udKRYT1p2LOyfe4F0W36C4LCI54XOf8JNmuCwCLotP2H1Fp7x48dz7do1Fi1axLRp0+jatSsrV67E1dWVu3fvWjWLEOL93bt3j8ePH5M8eXK8vLyk0EkAQkJC6Ny5M25ubhQvXpyTJ09KoRNNUuxY2Dzfi4RFmN56TFiEifm+l6yUyGzLli188sknNG/e/KXt/fr1s2oOIcT7u3PnDs7OzjRp0gStdYKfQyUhuHDhAmXLlmXu3LkMGDCAvXv3kiVLFqNjxRlS7FjYRv/rr7XovCrcpNng/6+VEpldunSJzz///LUR+xkzZkyw04kLERfcunWLKlWq8NdffzFgwAApdBKAdevWUaJECf755x+2bNnCuHHjsLWVUSjvQ4odCwt8Fh6940Kjd5wQIuG6efMmVapU4dKlS2zdupVq1aoZHUlYUGhoKL169eLrr78mf/78+Pv7U7duXaNjxUlS7FhY8iTRq76TJ7ZulZ4rVy4uXLiAyfRyF9vt27d5+PChVbMIIaLHzc2NK1eusH37dpydnY2OIyzon3/+oWLFivz888/06tULX19fcubMaXSsOEuKHQtrWCwLtone3sxsm0jRqFhWKyUyq1evHjdu3GDVqlUvbZ80aZJVcwghom/27Nns3LlT5lKJ57Zu3UqxYsX4448/WLt2LVOmTCFx4sRGx4rTpNixsI4Vc2Nn8/ZPs51NIjpU/NRKicwGDBhAlixZaNu2Ld9++y2zZ8+mZcuWeHp6kj59ehkHIEQsceXKFUaNGoXWmjx58lC+fHmjIwkLCQsLY8CAAdSrV49cuXJx4sQJmTcphkixY2E50yVnlltxktrZvNbCY5tIkdTOhlluxcmZLrlVc6VPn57ffvuNunXrsnDhQgYMGMDTp0/Zt28fWmuSJk1q1TxCiNddvnwZJycnJk6cyOXLl42OIyzo33//xdnZmQkTJtClSxcOHjzIZ599ZnSseEOGc1tBlXwZ8epVkfm+l9jg/y+BoeEkT2xLo2JZ6VDxU6sXOv/59NNPWb9+/Uvb7t27x71798iRI4chmYQQZhcvXqRKlSo8fvyYPXv28Omn1m39Fdaze/duWrZsSVBQECtWrKBFixZGR4p3pNixkpzpkjOy4ReMbPiF0VGeCw4Ofq0FZ/z48QAyUZUQBrpw4QLOzs48ffoUb29vihcvbnQkYQERERGMGDGCkSNHUrBgQdauXUv+/PmNjhUvSbGTgNWqVYucOXPi6OhIREQE3t7ebN26lXLlytGwYUOj4wmRYJ0/f57w8HD27t1L0aJFjY4jLODWrVu0bNkSb29v2rRpw8yZM0me3JhW/oRAip0ErF69eixdupSNGzcSHBxMtmzZ6Nu3L8OGDcPGxsboeEIkOEFBQSRLlozatWtz4cIFkiVLZnQkYQE+Pj40a9aMhw8fsnDhQtq2bWt0pHhPBignYH379uXUqVM8evSI0NBQLl68yKRJk0iZMqXR0YRIcM6dO0fevHlZu3YtgBQ68ZDJZGLs2LE4Ozvj4ODA4cOHpdCxEmnZEUIIg505c4aqVauSKFEiChUqZHQcYQH37t2jVatW7Nixg2bNmjF37lz5w9KKpGVHCCEMFBAQQJUqVbC1tWX//v0UKFDA6Egihh06dIhixYrh7e3NrFmzWLlypRQ6VibFjhBCGOTGjRtUqVIFe3t7fHx8yJcvn9GRRAzSWjNlyhQqVaqEra0tBw8epGvXrjJpqwGk2BFCCINkzpyZgQMHsn//fj7//HOj44gY9PDhQ5o0aUKfPn2oW7cuJ06coESJEkbHSrBkzI4QQljZ0aNHsbe3p3DhwvTv39/oOCKGHT9+HBcXF65evcrkyZPp1auXtOYYTFp2hBDCivz8/KhWrRqdOnVCa210HBGDtNbMnj2bcuXKERYWxq+//krv3r2l0IkFpNgRQggrOXDgADVq1CBDhgx4enrKL8F45MmTJ7Ro0YJu3bpRtWpV/P39KVu2rNGxRCQpdoQQwgp8fX356quvyJw5Mz4+PmTPnt3oSCKGnD59GkdHRzw9PRkzZgxbt24lffr0RscSL5AxO0IIYQVTpkwhe/bs7N27l08++cToOCKGLFq0iG7dupE6dWr27t2Lk5OT0ZFEFKTYEUIIC9Jao5Ri+fLlPH36lIwZMxodScSAoKAgunfvzuLFi3F2dmblypVkypTJ6FjiDaQbSwghLGT37t1UqVKFR48ekSxZMil04ok//viD0qVLs2TJEoYOHcquXbuk0InlpNgRL4mIiCAoKMjoGELEeV5eXtSrV4+HDx8SFhZmdBwRQ1auXImjoyM3b97Ey8uLH3/8URZOjgOk2LGW+xdhax8Ykw2Gpzb/u7WPebtBFi9ejFKKPXv2MHLkSD777DPs7e3x9PQ0LJMQ8cH27dtp0KABBQsWxNvbWwarxgMhISF07dqVli1bUqxYMU6ePEmNGjWMjiWiScbsWMNfu8GzNUSEgSnyL7zQJ3BiKZxaBa5LIU91w+L169ePsLAwOnbsiIODg0xZL8RH8PLyomHDhnz55Zfs2rWLNGnSGB1JfKS///4bFxcX/P39+e677xg1ahR2dnZGxxLvQYodS7t/0VzohEXRNWSKLH48W0PXA5A2t/XzAcHBwfj7+5MsWTJD7i9EfJIvXz4aNGjAvHnzSJ06tdFxxEdav349bdu2xcbGhi1btlC3bl2jI4kPYLVuLKVUd6VUgFLqceTrkFKqzgv7Fyul9Csvv1eukUQpNV0pdVcpFaiU2qyUymatj+GDHJxhbtF5m4gwODTTOnmi0LVrVyl0hPhIR48exWQy8emnn7JmzRopdOK40NBQevXqRZMmTcifPz/+/v5S6MRh1hyzcw0YABQHHIG9wEalVJEXjtkDfPLCq/Yr15gKNAGaAxUBB2CrUir2jg4L8Px/19WbmMIgwMM6eaKQN29ew+4tRHzg4eFB2bJlmTp1qtFRRAy4cuUKlSpV4ueff6Znz574+vqSM2dOo2OJj2C1biyt9aZXNg1RSnUFygIBkdueaa1vRnW+UioV0B5oq7XeHbmtFfAPUA3YaZHgHyv0acweZwHSqiPEh1u5ciWtWrWiQoUKdOrUyeg44iNt27aN1q1bExYWxpo1a/j666+NjiRigCFPYymlbJRSzYAUwMEXdlVQSt1WSp1XSs1TSr04KUUJwA7Y9d8GrfVV4HegnDVyf5DEKWL2OCFErLF06VLc3NxwcnJi+/btpEgh38dxVXh4OIMGDaJu3brkyJGDEydOSKETj1i12FFKFVZKPQWeAXOARlrr05G7vYDWQFWgL1AK2KuUShK5PzMQAdx95bK3Ive96Z6dlFLHlFLH7ty5E3MfTHQVcYVE7xi1n8gOijS1Th4hRIy4efMmXbp0wdnZma1bt5I8eXKjI4kPdP36dZydnRk3bhydOnXi4MGDfP7550bHEjHI2k9j/QkUBVJjHnuzRClVWWt9Rmu9+oXjTiuljmPuoqoDrH/LNRWg37RTaz0XmAvg6Oj4xuMsplwP8+Plbxu3Y2MHZbtbL5MQ4qNlzpwZb29vihYtStKkSY2OIz7Q7t27admyJUFBQSxfvpyWLVsaHUlYgFVbdrTWoVrrC1rrY1rrQcBJoPcbjr2OeVBznshNNwEb4NXZuTJibt2JndLmNs+jY5fs9RaeRHbm7a5LDXvp37ULAAAgAElEQVTsXAjxfubMmcOSJUsAKFu2rBQ6cVRERATDhw/nq6++ImPGjBw9elQKnXjM6BmUEwFJotqhlEoPZAVuRG46DoQB1V84JhtQgJfH/cQ+eaqb59Ep0QaSpASlzP+WaGPebtCEgu7u7mitqVy5siH3FyKumTFjBl27dmX9+vVobf2GYhEzbt++Tc2aNfnxxx9p1aoVhw8fpkCBAkbHEhZktW4spdQ4YBtwFUgJtAAqA3WUUimA4cA6zMVNLmAscBvYAKC1fqSUWgBMVErdBu4BkzE/ybXHWh/HB0ubG+r8ZH4JIeKcqVOn0rt3bxo0aICHhwdKKaMjiQ/w66+/0qxZMx48eMCCBQto27at/F8mANYcs5MZWB757yPMRUotrfVOpVRSoDDmAcqpMRc8+wBXrfWTF67RGwgHPICkgDfQWmsdYbWPQgiR4Pz000/069ePxo0bs2rVKhInTmx0JPGeTCYTEydOZMiQIeTOnZsdO3bw5ZdfGh1LWIk159lxf8u+YOCraFwjBPgm8iWEEFYRGBiIi4sLK1askDWR4qB79+7RunVrtm/fjqurK/PmzcPBwcHoWMKKZG0sIYR4g5s3b5I5c2aGDh2KyWQiUSKjhzmK9+Xn54erqyu3bt1i5syZdO3aVbqtEiD5zhVCiCj8+OOPFCxYkL///htACp04RmvN1KlTqVixIjY2Nhw4cIBu3bpJoZNAyXevEEK8QGvN0KFDGT58OPXr1ydXrlxGRxLv6eHDhzRp0oTevXtTp04dTpw4gaOjo9GxhIGk2BFCiEhaa77//ntGjhxJ+/btWbhwITY2sXedYfG6EydOUKJECbZs2cJPP/3Ehg0bSJMmjdGxhMGk2BFCiEhLly5lzJgxdOrUiblz50rXVRyitWbOnDmUK1eO0NBQfHx86NOnj3RbCUAGKAshxHPNmjUjKCiIzp07S6EThzx58oTOnTuzatUqatasybJly0if/tXJ9kVCJt/NQogETWvNpEmTuH//PkmSJKFr165S6MQhp0+fpmTJknh4eDB69Gi2bdsmhY54jXxHCyESLJPJRI8ePejfv//z9a5E3LF48WJKly7No0eP8Pb2ZvDgwVKoiijJV4UQIkEymUx069aNWbNm0a9fP3r16mV0JBFNQUFBtGvXjrZt21KmTBn8/f1ljT/xVlLsJGD79+9HKcXixYuNjiKEVZlMJjp16sQvv/zCwIEDmTBhggxkjSP+/PNPSpcuzeLFi/nhhx/YvXs3mTNnNjqWiOVkgLIQIsG5d+8e+/bt44cffuDHH3+UQieOWL16NR07dsTe3p4dO3bw1VfvXGVICECKnQStUqVKBAcHy1o/IsGIiDCvGZwhQwZOnDhBqlSpDE4koiMkJIQ+ffowe/Zsypcvz+rVq8mWLZvRsUQcIt1YCViiRImwt7eXSdNEghAeHk7r1q1p3749WmspdOKIixcvUr58eWbPnk3//v3Zt2+fFDrivUmxYyVXH19llN8oyqwsQ5ElRSizsgyj/EZx9fFVwzLJmB2RUISFhdGyZUtWrlxJ/vz5pdsqjtiwYQPFixfn4sWLbNq0iQkTJkhLtPggUuxYge81Xxpvacy68+sIDAtEowkMC2Td+XU03tIY32u+RkcUIt4KCwujefPmeHp6MnHiRAYOHGh0JPEOoaGh9OnTh8aNG5M3b178/f2pX7++0bFEHCbFjoVdfXyVPj59CAkPIVyHv7QvXIcTEh5CH58+hrbwCBGftW3blnXr1jF58mT69etndBzxDleuXMHJyYkpU6bwzTff4OvrK4uxio8mxY6FLTm3hPCI8LceEx4RztJzS62USIiEpV27dsyYMYPevXsbHUW8w/bt2ylWrBhnz57F09OTadOmkSRJEqNjiXhAih0L23px62stOq8K1+FsvbjVSomEiP9CQkLYvn07AM7OznTv3t3gROJtwsPDGTx4MHXq1CF79uwcP34cFxcXo2OJeESKHQsLCguK1nGBYYEWTiJEwhAcHEzDhg2pV68ef/75p9FxxDtcv36dqlWrMnbsWDp27MihQ4fIkyeP0bFEPCPz7FhYMrtk0Spkktslt0IaIeK3oKAgGjRogLe3N/PnzydfvnxGRxJv4e3tTYsWLXj69ClLly6lVatWRkcS8ZS07FhY3dx1sVVvryltlS11c9e1UiIh4qfAwEDq1auHt7c3ixYtol27dkZHEm8QERHBiBEjqF69OunSpePo0aNS6AiLkmLHwtoUbIOtzTuKHRtbWhdsbaVEQsRPmzdvZv/+/SxdupQ2bdoYHUe8we3bt6lVqxbDhg3Dzc2No0ePUrBgQaNjiXhOih0Ly+6QnclOk7G3tX+thcdW2WJva89kp8lkd8huUEIh4ofmzZtz5swZ3NzcjI4i3sDX15dixYrh6+vLvHnzWLJkCcmTSxe+sDwpdqygYraKrK+3nq/zfk0KuxQoFCnsUvB13q9ZX289FbNVNCRX5cqV0Vrj7u5uyP2F+FiPHz+mdu3aHD16FIACBQoYnEhExWQyMX78eKpUqULy5Mnx8/OjQ4cOMpO1sJpoD1BWSn0K5AKSAneA01rrEAvlineyO2RnSJkhDCkzxOgoQsQLDx8+pGbNmhw/fpyOHTtSsmRJoyOJKNy/f582bdqwdetWXFxcmD9/Pg4ODkbHEgnMW4sdpVQuoCvQHMgKvFiGhyqlfIG5wDqttclCGYUQ4iUPHjygRo0anDp1irVr19KgQQOjI4koHD58GFdXV27cuMH06dPp3r27tOYIQ7yxG0sp9TNwCsgNDAEKAqmAxEBmoDbwGzASCFBKyZ9VQgiLe/jwIVWrViUgIID169dLoRMLaa2ZNm0aFStWRCnFgQMH6NGjhxQ6wjBva9kJBT7TWt+NYt9tYG/k60elVG0gJ3A05iMKIcT/JUuWjLx58zJq1Chq165tdBzxikePHtG+fXvWrVtHvXr1WLJkCWnSpDE6lkjg3ljsaK37R/ciWuvtMRNHCCGidvv2bQAyZszI6tWrDU4jouLv74+LiwuXL19m0qRJ9OnTR1pzRKwQraexlFJTlVJfWDqMEEJE5datW1SpUoX69eujtTY6jniF1ppffvmFsmXLEhISgo+PD3379pVCR8Qa0X30vCRwSil1RCnVSSkVr4fSyw9TYWnyNRZ9N27coHLlyly+fJmxY8fKL9BY5unTp7i5udGlSxcqV66Mv78/5cuXNzqWEC+JVrGjtS6PeYDyPmAYcF0ptVQp5WTJcEawtbUlPPztq5QL8bHCwsKwsbExOkas9++//1K5cmWuXr3Kjh07qFKlitGRxAvOnDlDyZIlWb16NaNGjWL79u1kyJDB6FhCvCbakwpqrf/UWg8AsgPNgBTALqXUX0qpgUqptJYKaU329vY8ffrU6Bginnv8+DEpU6Y0Okas17lzZ65fv46XlxeVKlUyOo54wZIlSyhVqhQPHjxgz549DBkyhESJZJ5aETt9yFemHeCA+TF0G+AK0Aq4opRqEYPZDJEhQwbu3LlDUFCQdDWIGKW1JjQ0lLt37/LgwQPSpo0Xfx9Y1Ny5c9mzZw8VKlQwOoqIFBQURPv27XF3d6d06dKcPHlSWtxErPc+Myg7Au0wt+oEAUuADlrrS5H7vwWmACstkNNq7O3tyZQpEzdv3uTZs2dGxxHxjI2NDSlTpiRHjhwkSZLE6Dix0uXLl5k2bRoTJkwgS5YsZMmSxehIItKff/6Ji4sLp0+f5vvvv2fYsGHY2kb714gQhonWV6lS6jSQD9gJuAPbtNYRrxy2EnOxE+elSpWKVKlSGR1DiATn4sWLVKlShcePH9O1a1fy5MljdCQRycPDgw4dOpAkSRJ27NhBzZo1jY4kRLRFtxvLE/hUa11Pa705ikIHrfUdrbV02AohPsiFCxdwcnLi6dOneHt7S6ETSzx79ozu3bvTrFkzihQpgr+/vxQ6Is6JVsuO1nqkpYMIIRKu8+fPU6VKFZ49e8bevXv58ssvjY4kMLe0ubq6cvz4cfr168eYMWOws7MzOpYQ7y263VgL37BLAyHABcBDa309poIJIRKOO3fukCRJEry8vChcuLDRcQSwceNG3N3dUUqxceNGWYNMxGnRHVmWAagImIAzkdu+wLwK+nGgMTBCKVVRa30yxlMKIeKlhw8fkjp1asqXL8+ff/4prQaxQFhYGAMHDmTy5Mk4Ojri6enJp59+anQsIT5KdMfYHAB2ANm01pW01pWAbMB2YBfmRUC3AT9ZJKUQIt45c+YM+fLlY8GCBQBS6MQCV69excnJicmTJ9OjRw9+++03KXREvBDdlp1vAWetddB/G7TWQUqp0YC31nqCUmo8sMcSIYUQ8cupU6eoVq0aiRMnpmLFikbHEcCOHTto1aoVoaGheHh44OrqanQkIWJMdFt2UgCfRLE9c+Q+gMe8x7w9QoiEyd/fH2dnZ+zt7fHx8SFv3rxGR0rQwsPDGTJkCLVr1yZr1qwcO3ZMCh0R70S32NkALFBKuSilcimlciqlXIAFwPrIY0oB5990AaVUd6VUgFLqceTrkFKqzgv7lVJquFLqulIqWCm1XylV6JVrpFFKLVNKPYp8LVNKpX6/D1kIYZS7d+9StWpVUqRIgY+PD59//rnRkRK0GzduUK1aNcaMGUOHDh3w8/OT4lPES9EtdrpgnlBwOfA3cDHybS+gW+QxvwMd33KNa8AAoDjgCOwFNiqlikTu/w7oC3yDeZX128BupdSLCwitjDy/FlAz8u1l0fwYhBAGS58+PRMmTMDHx4fcuXMbHSdB27t3L0WLFuXo0aMsWbKEefPmkTRpUqNjCWER6n3Wf1JKJQc+w/wU1gWtdeBH3Vyp+8AgYC5wHZihtR4duS8p5oKnn9b6F6VUAeAcUEFrfSDymAqAL5Bfa/3nu+7n6Oiojx079jGRhRAfwM/Pj4iICMqXL290lAQvIiKC0aNHM3z4cPLnz8+aNWsoVKjQu08UIhZSSh3XWju+67j3GmMTWdwEfHCqSEopG8AF83ifg8CnmMf/7HrhXsFKqV+BcsAvQFngaeTx/zkABEYe885iRwhhfQcOHKBWrVrkyZOHo0ePysrYBrp9+zZubm7s3r0bNzc3Zs+eTYoUKd59ohBxXHQnFdyHeQLBV704qeASrfWJd1ynMHAIsMdcuDTSWp9WSpWLPOTWK6fcArJGvp0ZuKNfaIrSWmul1O3IfW+6ZyegE0COHDneFk8IEcN+/fXX5wNft2zZIoWOgX777TeaNm3KvXv3mDdvHu3bt0cpZXQsIawiuj95fsc8PuYTzGNvrkW+XRxzV1MF4LBSquo7rvMnUBQoA8wGliilvnhh/6sFlXplW1QF16vHvERrPVdr7ai1dsyQIcM74gkhYsr+/fupVasW2bNnZ//+/bJ6uUFMJhMTJ06kcuXKJEuWDD8/Pzp06CCFjkhQotuNFQIs1lr3enGjUuonzA0sJZRSPwOjAO83XURrHYq5FQjgmFKqJNAbGB25LTNw9YVTMvL/1p6bQEallPqvdUeZv1sz8HqLkBDCYEuWLCFXrlzs3buXTJkyGR0nQbp//z7u7u5s2bKFr7/+mvnz55MqVSqjYwnx0Q4fPoyXl1e0j49uy04bYGYU238B2ka+PRcoGO07///+SYBLmIuZ6v/tUErZY16i4r8xOocwj/Ep+8L5ZYHkvDyORwhhoIiICADmzZuHr6+vFDoGOXLkCMWLF8fLy4tp06bh6ekphY6I886dO0ejRo0oU6YMs2bNivZ50S12FBDVcP2CkfsAwjCvnRX1BZQap5SqGDlPT2Gl1FigMrAisqVmKjBQKdU4smtrMeZxPSsBtNa/Y37U/RelVBmlVFnMxdbW6DyJJYSwvB07duDo6MjNmzextbUlbdq0RkdKcLTWTJs2jQoVKgDmsTrffPONdFuJeKFdu3Z4e3szYsQILly48O4TIkW3G2sJ5kkF8wBHMY+RKYV53pzFkcc48f9FQqOSGfPcPJmBR5if6qqltd4ZuX8CkBRzC1Ia4DBQQ2v95IVrtASm8f+ntjYDPaL5MQghLGjr1q00adKEQoUKkThxYqPjJEiPHj2iffv2rFu3jnr16rF48WIpOEWcdufOHSZMmMCAAQNInz49ixYtIkOGDKRPn/69rhOteXYiHxXvD/Tk/08+3QR+BiZprSOUUjkAk9b62nslsCKZZ0cIy9i0aRMuLi58+eWX7Nq1izRp0hgdKcHx9/fHxcWFy5cvM27cOPr27SutOSLOevLkCZMnT2bSpEkEBQWxatWqKJcxie48O9HqxtJaR2itx2mtswCpgdRa6yxa6/Fa64jIY67E5kJHCGEZXl5efP311xQrVozdu3dLoWNlWmvmzp1L2bJlCQkJwcfHh379+kmhI+IkrTVTp04ld+7cDB8+nJo1a3L27NmPXq/tvSe90Fo/1lo//qi7CiHijeLFi+Pm5sauXbtInVqWqrOmp0+f0qpVKzp37oyTkxP+/v4yS7WIk/7rZVJK4evrS9GiRTly5Ahr1qwhf/78H339aBc7Sqm2SqldSqk/lFIXX3x9dAohRJzj4+NDWFgYGTNmZNGiRfKkj5WdPXuWkiVLsmrVKkaOHMmOHTuQucREXKO1ZsOGDXz55Zf88ccfACxfvpzdu3dTsmTJGLtPtIodpVR/4CfgOJAL2Ih5MHJaYGGMpRFCxAkrVqzA2dmZcePGGR0lQVq6dCmlSpXiwYMH7N69m++//15mpxZxzt69eylTpgyNGzcmLCyMBw8eAFhkQdrofnd0BDpprQdhfsR8hta6PuYCKGeMpxJCxFpLliyhVatWODk50adPH6PjJCjBwcF06NCBNm3aULJkSfz9/XF2djY6lhDvRWtNvXr1qFq1KtevX2fBggWcPn2asmXLvvvkDxTdR8+zAUci3w4GHCLfXhW5vWMM5xJCxEILFy6kQ4cOVK1alU2bNpEsWTKjIyUY58+fx8XFhYCAAIYMGcLw4cOxtX2vtZyFMNSVK1fIkSMHSilKlixJlSpV6NatG/b29ha/d3Rbdm4C/z3U/g//n8X4c96yLpUQIv64d+8effr0oUaNGmzevFkKHSvy8PCgRIkS/Pvvv2zfvp1Ro0ZJoSPijGvXrtGxY0dy586Nt7d5RamhQ4fSp08fqxQ6EP2Wnb1AfeAEsACYopRyxbwQqKeFsgkhYpF06dLh6+tLnjx5rPYDKqF79uwZffv2ZebMmZQtWxYPDw+yZ89udCwhouXevXuMGzeO6dOno7WmR48eFC5c2JAs0S12OhHZCqS1nqOUegCUB9ZhXrJBCBFPTZ8+ndDQUPr27WvYD6qE6NKlS7i4uHD8+HH69u3L2LFjsbOzMzqWENFiMpkoW7Ysf//9N61atWL48OHkypXLsDzRnVTQpLUOf+F9D611T631DK11mOXiCSGMNGXKFHr27MmBAwcwmd649J2IYZs2baJYsWL8/fffbNy4kUmTJkmhI2K90NBQFi1aRHh4OIkSJWLKlCkEBASwePFiQwsdiH7LDkqpxMAXQEZeKZK01ttjOJcQwmCTJk2if//+NGnShFWrVsmjzVYQFhbGwIEDmTx5Mo6Ojnh6evLpp58aHUuIt4qIiGDVqlUMHTqUS5cukS5dOurXr0+dOnWMjvZctIodpVR1YBnmQudVGrCJyVBCCGONHz+egQMH0rRpU5YtWyatClZw9epVmjZtyqFDh+jRoweTJk0iSZIkRscS4o201mzbto3Bgwdz+vRpihUrhpeXFzVq1DA62mui27IzE9gKjARuIU9gCRGvpUqVipYtW7J48WJ56scKvLy8cHNz49mzZ6xevZqmTZsaHUmIdzKZTAwYMICwsDBWr16Ni4tLrG0Bju6q50+AL7XWcXppCFn1XIi3u3z58vO+da21LCZpYeHh4QwfPpzRo0dTuHBh1q5dS968eY2OJcQbnTx5knHjxjF37lwcHBy4fPkyWbNmNaz1N0ZXPcfcqlPu4yIJIWIrrTVDhw6lUKFCnDt3DkAKHQu7ceMG1atXZ/To0bRv357Dhw9LoSNirQsXLtCiRQuKFSvGrl27CAgIACBXrlxxops7uu3TXYAVSqkSmNfEeukJLK310pgOJoSwDq01Q4YMYezYsXTo0CFGVhgWb7d3715atGjBkydPWLJkCa1btzY6khBRCgsL49tvv2XevHkkTpyYwYMH079/f1KnTm10tPcS3WLnK6AqUBsI4uUxOxqQYkeIOEhrzYABA5g4cSKdO3dm1qxZsbbPPT4wmUyMHj2a4cOHky9fPry9vSlUqJDRsYR4TWhoKIkTJ8bOzo5r167RqVMnvv/+ez755BOjo32Q6P5UmwTMAFJqrVNorVO+8HJ418lCiNjJw8ODiRMn0r17d2bPni2FjgXduXOHWrVqMXToUJo3b86RI0ek0BGxTlBQEOPHjydHjhxcvnwZgI0bNzJz5sw4W+hA9Ft2UgNztNaBlgwjhLAuFxcXwsPDadmypYzRsaDffvuNZs2acffuXebOnUuHDh3k8y1ilbCwMBYsWMCIESO4ceMGderUISIiAiBe/BEU3Y9gHVDNkkGEENZhMpkYMWIE165dw8bGBjc3N/nFayFaayZOnEjlypVJmjQpfn5+dOzYUT7fIlZ59uwZRYoUoWvXruTOnRtfX1+2bt3KZ599ZnS0GBPdlp2LwGilVCUggNcHKE+O6WBCiJhnMpno1q0bv/zyC8mSJaNfv35GR4q37t+/j7u7O1u2bKFJkyYsWLCAVKlSGR1LCMBciB8/fhxHR0eSJEmCu7s7X3zxBbVr146XxXh059m59JbdWmudO+YiWY7MsyMSMpPJRKdOnViwYAGDBw9m1KhR8fKHWmxw5MgRXF1duX79Oj/99BM9evSQz7WINQ4ePMigQYP49ddf8fPzo3Tp0kZH+mDRnWcnWi07WmtZnEWIOCwiIoIOHTqwePFihg4dyvDhw+WXrwVorZkxYwZ9+/YlS5Ys/Pbbb5QqVcroWEIAcPr0aYYMGcKWLVvIlCkTM2fOpFixYkbHsgqZB16IBODp06ecOHGCH3/8kaFDhxodJ1569OgRHTp0YO3atdStW5clS5aQNm1ao2MJAUBwcDCVK1cmPDyc0aNH8+2335I8eXKjY1nN+6x63hTzXDtRrXpeP4ZzCSFiQHh4OBEREaRKlQo/Pz+SJk1qdKR46eTJk7i4uHDp0iUmTJhA375948UTLCJuu3XrFgsWLGDgwIEkTZqUNWvW8OWXX5IuXTqjo1ldtL4blVITgeVALuAhcO+VlxAilgkLC6NFixa4uLhgMpmk0LEArTXz5s2jTJkyBAUFsX//fvr37y+FjjDUo0eP+OGHH/jss88YOnQox48fB8DZ2TlBFjoQ/Zad1kBzrfVaS4YRQsSM0NBQmjdvzvr165k4caL88rWAp0+f0rVrV5YvX0716tVZsWIFGTJkMDqWSMBCQ0OZPn06Y8aM4f79+7i6ujJy5EhZc43oz7OTCDhpySBCiJgRGhqKq6sr69evZ8qUKfJ4uQWcPXuWUqVKsXLlSkaMGMGOHTuk0BGGU0oxe/ZsSpYsyfHjx/Hw8JBCJ1J0i525gJslgwghYkaHDh3YtGkT06dPp1evXkbHiXeWLVtGqVKluH//Prt37+aHH37AxsbG6FgiAdJas3btWpydnQkKCsLOzo7Dhw/j5eVF8eLFjY4Xq7zPchEtlFLViXpSwZ4xHUwI8WF69uxJxYoV6dixo9FR4pXg4GB69uzJ/PnzcXJyYtWqVXF6rSARt+3Zs4dBgwZx7NgxChYsyNWrV8mXL1+CHZPzLtFt2SmIuRsrFMgPFH7h9YVlogkhois4OJhVq1YB4OjoKIVODDt//jxlypRh/vz5DB48mD179kihIwzx+PFjqlWrRvXq1bl9+zaLFy8mICCAfPnyGR0tVovupIJVLB1ECPFhgoKCqF+/Pnv37qVQoUIUKVLE6EjxiqenJx06dMDOzo7t27dTq1YtoyOJBOjBgwekSZOGlClTkjp1aqZOnUqXLl1IkiSJ0dHiBHlEQ4g4LDAwkDp16rB3714WLVokhU4MevbsGd988w1Nmzbliy++4OTJk1LoCKu7cuUK7du3J0eOHFy/fh2lFGvXruXbb7+VQuc9vLHYUUrNV0rlfNcFlFlLpVSrmI0mhHibp0+fUqtWLX799VeWLl1KmzZtjI4Ub1y6dIkKFSo8X/rBx8eH7NmzGx1LJCB37tyhT58+5M2bl+XLl9OxY0fs7e2NjhVnva0b6xoQoJQ6DGwGjgE3gBAgDeZxPBWApsBloLNFkwohXrJv3z78/PxYsWIFzZo1MzpOvLFp0ybc3d3RWrNhwwYaNmxodCSRwNy/f588efLw5MkT2rRpw/Dhw8mRI4fRseK0t656rpTKAHQEmmMubl70BNgDzNVa77JYwhgkq56L+EBr/XwRz3/++YecOd/ZACuiISwsjEGDBvHTTz9RokQJPD09yZ07t9GxRALx7NkzvL29qV27NgDTp0+nWrVqFChQwOBksVt0Vz1/a7HzygXTADmApMBd4G8d3ZNjCSl2RKxx/yIcnAEBnhD6FBKngCKuUK4HpH3zL9iHDx/SoEEDvv/+e6pXr27FwPHbtWvXaNq0KQcPHqRbt25MnjxZxkMIq4iIiGD58uUMHTqUK1eu8Mcff8iTVe8husVOtAcoa60faK1Paa39tNYX4lqhI0Ss8ddumF0eTiyF0CeANv97Yql5+1+7ozzt/v37VKtWjUOHDhEcHGzdzPGYl5cXRYsWJSAggFWrVjFz5kwpdITFaa3ZuHEjRYoUwd3dnQwZMrB7924pdCxEnsYSwpruXwTP1hAWBKawl/eZwszbPVubj3vBvXv3qFatGqdPn2b9+vXUr1/fiqHjp/DwcL7//ntq165NlixZOHbsmIx9ElZz9+5d3LjURw4AACAASURBVNzciIiIYO3atRw9epRq1aoZHSvekmJHCGs6OAMiwt5+TEQYHJr5/N1Hjx5RtWpVzp07x8aNG6lbt66FQ8Z/N27coHr16owePZp27drh5+cnf1ELiztx4gT9+vVDa02GDBnw8fHhzJkzNGnS5Pk4PGEZUuwIYU0Bnq+36LzKFAYBHs/fTZkyJeXLl2fz5v+xd9/xNd79H8df36i9a5ZSRKjqrRJBzAiC0NKWhNgztTc1YlTsVS1qU3uv1giJvSISiVttYtZWgkQi4/v7I+GXuqmjklznJJ/n43EeSa7ryslbS/LOdb7jN1nnJRHs2bMHW1tbjh49yq+//sr8+fPJlCmT0bFECnbhwgWaNWtGuXLlWLRoEVeuXAGgXLlyfPCBqbs2ifchZUeI5PT8qcnX3blzh6tXr2JlZcXMmTOpU6dO0mZL4WJjYxk9ejS1a9cmZ86c+Pv7y9pEIkk9evSIzp07U6pUKbZs2YKnpychISEULVrU6GipjkmVUilVRGt95Q3nKmutDydqKiFSqnRZ4gcl/7NbERmpWaMGH3zwAcHBwbKr9nu6d+8erVq1YseOHTRv3pw5c+aQJUsWo2OJFCo2NhYrKyvSp0+Pj48PXbt2ZejQoeTLl8/oaKmWqXd2TiilWiY8oJSyUkqNAvaY8gRKqcFKqWNKqcdKqXtKqd+VUp+/cs2vSin9ysPvlWvSK6WmK6XuK6XClFK/KaU+NvHPIYSxyriBVdp/vOTPp1bUWBrJ9evX+eWXX6TovKdDhw5ha2vL3r17mTNnDsuWLZOiI5JEWFgYY8eOpVy5ckRGRpIxY0ZOnz7Nzz//LEXHYKaWne+B2UqpFUqpbEopa+AI0B5oYOJz1AB+ASoDNYFowFcp9eEr1/kCHyV41H/l/DSgMXELHVYDsgFblFLyE0GYv8rdIc2by8710FgcFz3hVmgUO3bsoFq1askYLmXRWjN58mQcHR3JkCEDR44cwcPDQwaCikT3/PlzZs6cibW1NUOHDqVQoUI8evQIQJYxMBOm7no+Wym1F1gO/AHkAHwAF631XyY+R92EH8fvpRUKVAF+T3AqUmt9+3XPoZTKDnQA2mmtfRI8z1WgNrDDlCxCGObDYuC2JG56eUzU3wcrW6Wln28Y956nZ6ePDw4ODsbltHAPHz6kbdu2/PbbbzRu3JgFCxaQPXt2o2OJFOjGjRtUr16dy5cvU716dTZs2EDlypWNjiVe8S4DlG8TtwdWPuJWUfY2tei8Qdb4r//wleNVlVJ3lVLnlVLzlFJ5E5wrB6QFXm5PobW+Dpwh7o6REObPxhm6HIJybSB9VlAq7m25NszZfJi9+w9K0XkPx44dw87Oju3bt/PTTz+xdu1aKToiUWmtuXTpEgAFCxbE0dGR7du3s3fvXik6ZsqksqOUqg78F/gYKE3cy1eTlFIblVK5/uXX/gkIJu7lsBe8gdZALaAfUAHYrZR6cR8wPxBD3HYVCd2JPyeEZfiwGDSYAoNvENLqOB0u1iWi1hhyFrPF1tbW6HQWSWvNjBkzqFKlCrGxsRw4cICePXvKy1YiUR08eJDq1atja2vL/fv3UUqxaNEi6tWrJ3/XzJipd3Z8gSVAlfitIpYCZYE8wMl3/aJKqanE7ZjeWGsd8+K41nqV1vo3rfVJrfXvgAtQkrePC1LAa7evUEp5KKUClFIB9+7de9eoQiSpCxcu4OjoyKZNm16uvSHe3ePHj2natCk9evSgbt26BAUFUbFiRaNjiRTkv//9L19++SXVqlXj0qVLTJw4Ue4YWhBTVzOqrbXen/CA1vpK/B2fIe/yBZVSPwLNACetdcg/Xau1vqmUugHYxB+6DaQBcgMJm0teYD+vobWeC8yFuI1A3yWrEEnp3Llz1KxZk+fPn7Nnzx4+/fRToyNZpBMnTtCkSRMuX77MhAkT6N+/P1ZWsoSYSDyXL1/G1taWbNmyMX78eHr06CELUVoYk74jvFp0EhyP1VqPNvWLKaV+ApoDNbXWZ024PjdQELgVfygQiAKcE1zzMVAKkLV+hMU4c+YMNWrUICoqij179lCmTBmjI1kcrTXz58/HwcGB8PBw9uzZw8CBA6XoiERx+/ZtVqxYAUDRokX59ddfCQkJ4fvvv5eiY4FMXVSw7z+d11pPNeE5ZgKtgK+Bh0qpF2NsnmqtnyqlsgAjgfXElZsiwDjgLrAx/uuEKqUWEDde6C7wAJhK3HgiX1P+LEKYg6ioKHLnzs3q1av57LPPjI5jccLCwujSpQtLly6ldu3aLF++nLx58779E4V4i0ePHjFp0iSmTZtGTEwMzs7O5MmTh1atWhkdTbwHpfXbX9lRSl1+5VBa4tbAeQbc1VoXM+E53vSFftBaj1RKZQQ2AbbETW2/RdyChcPiZ1y9eJ4MwCTi7hBlBHYBXRNe8yb29vY6ICDgbZcJkWRu375Nvnz5UEq9XGVVvJvTp0/j6urKmTNnGDlyJEOHDpWFF8V7Cw8PZ8aMGYwfP56HDx/i7u7OqFGjKF68uNHRxD9QSgVqre3fep0pZecNXyAfsAiYp7Xe+K+eJJlJ2RFGOnHiBLVq1WLw4MH069fP6DgWadmyZXz33XdkyZKFFStWUKtWLaMjiRTi+vXr2NjYULNmTcaOHUvZsmWNjiRMYGrZ+de/Vmqt7wBDgYn/9jmESC2OHz9OzZo1yZgxI40aNTI6jsV59uwZHh4etGrVCnt7e4KCgqToiPcSGxvL6tWr8fDwAKBQoUKcPXuWbdu2SdFJgd73HroVcYsMCiHeICAggFq1apElSxb27dsnt8Xf0YULF6hUqRLz5s1j8ODB7Nq1iwIFChgdS1gorTU7duzA3t6eZs2aceTIER4+jFvbtkiRIsaGE0nG1AHK3756iLgxO92AA4kdSoiU4tGjR9StW5ccOXKwZ88e+Wb6jtauXUuHDh1ImzYtW7dupX79V7fKE8J0V69epW3btuzdu5ciRYqwZMkSmjdvLmO+UgFT19lZ98rHmrh1bnYTt9KxEOI1cuTIwZw5c6hQoQKFCxc2Oo7FiIyMZMCAAUyfPh0HBwdWr14t//3EvxYREUGGDBnIlSsXDx48YPr06XTq1Ek26UxFTN0IVKaMCPEODh48SGhoKA0aNKBJkyZGx7EoV65cwc3NjWPHjtGnTx/Gjx9PunTpjI4lLNDVq1cZMWIEx44d48SJE2TJkoUTJ07Itg6pkKl3doQQJtq3bx8NGjTA2tqaevXqyS3yd/Dbb7/Rpk0btNZs2LCBb775xuhIwgLdvXuXsWPHMmvWLJRS9OjRg8jISD744AMpOqnUG8vO2xYSTMiURQWFSA12797Nl19+SZEiRfD29paiY6KoqCiGDh3KpEmTsLOzY82aNVhbWxsdS1ig//73v1SpUoXw8HDat2/PiBEj+Pjjj42OJQz2T3d2epj4HJq4VYyFSNV8fHxo2LAh1tbW7Nq1i3z5ZKKiKW7cuEHTpk05fPgwXbp0YerUqWTIkMHoWMKCREREcPr0aezs7ChdujSdOnXCw8ND9psTL72x7GitiyZnECEs3bZt27CxsWHXrl3kyZPH6DgWYceOHbRs2ZKIiAhWrlxJs2bNjI4kLEh0dDRLlixh5MiRhIWFce3aNTJnzszUqfL7t/i7Nw48VkrFKKXyxL+/UCmVNfliCWE5nj9/DsCUKVM4ePCgFB0TxMTEMGzYMFxcXPjoo48ICAiQoiNM9mJM13/+8x86dOhA/vz5WbNmDZkzZzY6mjBT/zTL6hnwouC0AeS+shCv+P333/nss8+4fPkyVlZWZMuWzehIZu/27ds4OzszevRo2rZti5+fHyVLljQ6lrAgx44do3HjxgBs2LCBo0ePyora4h/905idw8AmpVQgcYsI/qyUeva6C7XW7ZMinBDmbNOmTbi5uVG2bFly5MhhdByLsHfvXtzd3QkNDWXhwoW0a9fO6EjCQhw7dozAwEA6d+5MhQoV2LZtG87OznzwgUwqFm/3T3d2WgE7iNuBXAO5gDxveAiRqqxfvx5XV1fs7Ozw8fEhZ86cRkcya7GxsYwdO5ZatWqRPXt2jh49KkVHmOTs2bM0adKEChUq4OXlxbNncb9zu7i4SNERJvunAcp3gAEASqnLgLvW+kFyBRPCXO3cuZOmTZtSsWJFtm/fLi9dvcX9+/dp1aoV3t7euLu7M2fOHLJmlSGA4p/dunWLYcOGsWjRIjJlysTIkSPp06cPGTNmNDqasEAmrYystS4qRUeIOA4ODnTt2hVvb28pOm9x+PBhbG1t2b17N7Nnz2b58uVSdIRJwsLCWLVqFT179iQkJIQRI0bIvzfxr8k9QCFM5O3tTfXq1cmWLRs///yz0XHMmtaaqVOnMmjQIAoXLsyRI0ews7MzOpYwY0+fPmXatGmcO3eOpUuXUrx4cf7880+yZ89udDSRAsieV0KYYPHixdSvX5/Ro0cbHcXsPXz4kG+++Yb+/fvz1Vdfcfz4cSk64o0iIyOZPn061tbWDBs2jKdPnxIZGQkgRUckGrmzI8RbLFy4kI4dO1K7dm08PT2NjmPWAgICcHNz4/r16/z444/06tVL9iISbxQYGEiTJk24cuUKNWrUYPPmzTg4OBgdS6RAcmdHiH8wd+5cOnToQN26ddm8eTOZMmUyOpJZ0lozc+ZMqlSpQnR0NAcOHKB3795SdMT/0Fpz7949AIoVK0axYsXYsWMHu3fvlqIjkozSWr/9IqVCgPKvDlJWSuUAjmutiyVRvkRlb2+vAwICjI4hLMTjx48pWbIk5cqVY926dbJf0xs8fvyYTp06sWbNGurXr8+SJUvIlSuX0bGEGdq3bx+DBg0iIiKCwMBArKzk923xfpRSgVpr+7ddZ+rftCLA67ZvTg8UfIdcQliMbNmycfDgQdavXy9F5w1OnDiBvb0969evZ/z48fz+++9SdMT/CAoKwsXFhRo1anDt2jW6du2KKb9oC5FY/nHMjlLq2wQfNlBKhSb4OA1QC7iSBLmEMMyPP/7I7du3GT9+PNbW1kbHMUtaaxYuXEj37t3JmTMnu3fvpnr16kbHEmZo586d1K1bl5w5czJp0iS6desma+WIZPe2Acrr4t9qYMEr56KIKzr9EjmTEIaZPHkyAwYMoEmTJsTGxpImzetuaKZuYWFhdOvWjcWLF1OrVi1WrFhB3rx5jY4lzMjNmze5cOECjo6OODk5MWHCBDw8PGRbFWGYf3wZS2ttpbW2Aq4BeV98HP9Ir7UuqbXekjxRhUha48ePZ8CAATRr1oyVK1dK0XmNM2fOULFiRZYsWcKIESPYsWOHFB3x0sOHDxk0aBDFixendevWxMTEkDZtWgYOHChFRxjqXVZQvp/UYYQwytixYxk8eDAtWrRg6dKlsufOayxfvpzy5ctz9+5dduzYwciRI6UQCgDCw8MZP348xYoVY+LEiTRu3Jg9e/bI3w9hNkweCq+UaqCU2q+Uuq+UuqeU2qeUqp+U4YRILjY2NrRv357FixdL0XlFREQE3333HS1btsTOzo7g4GCcnZ2NjiXMyP79+xk8eDBVq1YlODiYpUuXUqyYRUzSFamEqVPPOwK/AMuBg/GHqwHuQBet9cIkS5iIZOq5SEhrzenTpyldurTRUczWxYsXcXV1JTg4mEGDBuHl5SVlUBAbG8vq1au5e/cuvXr1QmtNcHAwtra2RkcTqUxiTz3/HuirtW6ntV4Q/2gL9AcGvUdOIQyhtWbIkCGULVuW48ePGx3HLK1fvx47OzuuXr3Kli1bGDdunBSdVE5rzbZt27Czs6N58+asWrWK2NhYlFJSdIRZM7XsFAa8X3N8O/BJ4sURIulprRk4cCDjx4+nY8eOlC1b1uhIZuX58+f07t2bJk2a8NlnnxEUFESDBg2MjiUMdvLkSRwdHWnQoAFPnjxh+fLlHDp0SBYGFBbB1F/TrgHOwMVXjtcBriZqIiGSkNaavn37Mm3aNLp168b06dNlS4MErl69ipubG/7+/vTu3ZsJEyaQLl06o2MJA8XExJAmTRqUUly6dIlffvmFDh06yN8LYVFMLTuTgelKKTvgMHHr7lQFWgE9kiibEIlu8+bNTJs2jV69evHjjz9K0Ulgy5YtL6cLr1u3jsaNGxsdSRgoJCSEESNGoLVm2bJlfP7551y5coW0adMaHU2Id2bq1PM5QFOgFHHFZwrwKeCmtZ6bdPGESFyNGjVi06ZNUnQSiIqK4vvvv+err76iSJEiHD9+XIpOKnbnzh169OjBp59+yrp16yhUqNDLrR2k6AhLZfJoQ631RmBjEmYRIknExsYyZMgQ2rVrR8mSJWnUqJHRkczGn3/+SbNmzTh48CCdO3fmxx9/lH3AUrGtW7fi5uZGZGQkHTt2ZNiwYRQsKNsfCsv3ziPLlFI5lFIfJnwkRTAhEkNMTAwdO3ZkwoQJbN682eg4ZsXHx4eyZcsSFBTE8uXLmTVrlhSdVOjZs2dcvRo39NLe3p4mTZpw5swZZs+eLUVHpBgmlR2l1CdKqe1KqQjgAXAv/nE//q0QZicmJob27duzaNEihg8fzoABA4yOZBZiYmIYMWIEdevWJV++fAQEBNC8eXOjY4lkFh0dzfz587GxscHd3R2tNfny5WPx4sXY2NgYHU+IRGXqy1iLgBxAe+AmcQOUhTBb0dHRtG3bluXLl/PDDz8wfPhwoyOZhTt37tCiRQt27dpFmzZtmDlzJpkzZzY6lkhGsbGxrF+/Hk9PT86fP0+lSpUYN26cjGETKZqpZacC4KC1/iMpwwiRWJ4/f861a9cYM2YMQ4YMMTqOWdi3bx/NmjXj0aNHLFy4kHbt2hkdSRhg8eLFtG/fntKlS7N582a++uorKToixTO17FwG0idlECESQ1RUFJGRkWTJkoVdu3bJ7BHifpOfMGECnp6eFC9enB07dlCmTBmjY4lk5O/vT2hoKM7Ozri7u5M+fXqaNm0qG3WKVMPUAcq9gHFKqeJJGUaI9/H8+XOaNm2Ki4sL0dHRUnSABw8e8OWXXzJkyBDc3NwICAiQopOKnD59mm+//ZaKFSvi6ekJQIYMGWjevLkUHZGqvLHsKKWeKKUeK6UeA5uAGsA5pVT4i+MJzgthqMjISFxdXdm4cSNNmjSRPZyAI0eOYGtry65du/jll19YsWIFWbNmNTqWSAbXrl2jXbt2/Oc//8HX15dRo0bh6+trdCwhDPNPPxG6J1sKId5DZGQkjRs3ZuvWrcyYMYNu3boZHclQWmumTZvGwIEDKVSoEIcPH6ZcuXJGxxLJyN/fn5UrV9K7d28GDx5M7ty5jY4khKHeWHa01ouTM4gQ/1aXLl3YunUrs2fP5rvvvjM6jqEePXpE+/bt2bhxI19//TWLFi0iR44cRscSSezx48dMnTqVrFmz0q9fPxo3bkylSpVknRwh4pl8r18plQFoDnwWf+g0sFJr/Swpgglhqu+//x4nJydatWpldBRDBQYG4urqyvXr15k6dSq9e/eWWTYpXEREBLNnz2bMmDHcv3//5Qw7pZQUHSESMHVRQTviZmRNIW4aegXi9sgKiT8nRLIKDw9n1qxZaK0pWbJkqi46WmtmzZpF5cqViYqKYv/+/fTp00eKTgq3c+dOSpYsSZ8+fShbtiz+/v4sXLjQ6FhCmCVTZ2PNBQ4AH2utq2utqwOFgP3x595KKTVYKXUsflDzPaXU70qpz1+5RimlRiqlbiqlniml9iqlSr9yTU6l1FKlVGj8Y6lSSu7TpyJhYWE0aNCA7t27ExAQYHQcQz158oTmzZvTtWtXatWqRVBQEJUqVTI6lkgiWmvCw8MByJkzJ/nz58fX1xcfHx/Kly9vcDohzJepZac0MFJrHfbiQPz7o+LPmaIG8AtQGagJRAO+r+ytNRDoB/QAygN3AR+lVMIpJCsAO8AFqBf//lITMwgL9+TJE1xcXNi/fz9Lly5N1d/gT548ib29PWvWrGHs2LFs2bJFBqKmYHv27MHBwYGePXsCUL58efz8/KhVq5bByYQwf6aWnbNAgdcc/wg4b8oTaK3raq0Xaa3/0FqfBFoBeYAqEHdXB+gNjNdar49frbkNkJW4sUIopUoRV3A8tNaHtdZHgO+AL5VSJU38swgL9fjxY1xcXDh8+DArVqxI1fs5LVq0iIoVK/L48WN2797N4MGDsbJ65319hQUIDAykbt261KxZk5s3b1K1atWX5+SlSiFMY+p3R0/gZ6VUM6VUkfhHM2AaMPRf7oCeNf7rP4z/uCiQH9j54oL4wc/7ibsbBFAJeAocTvA8h4CwBNeIFCowMJCgoCBWr15N06ZNjY5jiPDwcNq1a0f79u2pVKkSwcHBODo6Gh1LJJHZs2djb29PYGAgU6ZM4cKFC7Rt29boWEJYHFNnY/0e/3YF/78J6ItfKTYn+FgDpi7L+RMQDByJ/zh//Ns7r1x3ByiY4Jp7WuuXG5FqrbVS6m6Cz/8bpZQH4AFQuHBhE6MJcxITE0OaNGlwcnLi8uXL5M2b1+hIhjh79iyurq6cOnWK4cOHM3z4cFkFNwW6ceMG4eHhlChRggYNGjB8+HD69etHtmzZjI4mhMUytew4JeYXVUpNBaoCVbXWMa+cfnVHdfXKsdftuP7qNf9/sdZziR9EbW9vL7u1W5i//vqL+vXr07dvX9zc3FJt0VmxYgUeHh5kzJgRb29v6tSpY3QkkcgePHjA+PHjmT59Ok5OTmzfvp1ChQrxww8/GB1NCItnUtnRWu9LrC+olPoRaAY4aa1DEpy6Hf82P3A9wfG8/P/dnttAXqWUenF3J36sTx7+946QsHAPHjygdu3anDlzhixZshgdxxARERH06dOH2bNnU7VqVVatWiXrp6QwT58+Zdq0aUyaNIknT57QunVrRo4caXQsIVKUd1lUMBNQlrjy8bexPlrrDSY+x0/EFZ0aWuuzr5y+TFyZcQaOxV+fAagGDIi/5giQhbixOy/G7VQCMvP3cTzCwt27d4/atWtz7tw5Nm/eTN26dY2OlOwuXbqEq6srQUFBDBw4kNGjR8vmpinQzJkzGTZsGI0aNWL06NF8/vnnb/8kIcQ7MansKKVqAyuBXK85bdI4HaXUTOJmYH0NPFRKvRhj81Rr/TR+7M2LAc9niZvl5UncgOQVAFrrM0opb2COUqoTcS9fzQG2aK3PmfJnEebv6dOn1KxZk4sXL7JlyxZq165tdKRkt2HDBtq1a0eaNGn47bff+Oqrr4yOJBJJTEwMK1euJHfu3NSrV49u3bpRvXp1WR9JiCRk6mysn4CtxC0qaPXKw9QRkl2Jm4G1C7iV4NE/wTUTganATCCAuKntdbTWTxJc0wI4QdysrR3x76fe5XNToMyZM/Ptt9+ydevWVFd0nj9/Tp8+fWjcuDElS5bk+PHjUnRSCK01W7ZswdbWllatWrFo0SIAsmTJIkVHiCSmEkxsevNFSoUBZbTWl5I+UtKxt7fXqX3FXXN28+ZNHj58SOnSpq5TmbJcu3YNNzc3jh49Ss+ePZk0aRLp0qUzOpZIBH5+fvTr14/Dhw9jY2ODl5cXrq6usjaSEO9JKRWotbZ/23Wmjtk5BJQELLrsCPP1559/4uTkRExMDGfPnk11Y1O2bt1K69atiYqKYu3atTRp0sToSCIRaK1RSnH+/HmuXLnCnDlzaNeuXar7+y2E0UwtO7OByUqpAsBJICrhSa318cQOJlKP69ev4+TkxN27d9m+fXuq+kEQHR3NsGHDGD9+PGXLlmXt2rUUL17c6FjiPV26dInhw4djb29Pnz59aNGiBU2aNCFTpkxGRxMiVTK17KyLf/u6TT/fZSFBIf7m6tWrODk58eDBA3bu3ImDg4PRkZLNzZs3adasGQcOHKBTp0789NNPZMyY0ehY4j3cunULLy8v5s2bR9q0aSlTpgwAadKkkaIjhIFMLTtFkzSFSLVGjhzJw4cP8fX1TVWbevr6+tK8eXPCw8NZtmwZLVq0MDqSeE/z58+nZ8+eREVF4eHhgaenJx999JHRsYQQmD4bK1xrffVNjyRNKFK0mTNncvDgwVRTdGJiYvjhhx+oU6cOefLk4dixY1J0LFh4eDiPHj0CwMbGhm+++YazZ88yc+ZMKTpCmBFTy86fSqn1SikXJdvsivd04cIFGjduTGhoKJkyZUo1s6/u3r1LvXr1GDlyJC1btsTf359SpUoZHUv8C1FRUcyZM4fixYszbNgwABwdHVm+fDnW1tYGpxNCvMrUstMAiATWA9eVUl5KKfkXLd7ZuXPncHR0ZP/+/dy8edPoOMlm//79lC1bloMHDzJ//nwWL15M5syZjY4l3lFsbCyrVq3is88+o3PnzhQrVgw3NzejYwkh3sKksqO19tFaNwcKAOMAF+C8Umq3UqpF/LYOQvyj06dP4+joSExMDHv27EkVdzViY2OZMGECNWvWJEuWLPj5+dGhQwfkBqllGjJkCO7u7mTMmJHff/+dAwcOUK1aNaNjCSHewqRFBV/7iUp1A6YA6YBHxM3UGq21fpp48RKXLCponFOnTlGzZk2srKzYvXt3qig6Dx48oHXr1mzbtg03NzfmzZtHtmzZjI4l3tGRI0f48MMPKVmyJBcvXuTo0aO4u7vLgoBCmAFTFxV8p3+tSqmPlFKDlFLngAnAKsAR6ALUAzb9m7Ai5cuYMSNFixZl7969qaLo+Pn5YWtri6+vLzNnzmTVqlVSdCzMH3/8QaNGjahcuTJjxowBoHjx4rRo0UKKjhAWxtSNQL8F2gN1gD+I2ytrmdb6cYJrTgLBSRFSWK4rV65QuHBhihUrxpEjR1L8yzdaa3766ScGDBjAxx9/zKFDh7C3f+svHcKMXLlyhREjRrB06VKyZs3KmDFj6NWrl9GxhBDvwdRfTxYBN4BKWms7rfUvCYtOvMvAmERNJyxaYGAgdnZ2jBw5EiDFF51HQFVL7QAAIABJREFUjx7RuHFj+vTpQ4MGDTh+/LgUHQs0e/Zs1qxZQ//+/QkJCWHIkCEymFwIC2fqRqCZtNbhyZAnScmYneRz7Ngx6tSpQ/bs2dmzZw9Fi6bsdSmPHz+Oq6sr165dY8KECfTp0yfFl7uUIjQ0lClTplC1alXq1KnDo0ePCAsLo2DBgkZHE0K8RWKP2SmilCqZ4MmdlVLLlFKDlVKyVYT4Gz8/P2rXrk3OnDnZu3dvii46Wmtmz55N5cqVef78Ofv27aNv375SdCxAREQEU6ZMwdraGi8vL/bv3w9Ajhw5pOgIkcKYWnYWALYASqmPgc3Ah0A3YHTSRBOWKCwsjIYNG5InTx727t1LkSJFjI6UZJ48eUKLFi3o0qULTk5OBAUFUblyZaNjCROsWbMGGxsb+vfvT7ly5QgICGD0aPlWJkRKZereWKWAFzubuwJHtdb1lVJOxI3nGZwU4YTlyZw5M8uXL6dUqVJ8/PHHRsdJMidPnsTV1ZULFy4wZswYBg0aJDN0zJzWmtjYWNKkScNff/1FwYIFWbJkCU5OTkZHE0IkMVO/O6cBnse/XwvYFv/+JSBfYocSlmffvn0sW7YMAGdn5xRddH799VcqVqxIaGgou3btYsiQIVJ0zJyvry8VKlRg7ty5AHTq1IkjR45I0REilTD1O/QfQBelVDXiyo53/PGCwP2kCCYsx+7du3FxcWHChAlERUUZHSfJhIeH0759e9q1a4eDgwNBQUHUqFHD6FjiHxw7dozatWvj7OzM3bt3yZMnDwBp0qSRcVVCpCKmlp3vgU7AXmCl1vpk/PGGgH8S5BIWwsfHhwYNGmBtbc2uXbtImzat0ZGSxLlz56hYsSK//vorw4YNw8fHh/z58xsdS/yDoUOHUqFCBU6cOMG0adM4f/48TZo0MTqWEMIAJo3Z0VrvV0rlAbJprR8mODUHsPgp6eLf8fb25uuvv6ZkyZL4+vq+/K05pVm5ciUeHh5kyJCB7du3U7duXaMjiTe4fv06WbNmJUeOHNSoUYN06dLRt29fsmbNanQ0IYSBTB5ooLWOeaXooLW+orW+m/ixhCUICAigVKlS7N69O0UWnYiICLp06ULz5s354osvCAoKkqJjpu7fv0+/fv2wsbFh/PjxQNzYsREjRkjREUK8295YQkDc2BWIe5ng8OHD5MqVy+BEiS8kJIQqVaowe/ZsBg4cyJ49e1L0oGtL9fTpU7y8vChWrBjTpk2jefPmdO3a1ehYQggzI2VHvJNNmzZhbW3NqVOnUEqRMWNGoyMluo0bN2JnZ0dISAibN29mwoQJKXYskqXr2rUrw4cPp3bt2pw8eZKFCxdSuHBho2MJIcyMlB1hsnXr1uHq6kqRIkVS5F2O58+f07dvX7799ltKlChBUFAQDRs2NDqWSCAmJobFixdz8eJFADw9PfHz82PDhg189tlnBqcTQpgrKTvCJKtXr6ZZs2ZUrFiRHTt2kD17dqMjJapr167h6OjIjz/+SI8ePThw4ECKXv3Z0mit2bx5M2XKlKFt27YsWLAAgBIlSlCxYkWD0wkhzJ2UHfFWu3btonnz5lSpUgVvb2+yZctmdKREtW3bNmxtbTl16hRr1qzh559/Jn369EbHEvH27dtH5cqV+frrr4mOjmbt2rWMHTvW6FhCCAsiZUe8VZUqVRg8eDDbtm0jS5YsRsdJNNHR0QwePJgGDRpQqFAhAgMDcXV1NTqWeMWGDRu4fv068+bN49SpUzRp0kQWBBRCvBOltTY6Q7Kxt7fXAQEBRsewGBs3bsTR0ZEPP/zQ6CiJ7ubNm7i7u7N//348PDyYNm1aihxsbYkuXLjAsGHD6Ny5MzVq1CA0NJR06dLJ/x8hxP9QSgVqre3fdp3c2RGvNX/+fBo3boyXl5fRURKdr68vZcuWJSAggKVLlzJnzhz5QWoGbt68SefOnSlVqhRbtmwhJCQEgOzZs8v/HyHEe5GyI/7HnDlz6NSpE3Xr1mXcuHFGx0k0MTEx/PDDD9SpU4c8efJw7NgxWrZsaXQsAYwfPx5ra2sWLlxI165duXTpEu3btzc6lhAihTBpuwiResycOZPu3bvToEED1q1bR4YMGYyOlCju3r1Ly5Yt8fHxoVWrVsyaNYvMmTMbHStVCwsLI0OGDKRJk4YMGTLg6urKDz/8QNGiRY2OJoRIYeTOjngpLCyMqVOn0rBhQ9avX59iis6BAwewtbXlwIEDzJ8/n8WLF0vRMdDz58/55ZdfsLa2Zvny5QD07t2bJUuWSNERQiQJKTsCiFvHJHPmzBw4cIC1a9emiKnXsbGxTJgwAScnJzJnzoyfnx8dOnSQmTwGiY2NZfny5ZQqVYpu3bpRokQJPv30U6NjCSFSASk7gokTJ9KhQwdiY2MpUKAA6dKlMzrSe3vw4AENGzZk0KBBfPvttwQEBPDFF18YHStVa9asGS1btiRr1qxs27aNffv2UaFCBaNjCSFSASk7qdzYsWP5/vvvefbsGbGxsUbHSRRHjx7Fzs6OnTt3MmPGDFavXp3iFkK0FIcOHeLJkycAdOjQgRUrVnD8+HFcXFzkDpsQItlI2UnFvLy8GDp0KC1atGDp0qV88IFlj1fXWvPTTz9RrVo1rKysOHToEN26dZMfqgb473//y5dffknVqlX55ZdfAKhbty7u7u5YWcm3HSFE8pLvOqnUmDFjGD58OK1bt2bx4sUWX3RCQ0Np0qQJvXv3xsXFhePHj1O+fHmjY6U6ISEhtGzZkrJly3Lo0CHGjRtH9+7djY4lhEjlLPsnnPjXKlasSJcuXZg+fTpp0qQxOs57OX78OK6urly9epXJkyfTt29fuZtjkG7durFv3z6+//57Bg4cSM6cOY2OJIQQsl1EaqK1xt/fP8XsEq21Zu7cufTq1Ys8efKwevVqKleubHSsVOXRo0dMnjwZDw8PChcuzMWLF8mUKRMFChQwOpoQIhWQ7SLE32itGTBgAA4ODhw6dMjoOO/t6dOntGzZ8uX+SUFBQVJ0ktGzZ8+YNGkSxYoVY8yYMXh7ewNQvHhxKTpCCLMjZScV0FrTp08fpkyZQo8ePSy+FPzxxx+UL1+eVatWMXr0aLZt20bu3LmNjpVqLFy4kOLFizNw4EAcHBwICgrCw8PD6FhCCPFGMmYnhdNa07NnT2bMmEHv3r2ZOnWqRY9nWbx4MV26dCFbtmz4+vri5ORkdKRUQWv98u/N4cOHKVKkCCtXrqR69eoGJxNCiLeTOzspnI+PDzNmzKB///4WXXTCw8Pp0KEDbdu2pWLFigQHB0vRSQZaa3bs2EH58uU5duwYANOnT+fgwYNSdIQQFiNZy45SqrpS6jel1J9KKa2UavvK+V/jjyd8+L1yTXql1HSl1H2lVFj8832cnH8OS1KnTh12797NxIkTLbbonDt3DgcHBxYtWoSnpye+vr7kz5/f6Fgpnp+fHzVr1qRevXo8ePCAR48eAZAxY0aL/bskhEidkvvOThbgD6AX8OwN1/gCHyV41H/l/DSgMeAOVAOyAVuUUpY9fzoRxcTE0KtXL17MPHNycrLYH06rVq3C3t6emzdvsm3bNry8vCx+qrwlaNu2LZUqVeL06dNMnz6ds2fP4uzsbHQsIYT4V5J1zI7WehuwDeLu4rzhskit9e3XnVBKZQc6AO201j7xx1oBV4HawI7EzmxpYmJiaN++PUuWLKFAgQLY2791Rp5ZioiIoG/fvsyaNYsqVaqwatUqPv5YbuAlpRs3blCwYEGUUnzxxRd4eXnRu3dvsmTJYnQ0IYR4L+Y4ZqeqUuquUuq8UmqeUipvgnPlgLTAzhcHtNbXgTOAZU8xSgTR0dG0bt2aJUuW4OXlxffff290pH8lJCSEKlWqMGvWLAYMGMCePXuk6CShu3fv0rt3b6ytrVm/fj0Affr0wdPTU4qOECJFMLfZWN7ABuAyUAQYDexWSpXTWkcC+YEY4P4rn3cn/tz/UEp5AB4AhQsXTprUZiA6OppWrVqxatUqxo4dy+DBg42O9K9s2rSJtm3bopRi8+bNNGzY0OhIKdbjx4+ZMmUKU6dOJTw8nPbt2+Pg4GB0LCGESHRmVXa01qsSfHhSKRVI3EtUDYgrQW+igNcuBa21ngvMhbgVlBMpqiGuPghj3oEQNgXdJCwymszpP+Br2wJ0qlaMj7Km5dmzZ0ycOJEBAwYYHfWdRUVFMWjQIKZOnYq9vT1r1qyhaNGiRsdK0WrXrs2xY8dwdXXFy8uLkiVLGh1JCCGShFmVnVdprW8qpW4ANvGHbgNpgNzAvQSX5gX2J3O8ZLXn3F26LjtOVEws0bFxne1pZDQrj4Sw5uBZ5nRyZMOGDRa5o/S1a9do2rQpfn5+9OjRg0mTJpE+fXqjY6U40dHRrFy5kiZNmpAxY0bGjh1Ljhw5LHZclxBCmMqsy45SKjdQELgVfygQiAKcgRXx13wMlAIOG5ExOVx9EEbXZcd5FhXzt+M6Oopbm8cR/fgeXdL9xI5+NfkkV2aDUv4727Zto1WrVkRFRbFmzRpcXV2NjpTiaK3ZuHEjnp6enDlzhpiYGNq2bUvt2rWNjiaEEMkiudfZyaKUKquUKhv/tQvHf1w4/txkpVQlpVQRpVQN4HfgLrARQGsdCiwAJimlaiulbIGlwH+Jm7KeIs07EEJUTOzfjuno59zbNJZnF/3J+kU9oknD/AOXDUr47qKjoxkyZAgNGjSgUKFCBAYGStFJArt378bBwYHGjRujtWbDhg20adPG6FhCCJGskvs1D3sgKP6REfgh/v1RxA08/g+wGTgPLAbOAZW01k8SPEcf4sbvrAYOAU+Br7TWf7/tkYJsCrr58qUriCs6dzeM4dmlY3xYtztZ7RoQHavZGPSngSlNd/PmTWrVqsW4cePo1KkTR44cwcbG5u2fKN6J1hpPT09u3brFwoULOXnyJN98843FrrkkhBD/VnKvs7OXuMHEb1LXhOeIAHrEP1KFsMjov3381665RFw+zof1epL1izr/f93z6Fc/1ezs2rWL5s2b8/TpU5YsWUKrVq2MjpSinD17Fi8vL6ZOnUq+fPlYtWoVefPmJUOGDEZHE0IIw1jeaNZUKHP6v3fS7JWbkbvhwL8VHYDM6cx3CFZMTAyjRo3C2dmZXLlycezYMSk6iej69et07NiR0qVL89tvvxEYGAjELbcgRUcIkdpJ2bEAX9sWwCo6glC/tejYGD7ImpvMpar97ZoPrBTf2BY0KOE/u3v3Li4uLowYMYIWLVrg7+/PZ599ZnSsFEFrzYABA7CxsWHp0qX06NGDS5cuUb/+q7usCCFE6iVlxwK4l83D7TUjebR/KZE3z732mrRprOhYzfzWpTlw4AC2trbs37+fefPmsWTJElmVNxE8f/4cAKUUt2/fxt3dnfPnzzNt2jTy5s37ls8WQojURcqOmXv8+DEeLRoTefMMBb4eSJbCpf92/gMrRca0afilpZ1ZTTuPjY1l4sSJODk5kSlTJvz8/OjYsaMMjn1PkZGRTJ8+nU8++YSTJ08CsHjxYhYtWsQnn3xicDohhDBP5jvIQxAaGkrdunUJDAxkzerV2Neox/wDl9kY9Cdhz6PJnO4DvrEtSMdqRc2q6Pz111+0adOGLVu24Orqyvz588mWLZvRsSxaTEwMK1asYPjw4Vy5coUaNWq8LI6WuJCkEEIkJyk7ZuzcuXOcO3eOtWvX8vXXXwPg9fXneH39ucHJ3uzo0aO4ublx69Ytpk+fTrdu3eRuznuKjY2lcuXK+Pv7Y2dnx5w5c3B2dpb/rkIIYSL5ldAMvRiPUaFCBa5cufKy6JgzrTU///wz1apVQynFoUOH6N69u/xAfg+BgYForbGysqJFixasXr2aY8eOUadOHfnvKoQQ70DKjpm5f/8+Dg4OzJo1C4Ds2bMbnOjtQkNDcXV1pVevXtSrV4+goCDKly9vdCyLFRwcTP369bG3t2fHjh0A9OzZEzc3N3nJSggh/gX5zmlG7t27R82aNTl9+jTFihUzOo5JgoKCKFeuHJs2bWLSpEls3ryZnDlzGh3LIl28eBF3d3dsbW3x8/Nj4sSJODo6Gh1LCCEsnozZMRN37tyhVq1aXLp0iS1btpj9Jo1aa+bNm0fPnj3JnTs3+/bto0qVKkbHslgxMTHUqlWL+/fvM3ToUPr370+OHDmMjiWEECmClB0z8OzZM5ycnLh69Spbt26lZs2aRkf6R0+fPqVz584sX76cOnXqsGzZMvLkyWN0LIvz8OFDZs2aRf/+/UmXLh3Lli3DxsaG/PnzGx1NCCFSFCk7ZiBjxox07tyZL774wuxftjh16hRNmjTh/PnzeHl5MWTIEBlH8o7Cw8P5+eefmTBhAqGhoZQvXx5nZ2eqVav29k8WQgjxzuSnlIFu3LjB0aNHgbgBqOZedBYvXkz58uV5+PAhPj4+eHp6StF5BzExMcyaNQtra2sGDx5M1apVCQ4OxtnZ2ehoQgiRosmdHYNcu3YNJycnnj9/zsWLF0mfPr3Rkd7o2bNn9OjRgwULFlCjRg1WrlwpL7X8C0op5s6dS/HixVm7di1Vq1Y1OpIQQqQK8mu5Aa5cuYKjoyMPHjxg3bp1Zl10zp8/j4ODAwsWLGDo0KH4+PhI0TGR1prt27dTo0YN/vrrL6ysrPD19WX//v1SdIQQIhlJ2Ulmly9fxtHRkUePHuHr60vFihWNjvRGq1evply5cvz5559s27aN0aNH88EHcjPQFIcOHcLR0ZH69etz/fp1rly5AkCuXLlkQUAhhEhmUnaS2Y8//sjTp0/ZtWsX9vb2Rsd5rcjISLp3706zZs34z3/+Q1BQEC4uLkbHsgiRkZE0bNiQqlWrcuHCBX755RfOnDmDnZ2d0dGEECLVUlprozMkG3t7ex0QEGBohqioKK5cuYKNjY2hOd7k8uXLuLq6EhgYSL9+/Rg3bhxp06Y1OpbZe/To0ct1cdq0acOnn35Kz549yZzZfDZoFUKIlEYpFai1fuudA7mzkwzOnTtH7dq1uXPnDmnTpjXborN582ZsbW25dOkSmzZtYvLkyVJ03uLOnTv06NGDggULcuHCBSBu1trgwYOl6AghhJmQspPETp8+jaOjIydPnuSvv/4yOs5rRUVF0a9fP77++mtsbGw4fvw4jRo1MjqWWQsNDcXT0xNra2tmzZpFq1atyJo1q9GxhBBCvIaMNk1Cf/zxB7Vq1cLKyoo9e/ZQqlQpoyP9j+vXr9O0aVOOHDlC9+7dmTx5slnPDjMHz549o1SpUty6dYumTZvi5eVltnfrhBBCSNlJMn/88QdOTk6kS5eO3bt3U7JkSaMj/Q9vb29atmxJZGQkq1atomnTpkZHMlvR0dF4e3vz5ZdfkjFjRkaOHIm9vb0MPBZCCAsgL2MlkTx58mBra8vevXvNruhER0fj6emJi4sLBQoUIDAwUIrOG8TGxrJ27VpKly7NV199hb+/PwAeHh5SdIQQwkJI2Ulk586dIyoqinz58rFz506ze3nj1q1bODs7M2bMGDp06MDRo0cpUaKE0bHMjtYaHx8fKlSogJubG2nTpmXz5s2UL1/e6GhCCCHekZSdROTv70/FihUZMGCA0VFea/fu3dja2uLv78/ixYuZP38+GTNmNDqWWQoPD8fd3Z379++zePFiTpw4QcOGDWVBQCGEsEBSdhKJn58fzs7OfPjhh/Tp08foOH8TGxuLl5fXy3z+/v60bt3a6Fhm58yZM/Tu3ZuYmBgyZ86Mj48P586do3Xr1qRJk8boeEIIIf4lKTuJ4NChQ9SpU4c8efKwb98+PvnkE6MjvXTv3j1cXFwYPnw47u7u+Pv7U7p0aaNjmZVr167Rvn17Pv/8cxYuXMipU6cAsLW1lZlpQgiRAkjZeU8RERG4ubmRP39+9u3bR6FChYyO9NLBgwextbVl3759zJ07l6VLl5IlSxajY5mNsLAw+vbti42NDStWrKB3796EhIRQpkwZo6MJIYRIRDL1/D1lyJCBDRs2UKhQIQoUKGB0HCBucO2UKVMYNGgQRYoUwc/Pj7Jlyxody2xorVFKkT59enbu3EnLli0ZMWIEhQsXNjqaEEKIJCBl51/atWsXp06domfPnma1c/lff/1F27Zt+f3332ncuDELFiwge/bsRscyCxEREcyePZt58+bh5+dH1qxZCQwMlJeqhBAihZOXsf6FnTt38uWXXzJv3jwiIiKMjvOSv78/dnZ2eHt78/PPP7N27VopOkBMTAy//vorJUuWpE+fPnz00Ucvt+6QoiOEECmflJ135O3tTcOGDSlRogS7d+8mQ4YMRkdCa8306dOpWrUqEDdWp0ePHjJNmrg7XWXKlKFdu3bkzZsXHx8ffH19zWoQuRBCiKQlZecdbN26lUaNGlGqVCl2795Nnjx5jI5EaGgobm5u9OzZk7p163L8+HEqVKhgdCzDhYSEAPDhhx9SvXp11q1bh7+/P7Vr1zY4mRBCiOQmZecdXLt2jTJlyrBr1y5y5cpldByCg4Oxt7dn48aNTJgwgc2bN/Phhx8aHctQgYGB1K1bl1KlSnH16lUAZs2aRePGjeVOlxBCpFJSdkzw6NEjALp06cLhw4cNLxRaa+bNm4eDgwPh4eHs3buXgQMHYmWVev93nj9/nqZNm2Jvb09gYCDjxo0jX758RscSQghhBlLvT0cTrV27liJFinDs2DEA0qZNa2iep0+f0rp1azw8PKhevTrBwcEvx+qkVvfu3aNMmTJs3bqVYcOGcenSJfr27WsW46mEEEIYT8rOP1i1ahXu7u58/vnnZrFz+enTp6lQoQLLly9n1KhRbN++3SzGDRnhr7/+YvHixUDcDvOLFi0iJCSEUaNGyQw0IYQQfyNl5w2WL19OixYtqFKlCt7e3mTLls3QPEuXLqV8+fI8ePAAHx8fhg0blir3awoLC2PMmDEUK1aM9u3bc/nyZQDc3d3JmzevwemEEEKYIyk7r7F//35atWqFo6Mj27ZtM3SLhWfPntGpUydat25N+fLlCQ4OplatWoblMcrz58+ZOXMm1tbWeHp64ujoyIkTJyhatKjR0YQQQpg5KTuvUaVKFcaPH8+WLVvInDmzYTnOnz+Pg4MD8+fPZ8iQIfj6+vLRRx8ZlsdIT548YciQIZQsWZLDhw+zefNmPv/8c6NjCSGEsABSdhJYuXIlf/75J2nSpGHgwIFkypTJsCxr1qzB3t6eGzdusG3bNsaMGcMHH6Se3T201mzZsoVWrVoRGxtLrly5CA4OZu/evVSqVMnoeEIIISyIlJ14s2fPpnnz5owdO9bQHJGRkfTo0YOmTZvy+eefExwcjIuLi6GZktuBAweoVq0aX331FUeOHOHmzZsAFC1aVNbKEUII8c6k7AAzZsygS5cufPnll0ydOtWwHJcvX6Zq1arMmDGDvn37sm/fPgoVKmRYnuR2584dGjRoQPXq1QkJCWH27NmcOXOGjz/+2OhoQgghLFjqeV3kDaZNm0afPn1o1KgRa9asIV26dIbk+O2332jTpg1aazZs2MA333xjSA4jREREkCFDBnLmzMnt27eZMGEC3bt3N/RlRCGEEClHst7ZUUpVV0r9ppT6UymllVJtXzmvlFIjlVI3lVLPlFJ7lVKlX7kmp1JqqVIqNP6xVCmV49/kiYyMZNGiRXz77besXbvWkKITFRXFgAEDaNSoEcWKFeP48eOppujcunWLbt26UapUKZ49e0a6dOkICAgwfLyUEEKIlCW5X8bKAvwB9AKeveb8QKAf0AMoD9wFfJRSWRNcswKwA1yAevHvL33XIDExMaRPn549e/awatUqQ1ZGvnHjBjVq1GDy5Ml07dqVQ4cOUaxYsWTPkdwePXrEkCFDKF68OHPnzsXFxYXIyEgAGZMjhBAi0SXry1ha623ANgCl1K8Jz6m4n3K9gfFa6/Xxx9oQV3iaA3OUUqWIKzhVtdaH46/5DjiglCqptT5nSo6xY8dy9OhR1q5da9g+V97e3rRs2ZLIyEhWrlxJs2bNDMmR3C5fvky5cuV4+PAhzZs3Z9SoUVhbWxsdSwghRApmTgOUiwL5gZ0vDmitnwH7gcrxhyoBT4HDCT7vEBCW4Jp/NGrUKIYOHUq2bNkMWYE4JiaGYcOGUb9+fQoUKEBAQECKLzpRUVEEBAQAUKRIETp27EhQUBDLly+XoiOEECLJmdMA5fzxb++8cvwOUDDBNfe01vrFSa21VkrdTfD5f6OU8gA8ALJnz86IESNo06YNCxYsSPayc/v2bZo3b86ePXto374906dPT9FjU2JjY1m7di2enp7cvHmTK1eukCdPHiZOnGh0NCGEEKmIOd3ZeUG/8rF65dir5193zf9frPVcrbW91to+NDSUDh06sHDhwmQvOnv27KFs2bL4+fmxaNEiFixYkGKLjtYab29v7O3tadasGRkyZGDVqlXkzp3b6GhCCCFSIXMqO7fj3756hyYv/3+35zaQVyUYxRr/fh7+947Q/8iXLx9z587Fyir5/tixsbGMGTOG2rVrkyNHDvz9/Wnbtm2yfX0jXLhwARcXFx4+fMjSpUsJDg7mq6++ksHHQgghDGFOZecycWXG+cUBpVQGoBr/P0bnCHEzuhLuF1AJyMzfx/G81scff5ysRef+/fvUr18fT09PmjVrRkBAQIrdz+mPP/7g559/BqBEiRJs376dc+fO0bJly1S5O7sQQgjzkdzr7GRRSpVVSpWN/9qF4z8uHD8OZxowSCn1rVLqc+BX4gYkrwDQWp8BvImbmeWglKoEzAG2mDoTK7kcOnSIsmXLsnfvXmbPns2yZcsM3T09qVy5coU2bdpQpkwZRo4cycOHDwGoV6+eYQs0CiGEEAkl950deyAo/pER+CH+/VHx5ycCU4GZQADwEVBHa/0kwXO0AE4QN2trR/z7rZIjvCm01kyePBlHR0d1BJgFAAAS+klEQVQyZMjAkSNH+O6771LcSzgPHjygV69elChRgjVr1tC/f38uXLhAzpw5jY4mhBBC/I1KMLEpxbO3t9cvpkAnhYcPH9K2bVt+++03GjduzIIFC8iePXuSfT0j3bp1i08//ZSmTZsy/P/au/84q6pyj+OfL4rAKGT+IIEiJMwKqcBJQCER8RWapV6Di5kJonL1CqR24VLKJa3Ii5GJ0i0uSFfkcjMxEW5JoNDkj5QfM2ACQSrBmChpwSAM4Dz9sdbJzfbMmUGGOTPnPO/Xa7/mnL3X2Xvt5yw4z1lr77MmTvT5q5xzzjU6SSvNrLSuck3p1vNmbcWKFQwZMoStW7dy1113MWbMmILqzdmzZw/Tp0+nrKyM+fPn06FDBzZv3syxx76nmTqcc865RtOULlBulsyMe++9l7POOouamhrKysoYO3ZswSQ6+/fvZ9asWZxyyincfPPNvPXWW+zcGUYVPdFxzjnXHHiycwh27NjBsGHDuOGGGzjvvPNYtWoVffr0yXe1Gsz69evp0aMHI0eOpGPHjixdupTHHnuMdu3a5btqzjnnXL15svMeVVRUUFpaykMPPcQdd9zBggULOP744/NdrQaxfft2ADp37kynTp14+OGHeeaZZxg4cGCea+acc84dPL9m5yCZGTNnzmT06NEcd9xxPPHEE/Tv3z/f1WoQzz33HBMmTOCll15i3bp1lJSUsGTJknxXyznnnDsk3rNzEHbt2sWVV17JNddcQ79+/Vi9enVBJDrr16/nS1/6EmeccQYVFRWMHj0631VyzjnnGoz37NTTCy+8wJAhQ1i3bh2TJk3illtuKYhfBn722Wfp27cvJSUlTJo0iZtuuom2bdvmu1rOOedcg/Fkpx7mzJnDqFGjOProo1m8eDGDBg3Kd5UOyfbt26moqODcc8+ltLSUyZMnM2LECE488cR8V80555xrcD6MlcPu3bu59tprueKKKygtLaW8vLxZJzpVVVXcfvvtdO3alaFDh7J7925atGjBuHHjPNFxzjlXsDzZqcXGjRvp27cvM2bMYMKECSxdupSOHTvmu1rvSXV1NXfffTddu3Zl4sSJDBo0iLKyMtq0aZPvqjnnnHOHnQ9jZfHggw8ycuRIWrZsyaJFi7jgggvyXaVDUl5eztixYznnnHOYPHkyvXv3zneVnHPOuUbjPTsJ1dXVjBkzhqFDh9K9e3dWr17dLBMdM+ORRx5h8uTJAPTu3ZtVq1axdOlST3Scc84VHU92opdffpn+/fszbdo0brzxRpYvX07nzp3zXa2DtmzZMs4880wuvvhi5syZQ3V1NQA9e/YsmCksnHPOuYPhyQ7w6KOP0qtXLzZs2MD8+fOZOnUqRx11VL6rdVA2btzI4MGDOeecc9iyZQszZsygoqKCVq1a5btqzjnnXF4VdbKzb98+xo0bxxe/+EW6dOnCqlWruOSSS/JdrYNSU1MDQMuWLVmzZg1Tpkxh48aNXH311Rx5pF+S5ZxzzhXtp+HWrVsZNmwYTz75JNdddx1Tp06ldevW+a5WvVVWVnLbbbdRWVnJwoUL6dKlC5s3b6Zly5b5rppzzjnXpBRlz87ixYvp2bMn5eXlzJ07l+nTpzebROeNN95g/PjxdOvWjfvuu4+TTz6Zffv2AXii45xzzmVRdMnOxIkTGTx4MCeddBIrVqzgsssuy3eV6q2srIyuXbsyZcoUhgwZwoYNG5g2bZonOc4551wOMrN816HRtGvXznbu3MmIESO45557KCkpyXeV6rR37162bt1K165d2bFjB9dffz3jx4+nR48e+a6ac845l1eSVppZaZ3liinZadGihc2cOZMRI0bkuyp1qqmpYd68edx66620bt2aNWvWFMTEo84551xD8WQnC0mvA5vzXY+EE4Dt+a5EE+Wxyc3jk5vHJzePT+08Nrk1tfh82MzqnNyxqJKdpkbSivpkpMXIY5Obxyc3j09uHp/aeWxya67xKboLlJ1zzjlXXDzZcc4551xB82Qnv36S7wo0YR6b3Dw+uXl8cvP41M5jk1uzjI9fs+Occ865guY9O84555wraJ7sOOecc66gebLTgCR9VtICSZWSTNLw1HZJmiTpFUm7JS2T1D1V5v2S7pf0t7jcL+nYRj2Rw6Qe8Zkd1yeXZ1JlWkmaJmm7pF1xfx9s1BM5DCRNkPScpB2SXpf0qKTTUmWKtv3UMz5F2X4k/aukNTE2OyQ9Lenzie1F226gXvEpynaTjaRvxPO/J7GuINqPJzsN6xjgeWAssDvL9nHAzcBo4DPAa8CvJbVNlJkL9ALOBwbHx/cfxjo3prriA7AE6JBYLkhtvwu4FLgM6A+0AxZKau4/Lz0AmA6cCQwE9gNLJB2XKFPM7WcAdccHirP9bAXGE97rUuBx4BeSPhm3F3O7gbrjA8XZbg4gqQ9wDbAmtakw2o+Z+XIYFqAKGJ54LuDPwDcT69oAO4FR8fnHAQPOSpTpF9edmu9zOpzxietmAwtzvOZ9wF7g8sS6DwE1wOfyfU4NHJ9jgLeBL3j7qTs+3n7eda5vAKO83eSOj7ebA87xj4QvEsuAe+L6gmk/3rPTeE4GTgIWZ1aY2W7gN4RvqwB9CUnAU4nXPQnsSpQpdP0kvSbpD5JmSGqf2HY60JIDY7gFWEfhxactoef1zfjc28+B0vHJKOr2I+kIScMIyeBTeLs5QJb4ZBR1uyHcTv5zM3s8tb5g2s+R+a5AETkp/t2WWr8N6JQo87rF1BjAzEzSa4nXF7JfAfOBl4AuwLeBxyWdbmbVhBi8zbvnZdlG4cXnh0A58HR87u3nQOn4QBG3H0k9CLFoTfjgucTM1krKfNgUdbupLT5xc9G2GwBJ1wDdgCuybC6Y/3c82Wl86R82Umpdth8+SpcpSGY2L/F0raSVhIlbP0/4z6g2BRUfSVMJ3cD9zOzt1Oaibz+1xafI288G4NPAsYRrS34qaUBie7G3m6zxMbPni7ndSDoV+C7Q38z25ija7NuPD2M1nlfj33Sm2553suZXgfaSlNkYH5/IuzPrgmdmrxAuLjwlrnoVOIIw625SMobNmqQfEC6CHGhmLyY2efshZ3zepZjaj5ntNbNNZrbCzCYQer1uxNsNkDM+2coWTbshDEGdADwvab+k/cDZwPXx8V9iuWbffjzZaTwvERrFeZkVkloTruzPjHU+TRhL7pt4XV/gaA4cDy0Kkk4gdJX+Oa5aCezjwBh+kHCBXLOPj6QfAl8mfJCvT20u+vZTR3yylS+q9pPSAmiFt5vaZOLzLkXWbn4B9CD0emWWFcC8+PgPFEr7yfcV0oW0EN7wTIN5C5gYH3eO28cDO4B/Ak4jNKhXgLaJffwSWAv0ITSYtcCj+T63wx2fuO3OeM5dCLcaP034hpWMz4+ASmAQ0BN4gvAt7Yh8n98hxube2DYGEr5FZZZjEmWKtv3UFZ9ibj/A9wgfPl0IH1yTCXcKnV/s7aau+BRzu8kRr2XEu7EKqf3kvQKFtMR/KJZlmR23C5hE+MawB1gOnJbax3HAnNi4dsTHx+b73A53fAi3Mz5G+A2HvYQx89nAh1L7aA1MI3SvvgU8mi7THJda4mLApESZom0/dcWnmNtPPM/NQHU8/yUkboku5nZTV3yKud3kiNcyDkx2CqL9+ESgzjnnnCtofs2Oc8455wqaJzvOOeecK2ie7DjnnHOuoHmy45xzzrmC5smOc8455wqaJzvOOeecK2ie7DjXTEgaIMniL7wWBEkLJc2uo8xFkjbGn7Of3ZhxkNQyzoT92cN9rKZCUitJf5JUmu+6ONdQPNlxzjV1/w08BHwYGNvIx74WqDSz3zTycfPGwkzfU4A78l0X5xqKJzvOuVpJaiHpiDwe/1jCRIWPmVmlmf2tkaswGpjZyMdsCh4A+knqnu+KONcQPNlxromIwwd3SdomaY+kZyT1y1K0j6TyWGalpNMT+3ifpPslvRa3vyjpa6ntP4nbd0panhyukDRcUpWkCyQ9T/gJ/Rsk7ZV0fKq+35VUkXh+ZtzfW5IqJf1IUrvE9pI4DFUVz/EbdcRjAPBmfPp4HLoakKXccElV6dcmh7okzZT0e0lt4vMjJP1W0sIcxy8FPgosTKzrEvd7qaRfx3N9QVJyosTMsc+P789uSWWSPijpbEkVMQYLkzGV9BlJiyVtl7Qj1q9vqk4fjTHeI2lDfJ+qJA1PlOktaVUsszqWsVgvSdok6eup/Z4Sy/QCMLM3gCcJM8w71+x5suNc0/GfwD8DVxEmG1wL/EpSh1S5OwmT85UCLwKLJJXEbd8mTHZ4IfCxuK9KAEkCFhFmdL4wHuM3hEQieYzWwC3AKOAThLmC/gIMyRSI+7qMMAcOknoAi4EFwKcIkwZ+GpiVqvd5wKXAufH4ua6FeQrI9CxcCnTgvc+iPAZoGesA8E2gGyE+tekPbDKzv2bZ9h3gbsK5PgfMk3RMqsy3gK8BvYH3A/9HmPz2WsI8cd0Jcw5ltAXuj8c9gzDR5P8nErYWwMPAfsKEi8OB/yAxe3esw0JgPXA6MI4wJAWAhfmBZmY576uAcjNblVj3LHB2lnN3rvnJ9+RcvvjiiwEcTehF+Wpi3RHAH4Fvx+cDCJNfXp4ocwzwV+Dq+HwBcF8txxgIVAFtUuvLgXHx8fB4jNNTZX4AlCWe9wPeBjrF5/8DzEy95tNxX+1jPatrqfvsHHE5Ie5jQGJdJg4nJOpclXrdAWXiutIY49uAfcRZwXMc+y5geWpdl7jfUYl1neK6fqljJyfjvCGu65VYNwl4PsfxRZh88Svx+ecIiU6nRJkz436Hx+ejgDeS7zHw5WQMCbPF7wP6JNpZJXBD6vhjgC35/rfhiy8NsXjPjnNNw0cIPQ9PZlaY2dvA04TelaSnE2WqCD1AmTI/AobGoZI7JSW/mZ8OlACvx6GPqjj8c1o8fsZ+QgKUNAc4S9KH4/PLgWVmVpnY91dS+82cy0ficlQtdW8UZraC0CNzK/ATM/tlHS9pQ5jlOZs1icevxL/tc5TZFv+uTa37x2sktZf0Y4W7v/4G7IzbO8ciHwNeScQcQq9STeL5xwgJ1O7Eut8lK2VmrxJ6fzK9O4OB4wnX6STtJsTAuWbvyHxXwDkHhG/xEL6Bp2Vbl5WZ/TImJOcThooWSXrQzEYQhq23EYZJ0nYkHlfHRCu535WS1gNflnQnYUjr3xJFWhDumvpBln1XAqfW9xzegxreiV9Gy3ShOPSW6ZH6iCSZWa7YbicMtWWzL/PAzCzs+l1fHvclHlssm16XfM1PgQ8ANwIvE3rClhKSRAjnWFdbqE8ZCO/V3Hg911XAfDN7M1XmOOD1euzLuSbPe3acaxo2EYZY/nFBssJdUH2BF1Jl+yTKHE3omVmXWWdm283sfjMbDowErpTUClhF+DCtMbNNqeW1etTxAUKPzmDCsNtDiW2rgO5Z9rsp9jJsIg6dZKn7oXodKEleDE0YQku7CehFuE6oD+FOq1xWA6fGa2UaQz9gmpktMrPfE3p2ktdSrQM6SeqYWFfKgf+PrwN6ZC7Ejs7IcqxfERLcfwG+wIHXVmWcRnhfnWv2PNlxrgkws12EIajvxbtnPh6ffwCYnip+i6TzFG4LnkVIkuYCSLpN0sXx7pqPEy4UftHCb6csIQwtPRLvFDpZUl9J35KUrbcnbQ5huOx2YIGZJXuD7gDOkPRfknpK6ibpQkk/judXRbgw9o5U3RvitvbfAbuAyfG4lwLXJwtI+hRhCOtaM3sKuC7WJVey9QThYu1PNkAd6+MPhKHAT0j6DDCP8N5m/BrYAPxU0qck9QGmEoYdM705DxB6rmbE/QwCMne9/aPHJ/bczQImE3relmapT39CUuRcs+fJjnNNx3jgZ8B9hGtmPgkMNrM/p8r9O/B9wrfuU4ALY7IEYejjO0AFIbFpS/jmThyyuQB4HJhB+OD8GWGI6RXqYGabgd8S7kCak9q2htBj0gVYHo8/mXeuVQH4OiGBeDj+fZ5wN9ghsXCb9OWEO73WEu52ujWzXVJrQhIw18weiq/5X+DnwAOx1yvbfv8CzI/7bgxXES7aXklIdGYRhrMy9akBLiHcffUsYdjrO4QkZk8sU0V4v7sTeqam8M4dX+nrj2YRhsjuSw/nxVve30eIkXPNnnIPWTvnXPGKPVBPAN1SPVlNQuyxKgdKzWxlLWUuIiSY7c1se2J9b0JC3NXM/pR6zYPAajP77mGrvHONyJMd55zLQdJXgQozq6iz8OGvyyWEIbuNhF60qYSLkntmemckXUn4/aUthOtupgFrzOyiuL0V8CHCMOlfzWxI6hitCBeffz91V5dzzZYnO84510zExOsWQrLyJrAMuNHMtiXKjCNcs9QBeJXwQ5LjzWxn3D6ccP1UBXCRmW1pxFNwLi882XHOOedcQfMLlJ1zzjlX0DzZcc4551xB82THOeeccwXNkx3nnHPOFTRPdpxzzjlX0DzZcc4551xB+zuQxDhrZmEVEQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.rcParams.update({'font.size': 14})\n",
+ "fig = plt.figure(figsize=(9, 7))\n",
+ "\n",
+ "for band in sdss_bands:\n",
+ " plt.scatter(sdss_fluxes[band], fluxes[band],\n",
+ " s=100, label=band)\n",
+ "\n",
+ "# one-to-one line\n",
+ "fluxrange = np.linspace(75, 425, 10)\n",
+ "plt.plot(fluxrange, fluxrange, color='black')\n",
+ "plt.plot(fluxrange, fluxrange * 0.7, color='black', ls='--', label='30% error')\n",
+ "plt.plot(fluxrange, fluxrange * 1.3, color='black', ls='--')\n",
+ "\n",
+ "plt.ylabel('synphot flux (nmaggy)', size='14')\n",
+ "plt.xlabel('observed flux (nmaggy)', size='14')\n",
+ "\n",
+ "plt.xlim(75, 425)\n",
+ "plt.ylim(75, 425)\n",
+ "\n",
+ "plt.legend(prop={'size': 18})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "All in all, not a bad prediction!"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/tutorials/synphot/synphot-model-spec.ipynb b/tutorials/synphot/synphot-model-spec.ipynb
new file mode 100644
index 00000000..7a275b2f
--- /dev/null
+++ b/tutorials/synphot/synphot-model-spec.ipynb
@@ -0,0 +1,998 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# synphot: Predicting count rates with ground-based and space-based telescopes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "Tiffany Jansen, Brett Morris, Pey Lian Lim, & Erik Tollerud"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Objectives\n",
+ "
\n",
+ "
Query data directly from other websites using astropy.coordinates.Skycoord, astroquery.Gaia, astropy.io, and astropy.utils
\n",
+ "
Construct a source spectrum from a model spectrum using synphot.SourceSpectrum
\n",
+ "
Simulate bandpass throughput with synphot.SpectralElement
\n",
+ "
Model effects on the source spectrum such as atmospheric transmission and quantum efficiency with synphot.SpectralElement
\n",
+ "
Combine all of these effects into a simulated observation with synphot.Observation
\n",
+ "
Compute the expected count rate from this observation with synphot's countrate() function\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Keywords\n",
+ "synphot, synthetic photometry, astropy, astroquery, astronomy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Summary\n",
+ "synphot is an astropy-affiliated package for creating synthetic photometry in Python. In this tutorial we will show how to predict the total counts expected to be measured by both a ground-based telescope and a space-based telescope using model spectra. Specifically, we will:\n",
+ "\n",
+ "