From 7053d4481fba03f3d9abe60e0592c9e3526e6265 Mon Sep 17 00:00:00 2001 From: benheid Date: Mon, 5 Feb 2024 19:14:06 +0100 Subject: [PATCH 1/2] First draft of integration notebook --- examples/bootstrap_with_sktime.ipynb | 340 +++++++++++++++++++++++++++ 1 file changed, 340 insertions(+) create mode 100644 examples/bootstrap_with_sktime.ipynb diff --git a/examples/bootstrap_with_sktime.ipynb b/examples/bootstrap_with_sktime.ipynb new file mode 100644 index 00000000..8da93e95 --- /dev/null +++ b/examples/bootstrap_with_sktime.ipynb @@ -0,0 +1,340 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: sktime[all_extras] in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (0.26.0)\n", + "\u001b[33mWARNING: sktime 0.26.0 does not provide the extra 'all-extras'\u001b[0m\u001b[33m\n", + "\u001b[0mRequirement already satisfied: numpy<1.27,>=1.21 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.26.3)\n", + "Requirement already satisfied: packaging in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (23.2)\n", + "Requirement already satisfied: pandas<2.2.0,>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.1.4)\n", + "Requirement already satisfied: scikit-base<0.8.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.7.2)\n", + "Requirement already satisfied: scikit-learn<1.5.0,>=0.24 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.4.0)\n", + "Requirement already satisfied: scipy<2.0.0,>=1.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.11.4)\n", + "Requirement already satisfied: arch<6.4.0,>=5.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (5.6.0)\n", + "Requirement already satisfied: cloudpickle in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.0.0)\n", + "Requirement already satisfied: dash!=2.9.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.15.0)\n", + "Requirement already satisfied: dask<2024.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2024.1.0)\n", + "Requirement already satisfied: dtw-python in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.3.1)\n", + "Requirement already satisfied: gluonts>=0.9 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.14.4)\n", + "Requirement already satisfied: holidays in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.41)\n", + "Requirement already satisfied: kotsu>=0.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.3)\n", + "Requirement already satisfied: matplotlib>=3.3.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.8.2)\n", + "Requirement already satisfied: mne in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.6.1)\n", + "Requirement already satisfied: pycatch22<0.4.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.4.2)\n", + "Requirement already satisfied: pykalman-bardo<0.10,>=0.9.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.9.7)\n", + "Requirement already satisfied: scikit-optimize in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.9.0)\n", + "Requirement already satisfied: scikit-posthocs>=0.6.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.8.1)\n", + "Requirement already satisfied: seaborn>=0.11 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.13.2)\n", + "Requirement already satisfied: seasonal in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.1)\n", + "Requirement already satisfied: skpro<2.2.0,>=2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.1.3)\n", + "Requirement already satisfied: statsmodels>=0.12.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.14.1)\n", + "Requirement already satisfied: xarray in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2024.1.1)\n", + "Requirement already satisfied: filterpy>=1.4.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.4.5)\n", + "Requirement already satisfied: hmmlearn>=0.2.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.0)\n", + "Requirement already satisfied: keras-self-attention in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.51.0)\n", + "Requirement already satisfied: pyod>=0.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.2)\n", + "Requirement already satisfied: stumpy>=1.5.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.12.0)\n", + "Requirement already satisfied: tslearn!=0.6.0,<0.7.0,>=0.5.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.6.3)\n", + "Requirement already satisfied: h5py in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.10.0)\n", + "Requirement already satisfied: numba<0.59,>=0.53 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.58.1)\n", + "Requirement already satisfied: pmdarima!=1.8.1,<3.0.0,>=1.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.0.4)\n", + "Requirement already satisfied: prophet>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.5)\n", + "Requirement already satisfied: statsforecast<1.7.0,>=0.5.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.6.0)\n", + "Requirement already satisfied: tbats>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.3)\n", + "Requirement already satisfied: tensorflow in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.15.0)\n", + "Requirement already satisfied: tsfresh>=0.17 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.20.2)\n", + "Requirement already satisfied: property-cached>=1.6.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from arch<6.4.0,>=5.6->sktime[all_extras]) (1.6.4)\n", + "Requirement already satisfied: Flask<3.1,>=1.0.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (3.0.2)\n", + "Requirement already satisfied: Werkzeug<3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (3.0.1)\n", + "Requirement already satisfied: plotly>=5.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (5.18.0)\n", + "Requirement already satisfied: dash-html-components==2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.0.0)\n", + "Requirement already satisfied: dash-core-components==2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.0.0)\n", + "Requirement already satisfied: dash-table==5.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (5.0.0)\n", + "Requirement already satisfied: typing-extensions>=4.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (4.9.0)\n", + "Requirement already satisfied: requests in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.31.0)\n", + "Requirement already satisfied: retrying in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (1.3.4)\n", + "Requirement already satisfied: nest-asyncio in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (1.6.0)\n", + "Requirement already satisfied: setuptools in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (68.2.2)\n", + "Requirement already satisfied: importlib-metadata in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (6.8.0)\n", + "Requirement already satisfied: click>=8.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (8.1.7)\n", + "Requirement already satisfied: fsspec>=2021.09.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (2024.2.0)\n", + "Requirement already satisfied: partd>=1.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (1.4.1)\n", + "Requirement already satisfied: pyyaml>=5.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (6.0.1)\n", + "Requirement already satisfied: toolz>=0.10.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (0.12.1)\n", + "Requirement already satisfied: pydantic<3,>=1.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from gluonts>=0.9->sktime[all_extras]) (2.6.1)\n", + "Requirement already satisfied: tqdm~=4.23 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from gluonts>=0.9->sktime[all_extras]) (4.66.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (4.47.2)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (1.4.5)\n", + "Requirement already satisfied: pillow>=8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (10.2.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (2.8.2)\n", + "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from numba<0.59,>=0.53->sktime[all_extras]) (0.41.1)\n", + "Requirement already satisfied: pytz>=2020.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pandas<2.2.0,>=1.1->sktime[all_extras]) (2024.1)\n", + "Requirement already satisfied: tzdata>=2022.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pandas<2.2.0,>=1.1->sktime[all_extras]) (2023.4)\n", + "Requirement already satisfied: joblib>=0.11 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (1.3.2)\n", + "Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (3.0.8)\n", + "Requirement already satisfied: urllib3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (2.2.0)\n", + "Requirement already satisfied: cmdstanpy>=1.0.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from prophet>=1.1->sktime[all_extras]) (1.2.0)\n", + "Requirement already satisfied: importlib-resources in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from prophet>=1.1->sktime[all_extras]) (6.1.1)\n", + "Requirement already satisfied: six in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pyod>=0.8->sktime[all_extras]) (1.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from scikit-learn<1.5.0,>=0.24->sktime[all_extras]) (3.2.0)\n", + "Requirement already satisfied: polars in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.20.7)\n", + "Requirement already satisfied: fugue>=0.8.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.8.7)\n", + "Requirement already satisfied: patsy>=0.5.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsmodels>=0.12.1->sktime[all_extras]) (0.5.6)\n", + "Requirement already satisfied: pooch>=1.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (1.8.0)\n", + "Requirement already satisfied: decorator in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (5.1.1)\n", + "Requirement already satisfied: jinja2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (3.1.3)\n", + "Requirement already satisfied: lazy-loader>=0.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (0.3)\n", + "Requirement already satisfied: pyaml>=16.9 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from scikit-optimize->sktime[all_extras]) (23.12.0)\n", + "Requirement already satisfied: tensorflow-macos==2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow->sktime[all_extras]) (2.15.0)\n", + "Requirement already satisfied: absl-py>=1.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.1.0)\n", + "Requirement already satisfied: astunparse>=1.6.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.6.3)\n", + "Requirement already satisfied: flatbuffers>=23.5.26 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (23.5.26)\n", + "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.5.4)\n", + "Requirement already satisfied: google-pasta>=0.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.2.0)\n", + "Requirement already satisfied: libclang>=13.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (16.0.6)\n", + "Requirement already satisfied: ml-dtypes~=0.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.2.0)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.3.0)\n", + "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (4.23.4)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.4.0)\n", + "Requirement already satisfied: wrapt<1.15,>=1.11.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.14.1)\n", + "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.34.0)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.60.1)\n", + "Requirement already satisfied: tensorboard<2.16,>=2.15 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.1)\n", + "Requirement already satisfied: tensorflow-estimator<2.16,>=2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.0)\n", + "Requirement already satisfied: keras<2.16,>=2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.0)\n", + "Requirement already satisfied: stanio~=0.3.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from cmdstanpy>=1.0.4->prophet>=1.1->sktime[all_extras]) (0.3.0)\n", + "Requirement already satisfied: itsdangerous>=2.1.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from Flask<3.1,>=1.0.4->dash!=2.9.0->sktime[all_extras]) (2.1.2)\n", + "Requirement already satisfied: blinker>=1.6.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from Flask<3.1,>=1.0.4->dash!=2.9.0->sktime[all_extras]) (1.7.0)\n", + "Requirement already satisfied: triad>=0.9.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.9.5)\n", + "Requirement already satisfied: adagio>=0.2.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.2.4)\n", + "Requirement already satisfied: qpd>=0.4.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.4.4)\n", + "Requirement already satisfied: fugue-sql-antlr>=0.1.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.2.0)\n", + "Requirement already satisfied: sqlglot in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (20.11.0)\n", + "Requirement already satisfied: zipp>=0.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from importlib-metadata->dash!=2.9.0->sktime[all_extras]) (3.17.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from jinja2->mne->sktime[all_extras]) (2.1.5)\n", + "Requirement already satisfied: locket in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from partd>=1.2.0->dask<2024.1.1->sktime[all_extras]) (1.0.0)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from plotly>=5.0.0->dash!=2.9.0->sktime[all_extras]) (8.2.3)\n", + "Requirement already satisfied: platformdirs>=2.5.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pooch>=1.5->mne->sktime[all_extras]) (4.2.0)\n", + "Requirement already satisfied: annotated-types>=0.4.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pydantic<3,>=1.7->gluonts>=0.9->sktime[all_extras]) (0.6.0)\n", + "Requirement already satisfied: pydantic-core==2.16.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pydantic<3,>=1.7->gluonts>=0.9->sktime[all_extras]) (2.16.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (3.6)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (2024.2.2)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from astunparse>=1.6.0->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.41.2)\n", + "Requirement already satisfied: antlr4-python3-runtime<4.12 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue-sql-antlr>=0.1.6->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (4.11.1)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.27.0)\n", + "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.2.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.5.2)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.7.2)\n", + "Requirement already satisfied: pyarrow>=6.0.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (15.0.0)\n", + "Requirement already satisfied: fs in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (2.4.16)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (5.3.2)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.3.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (4.9)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.3.1)\n", + "Requirement already satisfied: appdirs~=1.4.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fs->triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (1.4.4)\n", + "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.5.1)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.2.2)\n" + ] + } + ], + "source": [ + "import sys\n", + "!{sys.executable} -m pip install 'sktime[all_extras]'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Combining tsbootstrap with sktime\n", + "\n", + "This notebook demonstrates how tsbootstraps integrates with sktime. To demonstrate it, we forecast the airline time series. \n", + "\n", + "### You learn\n", + "* How you can use bootstrapping to create probabilistic forecasts\n", + "* How you can integrate tsbootstrap with sktime\n", + "\n", + "### Prerequisites\n", + "* You should be familiar with the sktime forecasting pipelines.\n", + "* You should be familiar with the basic ideas of bootstrapping" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Integration of tsbootstrap with sktime\n", + "\n", + "To us tsbootstrap together with sktime, we perform three steps:\n", + "\n", + "1. we create the bootstrapper, we would like to use. In this example, we use a `MovingBlockBoostrap` with a `block_length` of 10 and create `10` bootstraps. The created tsbootstrap object, we pass to the `TSBoostrapAdapter` of sktime. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "from sktime.transformations.bootstrap import TSBootstrapAdapter\n", + "from tsbootstrap import MovingBlockBootstrap, MovingBlockBootstrapConfig\n", + "\n", + "tsbootstrap_opject = MovingBlockBootstrap(MovingBlockBootstrapConfig(10, n_bootstraps=10))\n", + "bootstrap = TSBootstrapAdapter(tsbootstrap_opject)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. we create the sktime based forecaster. In particular, we create first the `BaggingForecaster` and embed in afterwards into a forecasting pipeline that contains additional preprocessing steps. \n", + "* The task of the `BaggingForecaster` is to combine a boostrap algorithm and a forecasting algorithm. Internally, it creates one forecaster for each bootstrap the boostrapping algorithm is creating. \n", + "* As preprocessing steps, we add a `LogTransformer` and a `Deseasonalizer`. \n", + " * The `LogTransformer` is responsible to make the time series additive.\n", + " * The `Deaseasonalizer` removes the yearly seasonality from the time series. \n", + " * For more information, take a look at https://github.com/sktime/sktime/blob/main/examples/03_transformers.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from sktime.forecasting.compose import BaggingForecaster\n", + "from sktime.transformations.series.boxcox import LogTransformer\n", + "from sktime.transformations.series.detrend import Deseasonalizer\n", + "from sktime.forecasting.trend import PolynomialTrendForecaster\n", + "\n", + "bagging_forecaster = BaggingForecaster(bootstrap, PolynomialTrendForecaster(degree=2))\n", + "forecaster = LogTransformer() * Deseasonalizer(sp=12) * bagging_forecaster\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. we fit the forecaster to the training data. Therefore, we first load the data, split it into train and test data. Afterwards, we can call fit on the forecater." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
TransformedTargetForecaster(steps=[LogTransformer(), Deseasonalizer(sp=12),\n",
+       "                                   BaggingForecaster(bootstrap_transformer=TSBootstrapAdapter(tsbootstrapper=MovingBlockBootstrap(config=MovingBlockBootstrapConfig(block_length=10))),\n",
+       "                                                     forecaster=PolynomialTrendForecaster(degree=2))])
Please rerun this cell to show the HTML repr or trust the notebook.
" + ], + "text/plain": [ + "TransformedTargetForecaster(steps=[LogTransformer(), Deseasonalizer(sp=12),\n", + " BaggingForecaster(bootstrap_transformer=TSBootstrapAdapter(tsbootstrapper=MovingBlockBootstrap(config=MovingBlockBootstrapConfig(block_length=10))),\n", + " forecaster=PolynomialTrendForecaster(degree=2))])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sktime.datasets import load_airline\n", + "from sktime.split import temporal_train_test_split\n", + "\n", + "y =load_airline()\n", + "\n", + "y_train, y_test = temporal_train_test_split(y)\n", + "\n", + "forecaster.fit(y_train)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After fitting the forecaster, we can use it to create probabilistic forecasts." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "pred_interval = forecaster.predict_interval(fh=y_test.index)\n", + "forecast = forecaster.predict(fh=y_test.index)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(
,\n", + " )" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAAFfCAYAAABEEoKYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrOklEQVR4nOzdd3xV9f3H8dc5547c7ISRhB2GgyUorYIoDhS1ah0/d621/sTWqsWttc460Ko/R62K1apVq1brrIulVlRAEWTJDDIkAbLnHed8f3/cEIisBBKy3s/HIw+Se84993MvyUnu+3y/349ljDGIiIiIiIiIiIiItAJ2SxcgIiIiIiIiIiIispkCSxEREREREREREWk1FFiKiIiIiIiIiIhIq6HAUkRERERERERERFoNBZYiIiIiIiIiIiLSaiiwFBERERERERERkVZDgaWIiIiIiIiIiIi0Gr6WLqAt8DyPH374gZSUFCzLaulyRERERERERERE2hRjDOXl5XTr1g3b3vkYSgWWDfDDDz/Qs2fPli5DRERERERERESkTVuzZg09evTY6T4KLBsgJSUFiL+gqampLVyNiIiIiIiIiIhI21JWVkbPnj3rcradUWDZAJungaempiqwFBERERERERER2U0NWW5RTXdERERERERERESk1VBgKSIiIiIiIiIiIq2GAksRERERERERERFpNbSGpYiIiIiIiIgI4Lou0Wi0pcsQabMCgQC2vefjIxVYioiIiIiIiEiHZowhPz+fkpKSli5FpE2zbZvc3FwCgcAeHUeBpYiIiIiIiIh0aJvDyq5du5KYmNigLsYiUp/nefzwww+sX7+eXr167dHPkQJLEREREREREemwXNetCys7derU0uWItGldunThhx9+IBaL4ff7d/s4arojIiIiIiIiIh3W5jUrExMTW7gSkbZv81Rw13X36DgKLEVERERERESkw9M0cJE911Q/RwosRUREREREREREpNVQYCkiIiIiIiIiIiKthgJLEREREREREZEWYoyHcaN4sTBetArjRjDGtHRZe+RXv/oVp5xySkuXIW2YAksRERERERERkT1UGYkRiXlsqAgTiXlURmLb3a9eQBmpxEQq8KKVmFg1xo3UhpY1GOM1a7233XYbw4YNa9bHENldvpYuQERERERERESkLauJutw3fQWPfpZHSXWU9JCfK0bncsNR/Qk6gPEwxgUvVvt5bRhpWViWjWX5YXOvEmMwsRrwXPAlYNmKbqTj0QhLEREREREREZGtGGOoDMca9FFWE+Weacv50+SllFRHASipjnLH5KVMnLacspoI5ZVlVFRVUhGOUBn1qHLt+EfMojJqqIy6VEbc+FRwy8KyAxgTw4tW4sXCO5wi/sEHHzB69GjS09Pp1KkTJ554IitWrKjbvnbtWs455xwyMzNJSkpixIgRzJw5k2effZbbb7+defPmYVkWlmXx7LPPsmrVKizLYu7cuXXHKCkpwbIsPv74YwBc1+Wiiy4iNzeXUCjEvvvuy8MPP7zT1/O1115jyJAhhEIhOnXqxNixY6msrNyz/yRp1xTTi4iIiIiIiIhspSriknLT+7vcr3NSgLybjubRz/K2u/2Rz/K49sh+5N77FZsqI7s8XuntY0gKOGARH3XpuZhYNRgXnCCW7dTbv7KykquuuoqhQ4dSUVHBLbfcwqmnnsrcuXOpqqpizJgxdO/enbfffpvs7GzmzJmD53mcddZZLFiwgA8++IApU6YAkJaWRkFBwS5r9DyPHj168K9//YtOnTrx+eefM378eHJycjjzzDO32X/9+vWcc8453HfffZx66qmUl5fz3//+t82v0ynNS4GliIiIiIiIiMhuyE4JsqEiUjey8sdKqqNsrIiQnRJsUGC5DdvBMjbGDdeGlglYjr9u8+mnn15v92eeeYYuXbqwaNEiPv/8czZu3Mjs2bPJzMwEoH///nX7Jicn4/P5yM7OblRJfr+f22+/ve7r3NxcvvjiC1599dUdBpaxWIzTTjuN3r17AzBkyJBGPaZ0PAosRURERERERES2khhwKL/reAwGjAfGja876cXi/xoPsLBsh2BCkPSQf7uhZXrIT7fUIJ//9qD4sXb1uP7trNxnWVhOAOPFMLEqLBPEcgJYls2yZcu45ZZbmDlzJps2bcLz4mtjrl69mrlz5zJ8+PC6sLIpPfbYYzzzzDOsXr2a6upqIpHIDhv4HHDAARx99NEMGTKEcePGceyxx/I///M/ZGRkNHld0n5oDUsREREREREREeJrVxovBl6UkB0l0aohZNUQssIk2jES/TbJwQDJoRDJoQSSgn6isRhXjM7d7vGuGJ1LNBYjMWCTFHB2+WFZ1naPA2DZPizLjncTj1VjvBgnnXQSRUVFPPXUU8ycOZOZM2cCEIlECIVCjX7+tm3XvQ6bRaP1g9iXX36Za665hosuuoiPPvqIuXPncuGFFxKJbH8EqeM4TJ48mffff5+BAwfy6KOPsu+++5KXt/1p9CKgwFJEREREREREJD6CMVoZb3QTrcS48WY3luXERzQ6/vgakj8KFUOOyw1H9eeWY/YhPRSfrp0e8nPLMftww1H9CTlu0xVp2fGGPG6UTflrWbJkCTfddBNHH300+++/P8XFxXW7Dh06lLlz51JUVLTdQwUCAVy3fm1dunQB4tO4N9u6AQ/AjBkzGDVqFJdeeinDhw+nf//+9Rr9bLdsy+LQQw/l9ttv55tvviEQCPDGG2805plLB6Mp4SIiIiIiIiLSoRnjYWJhjO1g2T6wGxOXGAKEuXZMH/5w9ABKa6KkJfiJxKIECEMDpoI3igWW4yc9I51OnTKZ9OQT5ORks2bNWm644Ya63c455xzuvvtuTjnlFO655x5ycnL45ptv6NatGyNHjqRPnz7k5eUxd+5cevToQUpKCqFQiEMOOYSJEyeSm5vLhg0b+OMf/1jv4QcMGMDzzz/Phx9+SG5uLv/4xz+YPXs2ubnbH2U6c+ZMpk6dyrHHHkvXrl2ZOXMmGzduZP/992/a10XaFY2wFBEREREREZEOy4tUghvFGDfe0GYn07J3zBByYvhMNZ2CLj5TTaITo8nDyq04Pj8v/eNZ5sz5miFDhnLllRP485//XLc9EAjw0Ucf0bVrV0444QSGDBnCxIkTcZx4p/HTTz+d4447jiOPPJIuXbrwz3/+E4g37onFYhx00EFMmDCBO++8s97jXnLJJZx22mmcddZZHHzwwRQWFnLppZfusM7U1FQ+/fRTTjjhBPbZZx/++Mc/8sADD3D88cc3w6si7YVlWrCP/Keffsqf//xnvv76a9avX88bb7zBKaecUrfdGMOtt97KU089RUlJCYceeiiPP/44AwYMqNunqKiIyy+/nHfeeQfbtjn99NN5+OGHSU5Ortvn22+/5Xe/+x2zZ8+mS5cuXH755Vx33XUNrrOsrIy0tDRKS0tJTU1tkucuIiIiIiIiIi3Li1ZRvv5b1pb4yc3NJSEh2NIl7RbjRQELywnGP3YrdBXZczU1NeTl5dX+PCXU29aYfK1FR1hWVlZywAEH8Nhjj213+3333ccjjzzCE088wcyZM0lKSmLcuHHU1NTU7XPeeeexcOFCJk+ezLvvvsunn37K+PHj67aXlZVx7LHH0rt3b77++mv+/Oc/c9tttzFp0qRmf34iIiIiIiIi0jp5sRoihQuIVW2Mr03Zhlm2f6uGPFUYrwnXzRRpAS06wnJrlmXVG2FpjKFbt25cffXVXHPNNQCUlpaSlZXFs88+y9lnn83ixYsZOHAgs2fPZsSIEQB88MEHnHDCCaxdu5Zu3brx+OOPc9NNN5Gfn08gEADghhtu4M033+S7775rUG0aYSkiIiIiIiLSfhg3QmTjAmLl3xMLdmddWZA+vXu22RGWdWq7nFu2jeUkgO3XaEvZq9rFCMudycvLIz8/n7Fjx9bdlpaWxsEHH8wXX3wBwBdffEF6enpdWAkwduxYbNtm5syZdfscfvjhdWElwLhx41iyZEm97llbC4fDlJWV1fsQERERERERkbbPuFEihQuJVXyPk9y9zY+urMeysBw/xhi8aBXGrcEYr6WrEmm0VhtY5ufnA5CVlVXv9qysrLpt+fn5dO3atd52n89HZmZmvX22d4ytH+PH7rnnHtLS0uo+evbsuedPSERERERERERalPFiRIq+I1a2CicxJ94RvB2ybB+W7WBiNZhoFcaLtXRJIo3SagPLlnTjjTdSWlpa97FmzZqWLklERERERERE9oDxXCJFS4mVLMdJzMZyAru+U1tm2Vh2AGNieNFKPDdMK1kVUGSXWm1gmZ2dDUBBQUG92wsKCuq2ZWdns2HDhnrbY7EYRUVF9fbZ3jG2fowfCwaDpKam1vsQERERERERkbbJGI9oyXKiJUuxE7OwnDa+VmVDWfGGPGBhotXxpjxqyCNtQKsNLHNzc8nOzmbq1Kl1t5WVlTFz5kxGjhwJwMiRIykpKeHrr7+u22fatGl4nsfBBx9ct8+nn35KNBqt22fy5Mnsu+++ZGRk7KVnIyIiIiIiIiItwRhDtGQF0aLvcBI6Y/sSdn2ndsayHSzbh3HD8S7ibnTXdxJpQS0aWFZUVDB37lzmzp0LxBvtzJ07l9WrV2NZFhMmTODOO+/k7bffZv78+fzyl7+kW7dudZ3E999/f4477jguvvhiZs2axYwZM7jssss4++yz6datGwDnnnsugUCAiy66iIULF/LKK6/w8MMPc9VVV7XQsxYRERERERGRvcEYQ7R0JdGixdgJmdj+xJYuqeVYFpYTwBgPL1aFF6vRFHFptVo0sPzqq68YPnw4w4cPB+Cqq65i+PDh3HLLLQBcd911XH755YwfP56f/OQnVFRU8MEHH9Rri/7iiy+y3377cfTRR3PCCScwevRoJk2aVLc9LS2Njz76iLy8PA466CCuvvpqbrnlFsaPH793n6yIiIiIiIiI7FWx8tVECxdhB9Kw/UktXU6TM8ZwyW8vo3NWT5xAMnPnfrvL+1i2D8uy49PDY1WaIi6tkmUUp+9SWVkZaWlplJaWaj1LERERERERkTYgVr6WyMZvsXwh7GDaDvcLRw1rS3z06d2ThISmWNvSAvZO1PL+Bx9x6ulnMW3K+/TNzaVz5074fA3sfG7AeFEsy8byJYDtx7Ks5i14B/r06cOECROYMGFCizy+NJ2amhry8vLIzc2tN+AQGpevNfC7WERERERERESkbYhVridSuACcwE7DyqZjYYyL7QTxwiXYwXQ8twbL8tGc4eXKlSvJyclm1MhDGn9nC7B9RKMRfKYq3ojIF8SyWm27E+lA9F0oIiIiIiIiIu2GW7WByMb5gIOTkLkXHtECy6Ls6wdZPalH3UfZ1w+BZcW3N4MLL7qEKyZcw+rVa3ACyfQdMJBwOMzvr7yG7O59SEzpxOFHHMPsr7Y0Kv74k09xAsm8/8FH/OTg0YSSM5nxxUwMNvdMvIe+uX0JhUIccMABvPbaa/Ueb+HChZx44omkpqaSkpLCYYcdxooVKwCYPXs2xxxzDJ07dyYtLY0xY8YwZ86cuvsaY7jtttvo1asXwWCQbt26ccUVVwBwxBFH8P3333PllVdiWVaLjfKU1kUjLEVERERERESkXXCrNxHZ+C0YDyex624fxxiDiVU1aF/L9lP2zSOUzLyr7jYvXELJzDsBSB1+OcZrWFduy5fY4MDuoQfvo1/fXJ56+u/M/PxTHMfm+hv/yL/feIu/Pz2J3r168ucHHuL4n53C0sXzyMzcEt7+4aZbuO/eu+mb24eMjHQm3vcAL770Co89+gAD+vfnsy9m84tf/IIuXbowZswY1q1bx+GHH84RRxzBtGnTSE1NZcaMGcRiMQDKy8u54IILePTRRzHG8MADD3DCCSewbNkyUlJSeP311/m///s/Xn75ZQYNGkR+fj7z5s0D4N///jcHHHAA48eP5+KLL27Qc5f2T4GliIiIiIiIiLR5bk0xkY3f4rkRfEnZe3QsE6tizaQeu9zPDnWm56+XUTb3se1uL5v7F9JGXM3a5wbhVW/a5fF6jl+L1cDmQGlpaaSkpOA4DtnZWVRWVvLEk3/jmb89yfHHHQvApCf+Qt8BA3nm789zzdUT6u57261/5JixRwEQDoe55977+eiDdxh5yMEYz6Vvbm8++2wGTz75JGPGjOGxxx4jLS2Nl19+Gb/fD8A+++xTd7yjjjqqXm2TJk0iPT2dTz75hBNPPJHVq1eTnZ3N2LFj8fv99OrVi5/+9KcAZGZm4jgOKSkpZGfv2f+btB+aEi4iIiIiIiIibZoXLiWycT5erHqPw8rGcBKzcas24IVLdlBXCW71RpzE5q9pxYo8otEoh47asp6l3+/nJyMOYvF3S+rtO+KgA+s+X758BVVVVYw7/mRSM7JI69SNtM49+McLL7Ji+TKM8Zg7dy6HHXZYXVj5YwUFBVx88cUMGDCAtLQ0UlNTqaioYPXq1QCcccYZVFdX07dvXy6++GLeeOONutGZItujEZYiIiIiIiIi0mZ5kfJ4WBkpxUnq1iTHtHyJ9By/tiF74gRT4012thNa2sF0fEk5ZJ/+IQ1pvmP5Ehtd6+5IStryOBWVlQC889ZrdO+21etnDAG/jYlWEfpRt+cfu+CCCygsLOThhx+md+/eBINBRo4cSSQSAaBnz54sWbKEKVOmMHnyZC699FL+/Oc/88knn+wwBJWOTYGliIiIiIiIiLRJXrSSyMb5uDWFOMndm6xhi2VZDZ6a7bkRUoddVrdm5dZSh12G54ax/c0fRPbrl0sgEGDG51/Su3cvAKLRKF99PYffX/67Hd5v4P77EQwGWb16LWMOP6z+RgPGizJk8H48/8LLRKPR7QaMM2bM4K9//SsnnHACAGvWrGHTpvpT4EOhECeddBInnXQSv/vd79hvv/2YP38+Bx54IIFAANd19/AVkPZEgaWIiIiIiIiItDlerJrIpgXEqjbgS+mBZbXMqneW5ZD2k2uB+JqVXrgEO5hO6rDL4rcbQ0NGV+6ppKQkfnPJ/3L9jTeRmZlBr549+PMDD1FVVc2vL/zlDu+XkpLC1VdewdXXXo/neYw+dCSlZWV8/vkXpKSkcsEvz+PS31zMX/76JGeddSY33vgH0tPT+fLLL/npT3/Kvvvuy4ABA/jHP/7BiBEjKCsr49prryUUCtU9xrPPPovruhx88MEkJibywgsvEAqF6N27NwB9+vTh008/5eyzzyYYDNK5c+dmf72kdVNgKSIiIiIiIiJtiomFiWxaSKzyB3zJLRdW1lYDBlIPmkD6T2/AC5diB9Pw3Jq9FlZuds9dd+B5Hhdc+L+Ul1cw4qADef8/b5KRkbHT+91x+y106dKZe++7n0vyVpGensbw4cO48fprAOjcpStTPniH6268mSOOOALHcRg2bBiHHnooAE8//TTjx4/nwAMPpGfPntx9991cc801dcdPT09n4sSJXHXVVbiuy5AhQ3jnnXfo1KlT/PHvuINLLrmEfv36EQ6HMWbvvWbSOllG3wW7VFZWRlpaGqWlpaSmprZ0OSIiIiIiIiIdlnEjRDYuIFb+fXwauL1nY7HCUcPaEh99evckISHYBBVa7M2Qcq8yBuNFsZwAlpOAZTstXZG0MjU1NeTl5ZGbm0vCj9Y+bUy+pi7hIiIiIiIiItImGC9GpHBxPKxM6rbHYWXzaKdhJYBlYdl+jBvBxKoxnjp9S/NQYCkiIiIiIiIirZ7xXCJF3xErW4mTlIPlqLt0i7AsLCeAMTFMtArjRlq6onbDeC5etApjvJYupcUpsBQRERERERGRVs0Yj2jxUqIly3BCWVhOoKVL6vAs248BvFgVXqxG607uIWM8jFuD8aK1a592bAosRURERERERKTVMsYQLV5OpGgJTqgrli9h13eSvcKyHSzLiU8Pj1VrZOBuMsZg3LBGq25FgaWIiIiIiIiItErGGKIlK4gWLcYJdcL2hVq6JPkxy65d1zJcu66l29IVtT1eBBMLY1lqYrSZAksRERERERERaZWiZauIFi3GDmZg+5NauhzZEcvCsgMYN4qJVcWnNUuDGC+GF6sBy45/CKDAUkRERERERERaoVjZaqKbFmIHUrADyS1djuyKBZbjxxgv3jjGjWhdy10wnouJVQMGy9boyq3tcWDpui5z586luLi4KeoRERERERERkQ4uVrGOSOECLH8idiC1pcuRRrBsH2DVhpZhhZY7EF+3sgbjxbBsdbz/sUYHlhMmTODpp58G4mHlmDFjOPDAA+nZsycff/xxU9cnIiIiIiIiIh1IrDKfyKYFYPlxguktXY7sBst2sGw149mRrZvsKKzcvkYHlq+99hoHHHAAAO+88w55eXl89913XHnlldx0001NXqCIiIiIiIiIdAxu1UaiG+eDASfUqaXLwbgRvGjVXvlodx2it27GE63CeLEmO/QRRxzBhAkT6r7u06cPDz300B4dsymOsSvPPvss6enp4EUxsZr4aFTLatbHbGqrVq3Csizmzp3brI/ja+wdNm3aRHZ2NgDvvfceZ5xxBvvssw+//vWvefjhh5u8QBERERERERFp/9yaIiKb5mO8GE5SVkuXg3EjhAu+xotW7pXHs/1JBLMOwnICDdq/vLycW277E2++9Q4bNmxk+LAD+L8H7+MnIw6q28cYw22338nfnnmWkpJSDh11CI89+hADBvQHIBwOc/Elv+Ptd/5DdlYWf3n0/xh79JF197//gYdYvWYNjzz0wO49qc3NeLwoRKvAF8Jymn5E4ezZs0lKalhTpmeffZYJEyZQUlKy28fYXWeddRbHH3csphFNdo444giGDRvW7GFqa9PowDIrK4tFixaRk5PDBx98wOOPPw5AVVUVjqMFQkVERERERESkcbxIBZFNC/Bi1fiSclq6HKC2e3O0EssJYNkNCxF3/7EieNHK+HqGDQwsL77kdyxcuIjn/v4U3XJyePGllzn2uJNYMO8runfvBsCf7/8/Hn3sCf7+9JPk9unDLbf9ieNPPIUF874iISGBp/72DHPmfMOMT6fywYeT+cUvL2T92jwsyyIvbxV/e/pZZn356Z49uc3NeLwYJlaFZRKwnADRaJRAoGle1y5durSKY+xKQkKQoJOKMXt/3cpIJNJkr/fe0Ogp4RdeeCFnnnkmgwcPxrIsxo4dC8DMmTPZb7/9mrxAEREREREREWm/TCxMpGgRXk0xTmJ2S5ezDcsOYPkSmvejkYFodXU1/37jLSbecyeHHzaa/v37cestN9G/X1+eePIpID668uFHH+OmG6/j5yefyNChg3nu75P44Yf1vPnWOwAs/m4JJ534MwYNGsilvx3Pxo2b2LRpEwCXXj6Be+6+g9TUXTc9uvCiSzj19LO54093k9WtN+mdcvjt764gEtkyzf3oY0/kignXcuWECXTp0oVx48YBsGDBAo4//niSk5PJysri/PPPr6sBoLKykl/+8pckJyeTk5PDAw9sO9rzx9O5S0pKuOSSS8jKyiIhIYHBgwfz7rvv8vHHH3PhhRdSWlqKZVlYlsVtt9223WOsXr2an//85yQnJ5OamsqZZ55JQUFB3fbbbruNYcOG8Y9//IM+ffqQlpbG2WefTXl5+XZfI2MMf3/mKTK7dsey4mHl7XfcxYEjRvKPF/5J3wEDyejSnXPP/3XdMX71q1/xySef8PDDD9fVu2rVqga9bkcccQSXXXYZEyZMoHPnzowbN45zzz2Xs846q15d0WiUzp078/zzzwPwwQcfMHr0aNLT0+nUqRMnnngiK1as2O5zak6NDixvu+02nn76acaPH8+MGTMIBoMAOI7DDTfc0OQFioiIiIiIiEj7ZDyXSNF3uBXrcJJysNrYen4tJRaL4bouCQnBereHQiFmfP4FAHl5q8jPL+Doo7ZM8U5LS+Pgn47gy5mzABg6dAgzPv+C6upqPvxoCjk52XTu3JkXX3qFhGACp55ycoNrmjb9YxZ/t4Rpk9/nxX/8nTfefJs7/nR3vX2ef+GfBIJBPp32Hn999EGKiwo56qijGD58OF999RUffPABBQUFnHnmmXX3ufbaa/nkk0946623+Oijj/j444+ZM2fODuvwPI/jjz+eGTNm8MILL7Bo0SImTpyI4ziMGjWKhx56iNTUVNavX8/69eu55pprtnuMn//85xQVFfHJJ58wefJkVq5cuU3Yt2LFCt58803effdd3n33XT755BMmTpy43bqMGwbPJT7kdKtjrMzjrbff4e03/sXbb7zKp/+dwcR77wXg4YcfZuTIkVx88cV19fbs2ZOSkpJdvm4Azz33HIFAgBkzZvDEE09w3nnn8c4771BRUVG3z4cffkhVVRWnnnoqEA+Ir7rqKr766iumTp2KbduceuqpeN7ebZzUqCnh0WiU4447jieeeILTTz+93rYLLrigSQsTERERERERkfbLGEO0ZAXRsjx8idnxBiTSICkpKYw85GDuuvte9t9vP7KyuvLPl//FF1/OpH+/fgDk144GzMrqWu++Xbt2JT8/vu3Xv/ol8+cvYPABI+jcqRMvv/Q8xcXF3HbHnUyb/D4333I7r/zrdfr2zeXpSY/XTTXfnkAgwNNPPU5iYiKDBg3ktlv/yPU3/JE7br8F246PlxvQvx/3TrwLTHwa/N33PsjwYcO4++4tweYzzzxDz549Wbp0Kd26dePpp5/mhRde4OijjwbiIVyPHj12WMeUKVOYNWsWixcvZp999gGgb9++ddvT0tKwLKuuP8v2TJ06lfnz55OXl0fPnj0BeP755xk0aBCzZ8/mJz/5CRAPNp999llSUlIAOP/885k6dSp33XVXveMZNxoPLLezZqXnefz96SfjxzCG8849i2nTptXVGggESExMrFfvX/7yF4YPH77D123z8x4wYAD33Xdf3T79+vUjKSmJN954g/PPPx+Al156iZNPPrnuOfw473vmmWfo0qULixYtYvDgwTt8zZpao0ZY+v1+vv322+aqRUREREREREQ6CLd8DdHiJTgJnbCc4K7vIPU89/enMMbQs88AQsmZ/OWxxzn7rDOw7YaPUvX7/fzlkf9jxdKFzPziU0YfOoprrvsDl//uN3wzdx5vvf0u33z1BYf89Cf8/sptRyJu7YChg0lMTKz7euTBB1NRUcGaNWvrbjvwwOHxTyywnADz5s1n+scfk5ycXPexebnBFStWsGLFCiKRCAcffHDdMTIzM9l33313WMfcuXPp0aNHXWi3OxYvXkzPnj3rwkqAgQMHkp6ezuLFi+tu69OnT13QB5CTk8OGDRvqHct4LiZWXfu8t/2/6dO7V/1jZGexYcPGndY3b948pk+fvsPXbbODDjqo3v18Ph9nnnkmL774IhAfTfnWW29x3nnn1e2zbNkyzjnnHPr27Utqaip9+vQB4lPk96ZGX774xS9+wdNPP73DIa4iIiIiIiIiIjvjVhYQKVqE5U/C9jdvZ+b2ql+/vkyf+iGVlZWUlZWTk5PN2ef+kty+uQBkZ8U7rRcUbCAnZ8vovA0bNnDAAUO3e8zpH3/CokWLeerJx7juhps4/rhxJCUlccb/nMZjj0/a45qTkhLrfV1RVcWJPzuOe+68DcsJxhsc1YZ6OTk5LF++vNGPEQqF9rjOhvL76zfOsSyr3tRpYzxMrBpjvB12R9/VMbanoqKCk046iXtrp45vLSdnS9Oq7XU9P++88xgzZgwbNmxg8uTJhEIhjjvuuLrtJ510Er179+app56iW7dueJ7H4MGD661Hujc0OrCMxWI888wzTJkyhYMOOmibJ//ggw82WXEiIiIiIiIi0r64NSVECheCASeY3tLltHlJSUkkJSVRXFzMR5OnMvGePwGQm9uH7Owspk3/mGHD4gFlWVkZM2d9xSXj/3eb49TU1HD5FVfxj+eewXEcXNfFGANANBpfM3Nn5n27gOrq6rrA8MtZs0hOTqZnzx1P3z5w2AH8+423yM3NxbGJh5a+BKzaqdP9+vXD7/czc+ZMevXqBUBxcTFLly5lzJgx2z3m0KFDWbt2bb2p0VsLBAK7fC77778/a9asYc2aNXWjLBctWkRJSQkDBw7c6X03M8ZgYmGMF92jLvPbq/fAAw/k9ddfp0+fPvh8jYv2Ro0aRc+ePXnllVd4//33OeOMM+pC08LCQpYsWcJTTz3FYYcdBsBnn32227XviUY33VmwYAEHHnggKSkpLF26lG+++abuY+7cuc1QooiIiIiIiIi0B160imjhQrxoJU5i113fQXbow4+m8MGHk8nLW8XkKdM4+pgT2G/ffbjwgvjahJZl8fvLf8dd99zH2+/8h/nzF3DBhePp1i2HU35+0jbHu/OuiRx//DiGDz8AgFEjD+GNN9/m228X8NjjTzJq1CE7rScSifC/4y9l0aLFvPf+h9x+x1387reX1K1fuT2X/vYSioqLOff8X/PVnG9Zvuw7PvjP21z4qwtwXZfk5GQuuugirr32WqZNm8aCBQv41a9+tdNjjhkzhsMPP5zTTz+dyZMnk5eXx/vvv88HH3wAxKdxV1RUMHXqVDZt2kRVVdU2xxg7dixDhgzhvPPOY86cOcyaNYtf/vKXjBkzhhEjRuz0ddjMuBGMG8ay/fWa7DRWnz59mDlzJqtWrWLTpk14nsfvfvc7ioqKOOecc5g9ezYrVqzgww8/5MILL9xlGAtw7rnn8sQTTzB58uR608EzMjLo1KkTkyZNYvny5UybNo2rrrpq94vfA40eYTl9+vTmqENERERERERE2jHjRokULiJWvRFf8o5H3bU2xotAbC88RiOVlpZy0823sXbtOjIzMzjt1J9z5x231ptifO01V1JZWclvLr2ckpJSRh86kvfeeYOEhIR6x1qwYCH/ev0N5sz+vO62/zn9VD759L+MOepY9t1nAC88/8xO6znqyCMY0L8fRxw9jnA4wtln/Q+33vKHnd6nW7cc/vvxFG74w80c97NTCIfD9O7Vk2OPPRrLRDHG5s9//nPdFOiUlBSuvvpqSktLd3rc119/nWuuuYZzzjmHyspK+vfvX7e04ahRo/jNb37DWWedRWFhIbfeeiu33XZbvftblsVbb73F5ZdfzuGHH45t2xx33HE8+uijO33czeJNdmriI0W3s25lY1xzzTVccMEFDBw4kOrqavLy8ujTpw8zZszg+uuv59hjj42/br17c9xxx+00zN3svPPO46677qJ3794ceuihdbfbts3LL7/MFVdcweDBg9l333155JFHOOKII/boOewOy2we39tIy5cvZ8WKFRx++OGEQiGMMXXrDLQ3ZWVlpKWlUVpaSmpqakuXIyIiIiIiItKmGOPFw8riZTjJ3VtVR/Bw1LC2xEef3j1JSNjS/Me4EcIFX+NFK/dKHbY/iWDWQVjO7k8fbikXXnQJJSWlvPH6y01yPOO5YLzaKeLBuinibUG8yU5VfN3Kxn6fG4MxLrY/Gct2mqfAZlZTU0NeXh65ubnbBOONydcafYYoLCzkzDPPZPr06ViWxbJly+jbty8XXXQRGRkZPPDAA409pIiIiIiIiIi0Y9GSlcRKVuAkZrWqsHJnLCdAMOsgjNfMwys3P57ta5NhZXOwbAeMjXFrwLjgS2gT3zfGeBi3BuO5O2yyIw3T6Ij6yiuvxO/3s3r16nrt6s8666y69QBERERERERERABi5WuJFn2HHczA8iXs+g6tiOUEsP2Je+VDYeWPWBaWHcCYGF60Es8Ns5uThPcKYwzGDWPcSHzdStkjjY6nP/roIz788EN69Ki/3sSAAQP4/vvvm6wwEREREREREWnb3OpNRAoXYfkSsAPJLV2ONJO/P/1k8xzYAsvyx6dZR6vBqR1t2RqniHtRTCwcHwnaPldM3Ksa/T9cWVlZb2TlZkVFRQSDwe3cQ0REREREREQ6Gi9STmTTQowXw0nIbOlypA2zbAfL9sVHMEar9to0/YYyXgwvVg2WHf+QPdboV/Gwww7j+eefr/vasiw8z+O+++7jyCOPbNLiRERERERERKTt8WI1RDYtxAuX4CRmtXQ5DdKapxsL8SniTiAeDkYr8WKtY4q4MR4mVg2YNtsopyk11f9Jo6eE33fffRx99NF89dVXRCIRrrvuOhYuXEhRUREzZsxokqJEREREREREpG0yXoxo0WLcyvU4yT2wrNY9P9bnAMajqiZMKNS21tjsiCzHD54bDwlNy04RN8ZgYjUYL6Y1SGtFIhEAHGfPwttGB5aDBw9m6dKl/OUvfyElJYWKigpOO+00fve735GTk7NHxYiIiIiIiIhI22WMIVq8jFjpKpykbm1ixJljW6QkeGzcuAmAxIRgqw9ZBTAGY8qxrGosX6BFGt14sTDGrcGyfGCF9/yAxmDwsN2aNvGz82Oe57Fx40YSExPx+fasq7tlWsP42VaurKyMtLQ0SktLSU1NbelyRERERERERFqlSMlKooULsBM6YftCLV1Ogxlj2FgO5TVag7BtMRjjAWDZ/tqQb++EzcZz4x3BLasJv2fiz8dygq2zsVAD2LZNbm4ugcC2I04bk681Ou789ttvt3u7ZVkkJCTQq1cvNd8RERERERER6WBileuJFX+HHUhtU2ElxDONrqnQKdkj5notXY40khepwI2U40/pgS+tD7aveaf2e5FyIhsXYPBwgulA03zPGC+CFykn2PUg7EBSkxxzbwsEAtj2noetjQ4shw0bVjc0evPgzK2HSvv9fs466yyefPJJEhK09oOIiIiIiIhIe+fWFBHdtBAsH3ag7c5MdGwLp20ObOvY/CmYhACxqjwsU4Y/c3+cxC7N8lAmFiZctAI/FfiSuzftsV3wXJeEhCB2oGNnao3+MXzjjTcYMGAAkyZNYt68ecybN49Jkyax77778tJLL/H0008zbdo0/vjHPzZHvSIiIiIiIiLSinjRSiKbFuC5YZxQ55YuRzooywniS+6JF6kgXPAVkZIVGM9t0scwxiNSvCTeUCoxu0mPLfU1eoTlXXfdxcMPP8y4cePqbhsyZAg9evTg5ptvZtasWSQlJXH11Vdz//33N2mxIiIiIiIiItJ6mFiYSOFCvJpinOQeLV2OdHCWZeNLysaLlBHZNB8TKcOfsS+2P7FJjh8tzSNashJfUnabbIrTljQ6sJw/fz69e/fe5vbevXszf/58ID5tfP369XtenYiIiIiIiIi0SsZziRR9h1uxDiepuzprS6thB1KxnASiZd/jhcsJdNoPJ7HrHh3TrSwgVrwEJyEdy1HvlubW6Cnh++23HxMnTiQSidTdFo1GmThxIvvttx8A69atIysrq+mqFBEREREREZFWwxhDtGQF0bI8nMRsLLvR46FEmpXlBPAl98REK+NTxIuX7/YUcS9STqRoMWC36TVa25JGn1Eee+wxTj75ZHr06MHQoUOB+KhL13V59913AVi5ciWXXnpp01YqIiIiIiIiIq2CW76GaPESnIROGm0mrZZlWThJWfHAsXABJlyGv9O+2P6Gd+A2boRI0WK8cKmWPdiLGj3CctSoUeTl5XHHHXcwdOhQhg4dyh133EFeXh6HHHIIAOeffz7XXnvtHhfnui4333wzubm5hEIh+vXrx5/+9Ke67uQQv6pzyy23kJOTQygUYuzYsSxbtqzecYqKijjvvPNITU0lPT2diy66iIqKij2uT0RERERERKSjcas2EClahOVPalTwI9JS7EAKvsQcouWrCed/hVtZ0KD7xZvsLMctX4eTlKNlD/ai3RqznZKSwm9+85umrmUb9957L48//jjPPfccgwYN4quvvuLCCy8kLS2NK664AoD77ruPRx55hOeee47c3Fxuvvlmxo0bx6JFi0hIiLeAP++881i/fj2TJ08mGo1y4YUXMn78eF566aVmfw4iIiIiIiIi7YUXLiWyaQEYcILpLV2OSINZjh9fSk+86o2EC77GlzEAf1ruTpcziJWvIVa6HDsxS8se7GWW2Xq4YgMtW7aM6dOns2HDBjzPq7ftlltuabLiTjzxRLKysnj66afrbjv99NMJhUK88MILGGPo1q0bV199Nddccw0ApaWlZGVl8eyzz3L22WezePFiBg4cyOzZsxkxYgQAH3zwASeccAJr166lW7duu6yjrKyMtLQ0SktLSU3VWgUiIiIiIiLS8XjRKiIbvsGtKcKX3L2lyxHZbV6kAi9chC+5F/7MfbADydvs41ZvIlzwNZYdwA6m7ZW6jBvGC5eQ0P2w7dbU1jUmX2t0PPzUU0/x29/+ls6dO5OdnV1vOKxlWU0aWI4aNYpJkyaxdOlS9tlnH+bNm8dnn33Ggw8+CEBeXh75+fmMHTu27j5paWkcfPDBfPHFF5x99tl88cUXpKen14WVAGPHjsW2bWbOnMmpp566zeOGw2HC4XDd12VlZU32nERERERERETaGuNGiRYuJla9EZ/W8ZM2zg4kYzlBYhVr8KLl+DP3xZeUXbfdi1YSKVyE8Vyc0N4JK6W+RgeWd955J3fddRfXX399c9RTzw033EBZWRn77bcfjuPgui533XUX5513HgD5+fkA23Qkz8rKqtuWn59P1671W9f7fD4yMzPr9vmxe+65h9tvv72pn46IiIiIiIhImxNfx28JsfLV+JK7Y1mNboch0upYjh8nuUfdFHEvYx/8abkARAuX4FYX4Uvp2cJVdlyNPssUFxdzxhlnNEct23j11Vd58cUXeemll5gzZw7PPfcc999/P88991yzPu6NN95IaWlp3ceaNWua9fFEREREREREWqtoyUpiJStwtI6ftDOWZeEkdsUOpBLdtIDwhrlEipcRK/8eX3I3NdlpQY0+05xxxhl89NFHe6XpzrXXXssNN9zA2WefDcCQIUP4/vvvueeee7jgggvIzo4P1y0oKCAnJ6fufgUFBQwbNgyA7OxsNmzYUO+4sViMoqKiuvv/WDAYJBgMNsMzEhEREREREWk7YuVriRZ9hx3MwPIltHQ5Is3C9idhOUHcinUY4+GEuiicb2GNfvX79+/PzTffzJdffsmQIUPw+/31tm/u3t0UqqqqsO36g0Adx6lr9JObm0t2djZTp06tCyjLysqYOXMmv/3tbwEYOXIkJSUlfP311xx00EEATJs2Dc/zOPjgg5usVhEREREREZH2xK3eRKRwEZYvoV02ABHZmmX7cJJ7gHEVVrYCje4Snpubu+ODWRYrV67c46I2+9WvfsWUKVN48sknGTRoEN988w3jx4/n17/+Nffeey8A9957LxMnTuS5554jNzeXm2++mW+//ZZFixaRkBC/+nP88cdTUFDAE088QTQa5cILL2TEiBG89NJLDapDXcJFRERERESkI/Ei5YQL5uBFK+s1IxGR5qMu4Vs0OjLOy8vb7cIa69FHH+Xmm2/m0ksvZcOGDXTr1o1LLrmkXify6667jsrKSsaPH09JSQmjR4/mgw8+qAsrAV588UUuu+wyjj76aGzb5vTTT+eRRx7Za89DREREREREpK3wYjVENi3EC5fER5yJiOxljR5huVkkEiEvL49+/frh87XvobIaYSkiIiIiIiIdgfFiRDbNJ1a6Cie5B5bttHRJIh2GRlhu0egu4VVVVVx00UUkJiYyaNAgVq9eDcDll1/OxIkTd69iEREREREREWlRxhiixcviYWVSN4WVItJiGh1Y3njjjcybN4+PP/643rTrsWPH8sorrzRpcSIiIiIiIiLSPIzn4kXKcSsLiJauJFwwh2jJMuzErliOf9cHEBFpJo2ey/3mm2/yyiuvcMghh2BZVt3tgwYNYsWKFU1anIiIiIiIiIjsOWM8TLQKE6vCi1bi1ZTiRUowsWqMGwHAcoLYCZ2wfaEWrlZEOrpGB5YbN26ka9eu29xeWVlZL8AUERERERERkb3PGBMPIqOVeLEqvHApXk0Jxq3GxGowgGX7sX0h7EAaOEG9nxeRVqXRgeWIESP4z3/+w+WXXw5Qd1L729/+xsiRI5u2OhERERERERHZIWMMxq2Jj56MVuJGyvFqCuPBpFsDxoDtw/KFsPwp2AmdFU6KSKvX6MDy7rvv5vjjj2fRokXEYjEefvhhFi1axOeff84nn3zSHDWKiIiIiIiICODFajCxeDjpRSrwaorwopW14aQHlg/Ll4DlT8JOyMSyGt26QkSkxTU6sBw9ejRz585l4sSJDBkyhI8++ogDDzyQL774giFDhjRHjSIiIiIiIiLNyrhRoqV5GDeMZfuxHB9YNlhOPPTbxedYdu3Xmz/f81GMxo3Ew8hYVV04GZ/mXV0bTtpYTgKWL4QdzFBXbxFpNxodWAL069ePp556qqlrEREREREREdnrjOcSKfqOWOlysAPxadTGA0x8vUcswNTuXRtEWtZWIaUd38ty6m7HcrBsX3w6tuUH22lQEGrcSDycDBdhIpvDSXercDIBJ5AaP7aISDvV6DPcnDlz8Pv9daMp33rrLf7+978zcOBAbrvtNgKBQJMXKSIiIiIiItIcjPGIFi8lVroCJ5SF5UtowH22BJoYD2O8rb52wRiMF8HEarYEn7W37zIIpXbkpB3E8oVwElMUTopIh9Pos94ll1zCDTfcwJAhQ1i5ciVnnXUWp512Gv/617+oqqrioYceaoYyRURERERERJqWMYZo8XKixUuxQ10aFFZCbfNZa8v066ZqYWOMUUMcERGg0avvLl26lGHDhgHwr3/9izFjxvDSSy/x7LPP8vrrrzd1fSIiIiIiIiJNzhhDtHQl0eLvsBMysX2hli5JYaWISK1GB5bGGDzPA2DKlCmccMIJAPTs2ZNNmzY1bXUiIiIiIiIizSBWvppo4WLsQBq2P6mlyxERka00OrAcMWIEd955J//4xz/45JNP+NnPfgZAXl4eWVlZTV6giIiIiIiISFOKVawjumkhtj8JO5DS0uWIiMiPNDqwfOihh5gzZw6XXXYZN910E/379wfgtddeY9SoUU1eoIiIiIiIiEhTiVXmE9m0AJwAdjCtpcsREZHtsIwxZte77VpNTQ2O4+D3+5vicK1KWVkZaWlplJaWkpqa2tLliIiIiIiIyG5wqzYS2TAXYzycxC4tXY6ISD3GDeOFS0jofhh2ILmly2lyjcnXGj3Ccs2aNaxdu7bu61mzZjFhwgSef/75dhlWioiIiIiISNvn1hQT2TQf48UUVoqItHKNDizPPfdcpk+fDkB+fj7HHHMMs2bN4qabbuKOO+5o8gJFRERERERE9oQXLiWy8Vu8WDVOknoviIi0do0OLBcsWMBPf/pTAF599VUGDx7M559/zosvvsizzz7b1PWJiIiIiIiI7DYvUkFk43y8SBlOYnZLlyMiIg3Q6MAyGo0SDAYBmDJlCieffDIA++23H+vXr2/a6kRERERERER2kxetIrJpAW5NIU5SDpZltXRJIiLSAI0OLAcNGsQTTzzBf//7XyZPnsxxxx0HwA8//ECnTp2avEARERERERGRxvJiNUQKFxCrzMdJ6oZlNfrtr4iItJBGn7HvvfdennzySY444gjOOeccDjjgAADefvvtuqniIiIiIiIiIi3FuBGimxbhlq/Dl9wNy3ZauiQREWkEX2PvcMQRR7Bp0ybKysrIyMiou338+PEkJiY2aXEiIiIiIiIijWG8GJHCxcTKv8dJ7o5lN/ptr4iItLDdOnM7jlMvrATo06dPU9QjIiIiIiIisluM5xIp+o5YWV58zUqFlSIibdJunb1fe+01Xn31VVavXk0kEqm3bc6cOU1SmIiIiIiIiEhDGeMRLVlGtGQ5vlBXLCfQ0iWJiMhuavQalo888ggXXnghWVlZfPPNN/z0pz+lU6dOrFy5kuOPP745ahQRERERERHZIWMM0ZIVRIuW4CR0xvIltHRJIiKyBxodWP71r39l0qRJPProowQCAa677jomT57MFVdcQWlpaXPUKCIiIiIiIrJD0dI8okWLsRMysf3qrSAi0tY1OrBcvXo1o0aNAiAUClFeXg7A+eefzz//+c+mrU5ERERERERkJ2Jlq4kWLsIOpGL7k1q6HBERaQKNDiyzs7MpKioCoFevXnz55ZcA5OXlYYxp2upERERERNo540bxopW4NcW4NSX6m1qkEWIVPxApXIDlT8QOpLZ0OSIi0kQa3XTnqKOO4u2332b48OFceOGFXHnllbz22mt89dVXnHbaac1Ro4iIiIhIm2W8GMYNY9wIxg2DG8Fzw5hIJSZWGd/mRTFuBMt2cJJy8KX0wk7IxLKsli5fpNVyKwuIbFoAlh8nmN7S5YiISBOyTCMv4Xqeh+d5+HzxrPPll1/m888/Z8CAAVxyySUEAu2vE1tZWRlpaWmUlpaSmqqrdiIiIiKyRTyQ3BJGGje8g0AyijEuFoBlY1k+cPxYth/s+L/Gi+LVFGJZDk6ygkuRHXGrNxHZMBfjxXASu7Z0OSIiTcK4YbxwCQndD8MOJLd0OU2uMflaowPLjkiBpYiIiEjHZTy3boQkbhjjRfBiNZhYFSZSUS+QxLjxO1kWluUH24flBOoCSct2GvSYXqwGr6YQLBtfcjd8KT2xEzopuBQB3JpiIhu+wYvV4EvKbulyRESajALLLRo9JRyguLiYp59+msWLFwMwcOBALrzwQjIzM3fncCIiIiIiLc6LVWMi5XXhpBetwESrMLHqulGU8UDSgGWD5YuHkI4fy5+CHfRh2bv15/U2bF8CdnJ3TKyGWPlaYhU/KLgUAbxwGZGN8/Fi1fiSclq6HBERaSaNHmH56aefcvLJJ5OamsqIESMA+PrrrykpKeGdd97h8MMPb5ZCW5JGWIqIiIi0X8YY3Mr1RIuX4oVL4zdaVr1AcssIyaYJJBtdY6wGN1wEWPgSc/Cl9VJwKR2OF60ksmEubk0hTlJ3ff+LSLujEZZbNDqwHDJkCCNHjuTxxx/HceJTWlzX5dJLL+Xzzz9n/vz5u195K6XAUkRERKR98qKVRIuXEyv/HstJaPUhYF1wacCX1A1fak/sUOdWXbNIU/Bi1UQ2zMOtysdJ7oFl2S1dkohIk1NguUWjA8tQKMTcuXPZd999692+ZMkShg0bRnV1deMrbuUUWIqIiIi0L8Z4uBU/EC1eihspwxfqiuVLaOmyGkzBpXQkJhYmvGk+sYq1+JK6N3gtWBGRtkaB5RaNvix14IEH1q1dubXFixdzwAEHNPZwIiIiIiJ7lRepILJxPuENczCeiy+5Z5sKKwEsXwK+pG44oU7EqtZTs34mkYJvcKs2op6a0p4YN0qkcCFu+Rp8Sd0UVoqIdBCNXoTniiuu4Pe//z3Lly/nkEMOAeDLL7/kscceY+LEiXz77bd1+w4dOrTpKhURERER2QPxUZXriBYvww2X4UvKwnKCLV3WHrGcIL6kHIwbJla1nljlOpykHPypvWpHXGrarLRdxosRKVxErOx7nKRuLbaGrIiI7H2NnhJu2zv/o8eyLIwxWJaF67p7VFxroSnhIiIiIm2bFyknWrKcWNkaLF8IOyGzXU6fNm4Yt6YIjKfgUto047lEipYQK16Ck5Td5i8uiIg0hKaEb9HoS1R5eXm7XZiIiIiIyN5kPLduVKUXrcBJzMJyAi1dVrPZesSlW5mPW7lewaW0OcZ4REuWEy1ZWvszq7BSRKSjaXRg2bt37+aoQ0RERESkSXnhsngH8Io1WP4kfCk9W7qkvcZygviSu2HcSP3gMqUndmIXBZfSahljiJasJFq0BCehM3YbW19W2jjLh+X4MG4MTKylqxHp0LQIiIiIiIi0K8ZziVWsJVa8DC9a2e5HVe6M5QS2E1xm40/ppeBSWhVjPIwbIVa5nmjRYuxgOrY/saXLkg7CchIIB3MIhlIpqY6QHgoQri4jGF6PcWtaujyRDkmBpYiIiIi0G164lEjxMmIV67D9yR1qVOXO1AsuqzbgVubjJGXhT+mt4FL2is2BJG4E44YxXvxfL1qNiVZgYtUYN4KJVWMHUtvl2m3SOllOAm7qAO6fvoJHP5tJSXWU9JCfK0b34fojB+CULVNoKdICFFiKiIiISJtnvBjR8jW4xcvxYlX4ErOxHH9Ll9XqWE6gdo3LCG7VxtrgMhtfSi+cxK4KLmW3bT+QjOBFqzDRSkysCtwoxotiTAw29361HCwngGX7sXyJ2MF0dQOXvSoczOH+6Sv40+RldbeVVEe5o/brq0flEKhSLw+RvU2/CURERESkTXNrSuIdwCvW4gTSNKqyAbYEl9EtwWViFr7U3gouZbuMMduMjtxhIOlFt9xxq0ASXwK2nQq2D8uyWu7JiGxm+QiGUnn0s5nb3fzIZ6u4/qgBTP8uRs8U6J3q4Hf0vSuyN+xWYFlSUsJrr73GihUruPbaa8nMzGTOnDlkZWXRvXv3pq5RRERERGQbxosRLVtNrGQ5xq3Bl9RNI7MayXL8W4LL6kLcqgJ8Sd3xpfXBTshUqNTBGC+GiVbVCyRNrBovEp+yjRvBmCjG/VEgafvj68QqkJQ2xnJ8lFRHKKmObnd7SXWUgvIw131SxYL8chwLeqU69M/w0TfDR790H/0y4l/3SfMR2NMwU01/ROo0+i+6b7/9lrFjx5KWlsaqVau4+OKLyczM5N///jerV6/m+eefb446RURERETquDXFREuW4Vb8gB1Iwwl1bumS2rR4cJkdb3pStR63ugAnpVe8OU8wtaXLk2Zi3ChetBwTqcANF+PVFNWuJbltIInjx/IlYNspYPsVSEq7UFkTITnFT3rIv93QMj3kp2tygAy/S8hnUR0z5JW65JW6sCpcb1/bgp6pDv3SffFAM92hX4avLsxM8O34Z0ZNf0S21ejA8qqrruJXv/oV9913HykpKXW3n3DCCZx77rlNWhzAunXruP7663n//fepqqqif//+/P3vf2fEiBFAfGrCrbfeylNPPUVJSQmHHnoojz/+OAMGDKg7RlFREZdffjnvvPMOtm1z+umn8/DDD5OcrIWcRURERNoS40aJln1PrHQFxo3gaFRlk4pPFe+GF6smWrwct+IHfGm5+FJ6YPtCLV2e7CETC+NFK/Ai5Xg1xXjhYrxoVXwkl+3H9iViBzMVSEqHsKwoyjlvFXHnidlcdmgf7pyybJt9rhjdBzdczkdnZ2BMOusrPVYWx1heHGNFSYwVxTFWlrgsL45RGTV8X+ryfanLtO/rh5kW0KMuzHTom+6jX+0Izf6dk/Gr6Y/INhr9193s2bN58sknt7m9e/fu5OfnN0lRmxUXF3PooYdy5JFH8v7779OlSxeWLVtGRkZG3T733XcfjzzyCM899xy5ubncfPPNjBs3jkWLFpGQkADAeeedx/r165k8eTLRaJQLL7yQ8ePH89JLLzVpvSIiIiLSfNyaIqLFtaMqEzJwQl1auqR2y/aFsFN74UXKiBYuwK1Yiy+tb3zavZoZtRlerBoTqcCLVuBWb8KES/FiVWA8LDuI5Q/F1yxV6C8dzL+XVPObD4opjxgemLaE9y4ZiW3F16ysHxj2iweGgGVZdEt26JbsMLpnsN7xjDEUVHqsKImxsqQ20Cx26z4vjxjWlLmsKXP5eHX9Wt74VW++nruiXmCqpj8iYBmzuT1bw3Tt2pUPP/yQ4cOHk5KSwrx58+jbty+TJ0/m17/+NWvWrGmy4m644QZmzJjBf//73+1uN8bQrVs3rr76aq655hoASktLycrK4tlnn+Xss89m8eLFDBw4kNmzZ9eNyvzggw844YQTWLt2Ld26ddtlHWVlZaSlpVFaWkpqqqbEiIiIiOxN8VGVq+KjKj0XJ9RFActeZIzBCxdjohU4oS740vviJGapMU8rY4yJT+eOlONGyvFqNmHC5XhuNcbzsH0JWL5ELF8Iy3ZaulyRFhF1DTd9UsqjX1cCMLpHgOdPyqRbWlLdlOzS6ghpoQDh6lKC4fw9Ht1ojGFjVW2YWeyyvHZk5oqSGCVhm3nXHkXPP03Z4ZT0/FuPwRQt1JqWHYRxw3jhEhK6H4YdaH+zghuTrzX6L72TTz6ZO+64g1dffRWIX2VYvXo1119/PaeffvruVbwDb7/9NuPGjeOMM87gk08+oXv37lx66aVcfPHFAOTl5ZGfn8/YsWPr7pOWlsbBBx/MF198wdlnn80XX3xBenp6XVgJMHbsWGzbZubMmZx66qnbPG44HCYc3jKEu6ysrEmfl4iIiIg0jFtdGB9VWbUeO5iJE0rZ9Z2kSVmWhZOQiQmk4dUUEs6fjZPUDX9aH+yETpo63EKMMZhoZXyKd7gMr2ZTbXOcGsBgOQlY/kSchAyFyyLAunKX898p4ot1EQCu/Ekydxyeis+2MG4Ngao8TLWPNMeHqY4RMDEaNbprByzLomuSQ9ckh5E/7lHsBCmpie606U9pdSReU0yBpXQsjf7N9cADD1BRUUHXrl2prq5mzJgx9O/fn5SUFO66664mLW7lypV161F++OGH/Pa3v+WKK67gueeeA6ibgp6VlVXvfllZWXXb8vPz6dq1a73tPp+PzMzMHU5hv+eee0hLS6v76NmzZ5M+LxERERHZOeNGiBQtJZw/C7emECepO3ZAYWVLsmwHJ7ErTqgrblUB4fWziGxagBfWxf29wRgPL1xGrOIHIoXfEV43g5ofPqNm/Uyixd/hRSqxfIk4yd3xpfTESeyC7U9SWCkCfPx9mFHPb+CLdRFSAxYv/zyTu49Iw2f/6IKLicVD/701mtFzyUgMkB7a/lIb6SE/qQmBeNdwkQ6m0SMs09LSmDx5Mp999hnffvstFRUVHHjggfVGOTYVz/MYMWIEd999NwDDhw9nwYIFPPHEE1xwwQVN/nib3XjjjVx11VV1X5eVlSm0FBEREdlL3KqNREuW41blYwc74bTDKVFtWbwxTw5erJpY6UrcyvX4UvvgS+2pxjxNyHguprZBjhsuxasuxMQqMW443rnbF8Lyp+JLCGqUq8gOeMbwwMwKbvusDM/AkC4+Xvp5J/pntJJlRUyMcHUZV4zuU7dm5dYuO7QPk5dtxF9RyRG9g9s5gEj7tds/paNHj2b06NFNWcs2cnJyGDhwYL3b9t9/f15//XUAsrOzASgoKCAnJ6dun4KCAoYNG1a3z4YNG+odIxaLUVRUVHf/HwsGgwSDOhmIiIiI7E0mFt6yVqUxOEk9tNZeK2b7QtgpPfEi5USLFsYb86T3U2OePeBFq/BqCnFrivFqCjHRaowXAcuH5QthB9OxHL1PEWmI4hqP/32vmPdWxNegPH9wIg+NTSPR37pGHQfD67n+yAHAtk1/rhidy+jHPmf5pgoeH5fOLwYntXC1InvPbgWWU6dOZerUqWzYsAHP8+pte+aZZ5qkMIBDDz2UJUuW1Ltt6dKl9O7dG4Dc3Fyys7OZOnVqXUBZVlbGzJkz+e1vfwvAyJEjKSkp4euvv+aggw4CYNq0aXiex8EHH9xktYqIiIjI7nNriogWfodbVYAd6ozj15uytsIOpGD5k/HCxUQ2fIMbWosvLRcnKVvTkRvBrdpApHAxXk0ROAFsXyJ2QiaWE2jp0kTanG8KIpz7VhGrSl2CDvzf2HR+NSSxVY5GNm4NTtkyrh6Vwx+OHlCv6Q8VyxmS6fLdBrj4/RJWlbrcNCqlVT4PkabW6MDy9ttv54477mDEiBHk5OQ06w/KlVdeyahRo7j77rs588wzmTVrFpMmTWLSpElAfPHaCRMmcOeddzJgwAByc3O5+eab6datG6eccgoQH5F53HHHcfHFF/PEE08QjUa57LLLOPvssxvUIVxEREREmo8xHrHyNUSLlmC8KE6yRlW2Rds05in4So15GsgYj2hpHrHipYCFk9JLr5fIbjLG8Pdvq7hqaglhF/qkObz080yGZ7Xu4H9HTX8Anj0xg9x0h/u+rOCuz8vJK4nx+HEZBBydJ6R9s4wxjWp8lZOTw3333cf555/fXDXV8+6773LjjTeybNkycnNzueqqq+q6hEP8hHTrrbcyadIkSkpKGD16NH/961/ZZ5996vYpKirisssu45133sG2bU4//XQeeeQRkpMbth5SY9qui4iIiEjDeLEaosVLiZWuwgok4wTTW7okaSLGjeLWbALAl9ITf2pv7GBaC1fV+nixGqJFS4iW5uEkpGMH9F5DZHdVRT1+P7mUFxZWAfCzfgk8dUIGGQntY6T337+t5PKPSnANHN4zwMundGo3z022MG4YL1xCQvfDsNvhGt6NydcaHVh26tSJWbNm0a9fvz0qsi1RYCkiIiLStNzqQqJF3+FWbcBJzMLyJbR0SdIMvFgNXvUGLF9ivDFPSg9sf2JLl9UquDXFRAsX41YVxKfPa21Kkd22ojjGOW8VMn9jDNuC20ancvXBydjtbLTy5Lwaznu7iPKIYb9OPt48vRO901pJAyFpEgost2h0HP+///u/vPTSS7tdnIiIiIh0XMZ4RErzCBd8hRsuwUnpqbByM8sXfy2s9vPm0/Yl4EvpheUEiRYuJLz+S6KlqzBupKVLazHGGGLla4nkf4UbLor/DCisFNltby2tZtTzG5i/MUbXRJv3zuzMtYektLuwEuCY3ASmnNOFbsk23xXGOPyFjXy1vuOeT6V9a/RfQzU1NUyaNIkpU6YwdOhQ/P76HQAffPDBJitORERERNoPL1ZNtGhpfPprMA0n1KWlS2oVLCeBcDCHYCiVkuoI6aEA4eoyguH1GLempctrElsa85TEG/OUr8WX3jc+urYDrVlq3CjRkuVES5Zj+UL4krSmvsjuinmGmz8t46HZFQCM7B7gHydl0j2lfZ9Thnb18+kvunLa64V8uzHKsS9v4rkTMzhpQKilSxNpUo2eEn7kkUfu+GCWxbRp0/a4qNZGU8JFRERE9oxbtZFI0WLcmkJ8iZr+upnlJOCmDmDi9BU8+tkqSqqjpIf8XDG6D9cf2Q+nbFm7CS03M56LV1OIcSM4ydn4U3OxQ53bfaMZL1JBpOg73Io12AldNDVeZA+sr3D55TtFfLY2PrrwihHJ3Hl4Kv4O1IimPOLxi7eL+CgvjAX8+ag0fndQ+5tC3NFoSvgWjQ4sOyIFliIiIiK7x3gu0bJVxIqXYozBSeyKZbXSJgGWD8vxYdwY1HZnbW6RxFzu/7yAP01ets22W44ZwNWjsghU5e2VWva2eo15knvEO4q308Y8bmUBkaLFeOFSnKQcLLv9TPsX2dv+uybM+W8XUVDlkRKweOK4DE7bt2OOLox5hgmTS3j623ijod8dlMS9R6Th2B0nuG1vFFhuod+UIiIiItIsvGgl0eKlRMu+xwmm47TSDsjNOSU75hkKKj3yK13yK1zyK73af12qXIdJ56bw6Gczt3vfRz5bxR+OHoCp9u21AHVvshw/vqQcvFgNsbJVuFUF+FJ71zbmSWrp8prElsB+CWDjJPdo9yNJRZqLMYYHZ1Vw63/LcA0M6uzjnz/PZECmf9d3bqd8tsWjx6aTm+7jj5+W8djXlXxf6vLszzJICrTSi4MiDdSgwPK0007j2WefJTU1ldNOO22n+/773/9uksJEREREpO1yqzYQKfwOt6YIX1I2lhNo6ZK2a/OU7Punr+DRz2b+aEr2gB1Oya6OmngIWemSX+Ft+3ntvxurPHY0nWlwdgoFFRFKqqPb3V5SHaW0OkKa48PE2l9guZntS8BO6YkXqSBauAi3fA1OSi98Kd3bdHBZt2Zr2SqcYDp2IKWlSxJps0pqPC5+v5h3l8fPx+cODPHIMekK5YgvzXf1wSn0SnO4+L34azTulU28flonspLa93qe0r41KLBMS0uruxKYltY+p2mIiIiIyJ4zXoxo6SpiJUsBG19Kz1Y9oiwczOH+6SvqTckuqY5yx+RlGODMwV34238XbBNIloYbvqqSY0HXJJucJIfsZIfsJJvsJIfe6UFyUoKkh/zbDS3TQ37SQgFMdfsNK7dmB5Kx/EmYaDnRwoW45avbbHDp1hQRLVxMrHoDvsScVhvYi7QF8woinPt2EStLXAIOPHBUOhcdkNiqf7e0hDP2S6R7ssOZbxbxdX6UMS9u5M3TO7Ffp447AlXaNq1h2QBaw1JERERk17xIRXxEWcX3OMHM1j+izPJhZQ4i+/bJOwwM19w8lty7prKpMrLN9gQfZCc58Y9kezuf22QnO3QO2TtcTyySmMsDnxdwx3bWsPzj2AGcP6wzvazVe/5c2xhjDCZajldTjB1IaTPBpTEGt2ItkcLFGC8a74LeWtdsFWmNfrSW8PPzK/n9lBJqYtAr1eGln2dyULYuAOzM8uIYp7y2iRUlLulBi5dP6cSYXmp011ZoDcsttIaliIiIiOyxWGU+0aIleOESfIndsJzWP6LDcnwUVe18SnZxVYSrD8nAxKrJTnZqR0nGA8m0oLXHI3yC4fVcf+QAIL5m5eYp6Zcd2ofLR+cy5q+fc3p/i5tGpXSo0USWZWEFUrH8KW1mxKVxI0SKlxMrXY7lS8KX1LmlSxJpM7a3lvDctYX835yF1MRgXG6QZ36WSWZIFwB2pX+Gj4/P68IZbxTx5Q8RTvrXJp44LoNzByW2dGkijdKgwHL48OEN/gNpzpw5e1SQiIiIiLQdxosRLVlJtGQZluW0maYiMc/wxKwSfnO0f6dTsrsmB5lwUAKY5rnOb9wanLJlXD0qhz8cPSC+ZmUoQLi6lMf/O5fvNlRw1wZYVhzjyeMySPC1/te2KbWV4NKLlBMpWoxbvg47sSu2r2N2LBbZHTtaS/iyQ/vwyaWjePXLefx6sIPdBn63tBadEx3eP6szF71XzL+XVHPRe8WsKo1x48iOdfFL2rYG/eV1yimnNHMZIiIiItLWxEOaJbjla7BDnVtNeLQrizdFufj9Yr7Oj9K/5yYuO7QPd07Zdkr2FaP7EK4uI9DMHbqNW0OgKg9T7Ys32KmOETAxfn+gn1RfOldMLuHVxdWsLnV59dRMuiR2vCYKrTm4jFXmEy1chBcpx0nujmVrEptIY+xoLeE7pyzDsuCaUQOwq/JasMK2KcFn8Y+TMuiT5vDgrAr+NKOcVaUufzk2nYCj0FJav0atYem6LjNmzGDo0KGkp6c3Y1mti9awFBEREdnCGINblU+0cHE8pEnKaRMhjesZHv6qgjs+KyPsQnrQ4m8n5XD8gUO5d/qKelOy413C++2wS/jeNP37Gs55q4jSsKFPmsO/T+vE/p1b/5T75tQa1rg0nku0NI9Y8VKwHOxQZ41cEmmsBqwlnH/rMZiihdDMF4/as6fmVjJhSgmegSN7BXnp55mkJ2h6fWukNSy3aHTTnYSEBBYvXkxubu4eFdmWKLAUERERiTNulGjpSqLFy7CcAHZCpzYR0iwtinLxe8XMWh9/QzwuN8hj4zLonuLUWztt6ynZwXB+i4eVmy0pjHLq64XklbqkBS1ePDmTo/sktHRZLa6lgksvVk206DuiZZsbTLW/N5Uie0NpLEA4qS+975y6w30Kbh1LWiQPE2sd5+O26oOVNfzi7SIqo4aBnX38+7RO9E5r/RcbOxoFlls0OlIfPHgwK1eu3O3iRERERKRt8sJlhDd+Q7RoEXYwDacNjChzPcMjX1Vw8HMbmLU+SmrA4onj0nnj9E50T4lPra6bkl20MP6muGghgapVrSasBNi3k59Pf9GFUd0DlIYNP3+tkL/NrWzpslqcZVnYgVSclF5g+4gWLiT8wxdEipfhRZvn9XGrC4nkf0207Ht8idnt8g2lSHMLxwwPzS7n0Gd/IDMxQHpo+6PG00N+0kKBeNdw2SPH9U1gyjmdyUm2WbQpxhEvbuTr/EhLlyWyQ40OLO+8806uueYa3n33XdavX09ZWVm9DxERERFpX4wxxCrWEc6fjVuxHiep9TQ72ZkVxTGOfXkT108vpSYGR/cOMvvCrlwwJGn7QauJxUfwtNJph50THd47szPnDAzhGrh8cgnXTy/F9Ro1Yapd2ia43LSgyYNLYwyxstWEC77GDZfgS+6B5QSa5NgiHYUxhte+q2LYMwXc+HEZK4rDzFxVyOWj+2x3/81rCbfW83JbMywrwCfndWFwZx/5lR7HvryJ/yyv3rKD5cPyJYClkZfS8ho9Jdy2t2ScW/+hZ4zBsixc12266loJTQkXERGRjsq4EaIlK4iWLMdyEnBCnVq6pF3yjOHJbyr546dlVEUNyX6LiUem8euhia1+RGhDGGOY+EU5d8woB+DE/gn8/WcZJAe0Htlm20wVT+2NL7nbbgftxo0QKV5OrHQ5lj8ZJ5jetAWLdABfrgtzw8dlzPwhPqovO8nm9sNS+cUBmZC2T6teS7i9KQt7nPtWEVO/D2Nb8MxJ2Zw6vD/BUCol1RHSQwHC1WUEw+v12u9lmhK+RaMDy08++WSn28eMGdOYw7UJCixFpDlVRmL4bZuSmijpCX6inkdSQFc1RaTleeFSIkXf4Vb8gB3qgu1PbOmSdmlVSYxLPijm0zXxN8RjegV48riMdrlO16uLqxj/fjFhFw7o6ue10zrRI6XjdRDfmaYILr1wGZGixfGfg8QsbJ/WDhVpjLySGDd/WsbrS+Ij+RL9Flf/NJnfj0gmqfZCS1tYS7i9ibqGKyaX8GWBzSeXjuLRz/L4ywwFxi1NgeUWjQ4sOyIFliLSXGqiLvdMW86jn+Vt9cdBLjcc1Z8Ev950ikjLMMbgVqwjWvQdXqwaJzGr1XcBN8bw9Lwqbvy4lIqoIdFvcdfhqYwfnoTdDkZV7siX68Kc+WYRG6s8cpJtXju1Ewdma5ryj+1ucBmrXE+0cDFetAInMbvV/xyItCbFNR73flHO499UEHHBAi4Yksgto1PJSd7B37mWD8vxxdes1DTwZmeMYbnbi1fnF3LnlGXbbL/lmAFcPSqLQFVeC1TXMSmw3KJBgeW3337L4MGDsW2bb7/9dqf7Dh06tHHVtgEKLEWkOVRGYtw3fQV/mrx0m223HLMP1x7ZTyMtRWSvM7EwkZIV8amvvkSchMyWLmmXVpfF+O0HJUz7PgzAoT0CTDoug74ZHeMcuqokxmn/LmRxYYxEv8Xff5bByQNCLV1Wq9TQ4NJ4MaKleUSLl2LZfpxQ5xaqWKTtibiGSXMruefzMopq4nHD0b2D3HNEGkO6br+5jrQQy4eVOYjs2ydTUh3dZnN6yE/+rcdgihYqQN5LFFhu0aC/4oYNG0Z+fj5du3Zl2LBhWJbF9nLO9rqGpYhIU4q5HuvLauiaEuTRz7Z/tfKRz/L4w9ED9nJlItJRGWPAi+FFy4kWLcWtWo8dav1TX40xPDe/iuuml1IeMST44I7D0vjdQe17VOWP9Un3Mf28Lvzi7SKmrApz9ptF3H1EKr8fkdwu1uxsSpZlYQVSsfwpmGg50U0LcMu+rxdcetEqooXfEatYjZ3QqU00mBJpDYwxvL2shps+KWVFSTwX2L+Tj3uOSOPY3KDOR62Q5fgoqY5sN6wEKKmOxte0dHyYmAJL2bsaFFjm5eXRpUuXus9FRNqTpl5DMup6rC2pYVVxFauKqvi+uJrvi6tYVRT/d01pDft3TeatX/90p38clNZE6ZIc3O06RERgcxgZxXhRjBsBNxL/3ItgYjV40SpMrArcKMYLY4yHk9QDy27dy1KsLXf53YfFfJQXH1V5cLcATx2fzoDMjjl6Jy1o88bpnbhqSilPzavkxo/LWFYU46Gx6fgdhQQ/tsPgMqUnblUBbnUhvqRuWE7H/H4Saayv1ke44eNSZqyNrx/cNdHm5kNT+dXQRHy2zkGtlXFjpIcCpIf8OxxhmRT0M3FaEWfvH2iX60FL69Wg77bevXtv93MRkbauJupy3/QVjVpDMhLzWFNSXRtIxkPI74urWVVUxariKtaV1uDtYrGNwqoIXZN3/sdBWoLeJInsTSYWxouWg2VjWQ5YDthO7ec2WE6rGx1SF0bWhpBbh5FetBoTq8LEquNhpInWrgm21WwYy8Gy/WD7sGw/ti+E1QZGVb60sJqrp5VQGjYEHbh1dCpXjEjG6eBvin22xcPHpDEg08f100t55tsq8kpcXvx5JhkJ6iC+PT8OLiNFi7HsAL6UXq3u512kNfq+NMat/y3jlcXxhjoJPvj9iBSuPjiZlIDOO62eiRGuLuOK0X24Y/K2a1hedmgfJi/dxG3/LeaOz+CEfgmMH5bE0X2CHWomg7SM3Y7HFy1axOrVq4lEIvVuP/nkk/e4KBGRvWF7a0iWVEe5o/bri37akw+WbGRVcRWr6wLJan4oq2FXq/8GfTa9M0K1H4n0yUykd0aIPhmJ9MkMkZ2SQE3M5YrRuXWPt7XLDu3DhoowPdK1BpnI3uBWbSRavBS3uhAsKx5S2jZgY1n2VoGlA44fbD+W7cdyAvEmHJYT3892tuy3+T4/vs2u3XcXth9Gxj/3otWYaGU8jPRitWFkFIy35QA/DiPtEAR9bbppyPoKl8s/KuE/K+LdSg/K9vO3EzLYr5Mu8GxmWRaXj0imb7rDBe8WM311mCNf3Mi/T+vUYdb03B2bg0s7oPXqRRqiNOxx/8xyHv2qgnDtdbBzB4a47bBUeqbqXNOWBMPruf7I+FJUj3y2bZfw6d/O58heQaavDvPu8hreXV5Dv3SHi4cl8cshSbogJs2m0V3CV65cyamnnsr8+fPrrWW5+Qpke1zDUk13RNqnSMwj+/aPdjjCcc3NY8m9ayqbKiPbbE/w2fTJTKRPRohetSFkn4zaUDIzkazkIHYDRvrURF0mTlvOI1uN8Lzs0D5cPjqXsU9+yR+O7s9Zw7o3yfMVkW0ZN0q0bBWxkmUYA06oy+YtYFyM8eIhoHHBGIxxa7/2tmzDY8tVDCt+XwDL2jIq03Kw2BxoxgNQyw7Ew0THXxss+rEsu/7ISC+KMTGMG8V47pYRX5vDSMePZdWGkLa/1U/j3l3GGF5ZXM1VU0sorjH4bbj50FSu/GmyphruxLyCCKe/UcS6cpdOIZtXTsnk0B5aakREdl/MMzw9r5K7Pi9nY1X8ItnhPQNMPDKN4VmBFq5OdpflJBAO5hAMpVJaHSEtFCBcXUownI9x4xcJlxRGmTS3khcWVFEWif+tE/JZnLl/iEuGJ+n/v4mo6c4WjQ4sTzrpJBzH4W9/+xu5ubnMmjWLwsJCrr76au6//34OO+ywPSq+NVJgKdI+FZSHybn9ox1uX3XT0dw7bTlYVr3Rkb0zEumaHGiyqWKb19AsrYmSluAnHHO5+YMlPFLbkOfBkwcx4fC+TfJYIrKFW1McH1VZ+QN2sFOT/1G4JezcHG7GQ8+dBqEWtSGnLx5G2v7a0Z7tN4zclQ2VLldMLuGtZfE3TMOz/Ew6PoPBXTSqsiF+qHA549+FzCmIEnDgiXEZnDMosaXLEpE2xhjD+ytr+MPHZSwpijdfGZDh4+4jUvlZvwQtodBeWD4sx1e7hMz2m+xURDxeWVzNk99UMH/jln1+kuPnN8OTOW3fEAk+fT/sLgWWWzQ6sOzcuTPTpk1j6NChpKWlMWvWLPbdd1+mTZvG1VdfzTfffLNHxbdGCixF2pfVxVU8+lket43bl55/mrLDEZb5tx5LwLdlikP8dGlqAwev7nNTN7qq9vbaz81W++xqf2NZgI3tC2EnpOMZi9+/uYC/fr4KgKvH9OPen+3foFGbIrJzxnOJln1PrGQ5xovghLq26WnS7cZ23iS9vqSaCZNL2FTt4bPhxpEpXHtwiprINFJlxOPX7xXzdm3o+4eRKfzx0BQFDCKyre2ci+cWRLjx4zI+Xh1vctYpZHPTqBT+94AknY87MGMMX6yL8OTcSt5YUk20dlWaziGbC4YkcvGwJDXp2Q0KLLdo9HeP67qkpKQA8fDyhx9+YN9996V3794sWbJk9yoWEdkLVhVVcc+0ZTw7ew1R1zA6txOXHdqHO6dsu8D0FaP7EK4uxitfCp67Vci41dTPzWEjteFjXThZe1vd/tTOEo3vWfcG0dRusDaHoWBZDk5iF3zJ3XnkpAH0SE/gD+99xwOfrCC/vIanzxxWL0QVkcbxwmVEi5cRrViDE0jDCXVu6ZI6vK2noZVUR0gPBaioLOVPk7/j4S+LABjSxcdTx2dwgKab7ZakgM0/f57JzZ+W8eCsCu7+opzlJTGePC5Do2BEBNj+ubisopT7py3hz59vwgABBy47KJnrDkkhLai/Rzs6y7IY1SPIqB5B7jvS5dlvq/jbvErWlrs8MKuCB2dVcHy/BC4ZnsRYNemR3dDowHLw4MHMmzeP3NxcDj74YO677z4CgQCTJk2ib19NWRSR1mdlYSX3TFvOc7PXEKtt331U/87kJNvceHR/bGt7C0znwsav8KJV8XXosLY0ybDijTioHe0Yv93Cqttm1d1ny30b9gvauBG8mmJqKtfjBFK5anhPchL35eJ/L+XFOesoKA/z2gUjSFUHcZFGMcbDrVhHtGgpXrQCX2IOlqOfo5ZmOQm4qQO4f/oKHv1sZr21fP9w3EFMyfuck/ta3DAyhYBG8ewR27K4a0waAzJ8XD65hFcXV/N9qcurp2TSNal2uYEGTAUUkfZnZ+fiq489kLeXf86QTJc/HZ6qEXOyXVlJDtePjHeHf29FDZO+qWTq92HeW1HDeytq6Lu5Sc/gJDJDCrulYRo9JfzDDz+ksrKS0047jeXLl3PiiSeydOlSOnXqxCuvvMJRRx3VXLW2GE0JF2mbVmyq5K6py/jH12txa4PKowd05o9jujGyaw1u+VoMhlj6EBKSOu9wgemWYIyHiZTjRkqxnSBTC9I59+0iKiMew7ql8t7/Hkx2akKL1SfSlnjRSqLFy4mVfY/lT8RJyGzpkqRWJDGX+z8v4E+Ttx3p/sexA7jkJ13oHPu+BSpr3z7+Psw5bxVSEjb0TnP4z9nd6Zndq97IqnB1GcHw+hb9XSjS4bTQRYNdnotHdKGzq3OxNM7SoihPza3kHwuqKA3H34sl+OCM/RK5ZHgSB2XvYNZEB794pinhWzQ6sNyeoqIiMjIy2u06OAosRdqWZRsruHvqMl6Ys64uqDxmn8788bDO/CSjDK+6AONGsYNpWP7aNbxa8S9GL1aNV1PMnA0e//O+zcYqQ5+MBN6/eCT7dm1/v8REmooxBrcqn2jRUtxwMb7ELCxHHZJbDcuHlTmI7Nsn72Qt4WMwRQtb3Xm5PVhSGOW0fxcSCIT45NJR/GVGHo9uM9ugH07ZMoWWIs1se9Oxm+KiQcQ15Fe65Fd4tf+65Fd6FFTG/82vcAkbhy8nHLmLdd11LpbdVxnxePW7ap78ppJ5G7Z8j43I8XPJsCT+Z79EEnxWs/0ctDUKLLdoksCyvVNgKdI2LN1YwV1TlvHinLXU5pSM2yeTmw7N4KC0TXg1JWA72MEMbF/bG51ovBjLNxRzylthVpZZdArZvHn+IEYN6LVlurqIAODFaoiWrCRWuhLL9mOHOrfbC6tt1ZJSh4wuA+h919Qd7lNw61jSInmYWMd5o7I3bapyWe72Yury4u2u53zLMQO4elQWgaq8FqhOpGPYPB174vQVDb5oUBHx6gLH9ZUuBbWf1wsnKz0Kq71dPv7g7BTe+vVP6Xe3zsXSvIwxzPwhwpPfVPLvpdVE3PjtnUI214zszOVHD+fej1d2+ItnCiy30AIUItLmfbehnLumLOOf36yrCypP2CeDGw5J5KDUQrzoBkwsGScpu013ArZsHwOyuzDtvBinvb6JORtcjn1mPv848XtOPqAfTqgLlk+jx0Tcqg3xUZXVG7ETu2L7Qi1dktQyxjD9+zAPzqpg3iZD3k2DSA/5dziqJy0UwFRrRE9z6ZwUpEtmZ0597pvtbn/ks1X84egBmGqfRlaJNJNwMIf7p6+oNx27pDrKHZOXYYCf79+ZiR99Wy+QrIg2fMyR346vL5idbJOd5JCz1efZyTY9UoN0Sw3qXCzNzrIsDuke5JDuQe6tdHlufhVPzatkTZnLfr16M3H6ynoXzzb/HABcPSpHF886oLb7zl1EOrxF+eXcOWUpr8z7oa5x98/2SeOGnzoMSy0BrxCcDJyEzHY1sior2ceH53TlF28X8WFemDPfKuPh4q/59QEpOMk98CVlYQVS29VzFmkI40aIlq4iVrocjIWT0lOjj1uJmGd4fUk1D82qYG7tdDDbgvnrirh8dJ/trpt2xeg+hKvLCCgoazaW46OkOrLdkALibxZLqyOkOT5MTP8PIk3O8hEMpfLoZzO3u/nRz1Zx3ZH9+XiNy6bKSL1tSX6L7CSb7GSH7CSHrNrPc5I2h5EO2Uk2mSF7l92ZI9VlXDG6T104tDWdi6U5dE1yuPaQFK76aTJTV8c4ep/OXPjK3O3uq4tnHZcCSxFpcxasL+POKcv417dbgsqT9knh+oM8hqYVY9sB7ITMdr1WXXLA5l+nduJ3H5XwjwVVXP6JTUFNlGuHLSJWugInlIWT0g0n1LlNjyoVaSi3pig+qrJqPXZCZ2x/UkuXJMTXrXpuQRWPfFXB96XxuV8hn8WvhiZyxUHJ5KZs4oAjB2ARf0Oy3SlgLfsU2jXjxkgPBXY6sio56GfdxjDd9CMl0qSKazymr40yamB4pxcNSqoi3Ht0J3xeDTm1IWR2skNKoOkuyAXD67n+yAGAzsWydzm2xbj+KZSEo7p4Jtto0LvYAw88kKlTp5KRkcEdd9zBNddcQ2JiYnPXJiJSz/z1Zfxp8lJe+3Z93W0n7xPihuExhqQXYwVSsQPdsGynBavce/yOxZPHpdMt2eHeL8u5c2aEH6pT+L8jg5jKH4hVrsUOpuNL6YWT2EUBjrRLxosRLfueWMlyjBfDSerRYc4BrdnGKpcn5lTyxDcVFNXE3+Z2Dtn89sAkxg9LonNi/P/IuDU4Zcu4elQOfzh6QPwNSShAuLq0Q61X1WJMjPBORlZddmgfPly6ibP/sZYLhyRx9cHJ9EzVRTCR3RXzDJPzwrywsIr/LK8mJSFA3k92ftGgS3KQc/cLgGm+GQM6F0tLasjFs5QELUvQETWo6U4oFGLZsmX06NEDx3FYv349Xbt23Rv1tQpquiPSsub9UMqfJi/l3/Pz6247ZUCA64dHGNwJ7GB6hw/jJn1TwYQppRjgxP4JPHdiBiHHwwuXYmKVWL5EnORu+JKy46NPNU1W2gEvXEakeCmxijU4wQzsgH5Ht7SVxTEe+aqC5xZUUlP7viI3zWHCT5L5xeBEEv07OfdYPizHh3FjmvK1F21u+HHv9BXbjKy6ZkxffvPKLF6aXwzE18L7VW1w2TtNwaVIQ83fEOWFhVW8sqiKgqotjXAGd/bx8vkjeHVB4XYvGrRI4yudi6UFRBJzeeDzgu3+HPxx7AAO7JHOyzMXcN+RaWQlte8L02q6s0WDAsuRI0eSnJzM6NGjuf3227nmmmtITt7+C3fLLbfsXtWtmAJLkeZVGYnht21KaqKkJ/iJeh5JAR/frCvljo+W8NbCAgAs4LQBDtcNjzCoSwJ2MAPL8bds8a3IW0urueDdIsIuHNwtwOunZdIp5GCMwUQr8SIlgI0T6owvpYea9EibZYyHW76WaPFSvGglTlKOlj5oYV/nR3hwVgVvLq2ua352YLafq36awikDEnBsranbmllOAuFgDsFQar2RVcFwPsat4dPVYe78vIz/romvoee34fzBiVx3SIqCS5Ed2Fjl8srial5cUFW3di9Al0SbM/cP8YtBiRzQ1Y/tC+3wokFH644sHdfOLp5NOLwvo/8yg0UFFWQkWNw1Jo0LhiTucm3WtsoYFxOrIdh1uALLhgSWS5Ys4dZbb2XFihXMmTOHgQMH4vNt+8eJZVnMmTNn9ytvpRRYijSfmqjLPdOW8+hneXW/mC4fncuEw3I59C8z+G5DBRZw+gCLa4fHGJydhhVI0QjBHZixNswZbxRSXGPYJ9PH2//Tqd6bSeNG8MIlGLcGO5CqJj3S5njRSqLFS4mVrcHyJ+EkZLR0SR2WMYbJq8I8OKucT1ZvaQYxLjfIVT9N4bCeAZ1X2ppdjKz675owd39ezserwwD4bPjFoHhwmZuu4FIk4hreW1HDiwur+GBlDbHawZR+G07ol8AvBicyLjcBv1P/3LiriwYiHcHOfg6+WlfGZR+W1IX/h/YI8Jdj09mvU/sZvLL18y+pCpOemFA3kKc9afLAcmu2bZOfn68p4SKyxyojMe6bvoI/TV66zbY/jh3AQT3S+eeMWVx7kM3AnAxsX6gFqmx7Fm+KcvJrhawtd8lOsnnz9E4ckBWot48xHiZSjhspw3YCatIjrZ4xBrdyPdHiJbg1pfGgvR031mrNoq7hte+qeXBWOQs2xUMtnw1n7hdiwk9SGNK1/bx5kO2bsTYeXE77Ph5cOhacNyiR6w9JoW+GfodIx2KMYU5BlBcWVPGv76oprN4y5fvAbD/nD0rkjP1DdAo1YBqrpmOL7PDnIOYZHvu6gjtmlFMVNfhtuPbgFK49JIUEX9u+QLp5hOnE6St4tN4I01xuOKo/Cf72Mw2+WQPLjkiBpUjziMQ8sm//aIeLK6+/ZSym6Fva9q+flrGu3OWU1zaxYFOMlIDFK6dkcmTvhO3u68Wq8WqKwbg4CZ3wpfbCTuyK7dv+/iJ7mxerJlqyglhpHpYTxE7opJF7LaAi4vH3b+Mdv9eWxzt+J/ktfj00kctGJNNLzVg6nC/WxYPLKau2BJfnDEzk+pEp9FdwKe3cDxUu/1xYxYsLq1hcuCVUyUm2OWdgIr8YlMj+nXUBR6SpfV8a48opJby/Mv67Z0CGj78cm87hvdruhexIYi73f17An7a7lu0+XHtkv3Yz0rLZA8sVK1bw0EMPsXjxYgAGDhzI73//e/r167d7FbdyCixFmseGijDZt320w+0Ft44lLZKHiWkqzO4oqfE4681CPl0TwW/DUydkcNb+iTvc33ixuiY9diAVJ6VnvElPIGUvVi1Sn1tZQKR4CV51IXZiloL05rSDEQ0FlS5/nVPBpG8qKQnH/2zMSrS59KBkLh6WREaClujo6L5cF+aeL8r5KC/+5tG24Oz9Q1w/MoV9MhXYtCkdfYTfLp5/ddTwzvJqXlhQxdTvw3Vr9ib44OQB8XUpj+od1Lq9Is3MGMO/l9ZwzdQS8ivjo5p/OTiRu49Ibdho5tbE8mFlDiL79sk7HMiTf+uxBHzt4++tZg0sP/zwQ04++WSGDRvGoYceCsCMGTOYN28e77zzDsccc8zuV95KKbAUaXrfrC1h367J9PjTlJ2cmI/BFC3smH8wN5FwzHDRe8W8vqQagHuOSGXCT3YeQBpjMJEy3EgJti8RJ6kbvuRutd3F9Qe47B3GjRAtzSNWsgKwsBO7aO3aZlJvzaTqCOmhAOHqMvI3rOa+GZt4YWEV4fiASgZk+Jjwk2TOHZTY5qdfSdObvT7C3Z+X8cHKLcHlGfuFuHFkCvu2o3XG2qMdnQeC4fUdYg3FnT1/L1bNF+sivLiwiteXVFMa3vL2eWT3AL8YlMjp+4VIC+p3lMjeVlLjcet/y3hqbiUG6Byyue/INM4eGGoT71tcz/D1Roc+Pfeh911Td7hfwW3H0iW57Y4g3VqzBpbDhw9n3LhxTJw4sd7tN9xwAx999JGa7ojITlWEo9z8n3k8+sV6Xr/gJ3y9toQ7p2xv6PsArh6VRaAqrwWqbF88Y7hueimPfV0JwOUHJTHxyLQGddbzopV44WKwHJzErNru4lrnUpqXW11ItHgZbuV67FBnbH9SS5fUbu1ozaTLDu3D5aNzGfPXz/luQwU/zYl3/D6xvzp+y659nR/hns/L+c+KeNBlAf9TG1xqimzrs+O10zpGl+qdPf8rD+/LWc9+wUcryur275XqcN6gRM4blEg/LX0g0ip8uS7MZR+VsLB2be2jegd55Jj0VvszurQovu7tS4uqCXsOeTcdTc+dDuTRCMsGSUhIYP78+QwYMKDe7UuXLmXo0KHU1LS/X2YKLEX2nDGG9+ev4NI3l7K6LD5UZ8IhGdx50k+57+OVPNIB/0Dem4wxPDS7gj98Ev+D+4z9Qjx1fAbBBo6QMm4Yt6YIPBcnIVPrXEqTMsaAcTFejFj5WmKlyzGeixPqimW3sWk9bczO1kz649gBjBuQQbhkJaO6q+O3NN43BRHu/rycd5dvCS5P2zceXA7qsp3gsqNPR24hO187rf1fQN7VefDAHumc/+JXnLpPiF8MTuSwnoEGXfQVkb0r4hoenl3B3V+UUROLL9Vw48hUJvwkmYDT8j+zxTUe/1pcxQsLq5i9fkswmR60+Gj8wbzzXaHWsPyRRgeWPXv25MEHH+SMM86od/urr77KNddcw+rVqxtfcSunwFJk9xljKCgs4Kq3F/LyoioAeqbYPHpsBuP6JtSbglNaHSEtFCBcXUownK+wshn8c1EV498vJubBmF4BXjmlU3wKUwPfJMbXuSzBRCuxg2la51LqGM+Nh47GBS8ePmK2vi22ZR83ivHCGDcKXhTjRmr39fCiFdjBdOxAC/y+7SBhyYZKl9nrIywugivHHaylOaTZzSuIcPcX5by9bMvv9VP3SeAPo1IZ3MXf4acj17MXz0NlYY+Caov+fYfR7Y6drZ3Wfs8DpRGb1OwhO33+P9xyDFUb5pPk87ZzBBFpbVYUx7hicgnTvo8vTzKos49Hj01nZPe9P6U65hkm54V5YWEV7y6vJlK7xI5jwbG5Qc4bnMTP+iUQCoZwUwdw7/QVPxrI07G7hDc6or344osZP348K1euZNSoUUB8Dct7772Xq666avcqFpF2xxiDW13I819+x3XTiimqia9ldemBSdw6OpXkQHxIu3FrCFTlYap9pDk+THWMgInR6G5g0iDnDEyka6LN2W8W8cnqCOM/quJv/zOY1OS0Br1JtGwfTqgzJiETEyknWriQWGkeTnLtOpfBDI3CasOMF9sSNHqxLeHj1l9vDhzdCMaLghvBeLWBo+dt2cd4tSGkiQ+rMsT/xQJssGwsywHLBtuJr09p+3ECqXt9yYH2HJZURT2+KYgye32Er9bH/908yn1wdgrnHhrZ7pt0gJLqaPxCkuPDxNpfUCF7zwFZ8Qtk8zdEufuLMt5cWsMbtR+/+0knJp4ymPs/Xsmjn8380WyLAR1mtkVTnodcz7ChyuOHCpd15S4/lLv8UFH7Ue6xriJ+W0XUMDg7hbd+Hd7peWBjRZgFa10GZbh0SWzbb5qLqj1mrA3z3zVh/rsmgmsn8OYunn95TYS0hICaQIq0Ef0yfLx7RideXlTNddNLWbgpxtEvbeJ/D0jijsNTSd8LzQLnb4jywsIqXllURUHVlosdgzv7+MXgRM7aP5Hs5C3nU+PW4JQt4+pROfzh6AGUVIdJDyUQ9bx2FVY2VqPfEdx8882kpKTwwAMPcOONNwLQrVs3brvtNq644oomL1BE2hZjDF5NEcvWrOSy9/KZtjZ++5AuPv46LoMROYEd3DGmN8R7ydF9Eph8Tmeu/TjMU2cfzCOf5fGXGbMa9SbRsmysYBp2MA0vWkmsZAWxsu+3Wueyi6bytlLGi2FiNRg3XPfhRSow0QpMrDoeWOJtFT5uPaKkNnm0tg4cndrPbXAC8e8Ny6693Wn1Afbmtcvun76i5cOSPRxZ5XqG7wpjteFkhNnroyzcFMX90RUgC9i3k4/Du9vkpARJD/l3OLIoLRTAVOvcLE1jSFc///x5JxZujHLPF+X8e0k1Ywf15d7pK+utZ11SHeWO2mlxV4/KadfTkaFx56HqqKkLIjcHj5vDyHXlLj9UeORXuNv83O9IVThC1+TATs8D6YkBzn9rA5sqI/TPcBjZPcjI7gFGdg+wT6avVU+PLqx2+WxNhP+uDfPf1RHmb4zWuyjeOcna5fPXeVCk7bEsi3MGJXJs3yB/+LiM5xdU8dS8St5ZXs39R6dz2j4JTf436sYql1cWV/PigirmbthyPumSaHPm/iF+MSiRA7r6d/i4mwfyeJUuKbEafMHhBALJTVpjW9PoKeFbKy8vByAlZe9MBZw4cSI33ngjv//973nooYcAqKmp4eqrr+bll18mHA4zbtw4/vrXv5KVlVV3v9WrV/Pb3/6W6dOnk5yczAUXXMA999yDz9ewvFZTwkV2bXNQWVP6PY/M+IE7Zxuqa9cO+cOoVCaMSMbfCtYOkS3KAn14dOaGJmt6ZGI1uOFiMC5OQid8qb3iaxD62kdHu7Zk21CyBi9SuVUoGYlPw8bERz7aPiw7gOX446GZZYPt2xJEtmO7WrttwsiuJFTlNWvwujsjq4wxrKvwmP1DhK/yI8xeH2FOfpTK6LZ/1mUn2fwkJ1D3MTzbX9fNNpKYywOfF9SFQ1vrCGvXSctaWmzo1/eADr8swa7WUDymfwaXvjaHHypcimsa9tbNtiAryaZbskP3FIduyQ7dUhy6130d35YUsHd6Hrj5mAGcuG8mF778NYs2bft/kJlgcUj3IId0DzCyW4CDsgOE/C33997Gqq0DyjALtlPzvpk+DusZ4LCeQUb3DNK5a3+dB0XauU9Xx5vyLCuOnxOO7xvk/8am0zttz2b1RFzDeytqeHFhFR+srCFWe53fb8MJ/RL4xeBExuUmNOp9sHHDeOESErofht0OA8tmnRK+tb0VVALMnj2bJ598kqFDh9a7/corr+Q///kP//rXv0hLS+Oyyy7jtNNOY8aMGQC4rsvPfvYzsrOz+fzzz1m/fj2//OUv8fv93H333XutfpH2anNQGStfzdd5P3DZdI+5m+LbxvQK8JdjM+jfSruzdWiWj7SUNP4yY9Z2Nz/y2Sr+cPQATLWvwW8SLV8CPl9OfJ3LmmLC+V/VrnPZq3ady/b3C7cl7X4oGcD2p0JCoN2Hkbtk+QiGUnn0s5nb3fzIZ6u49sj+7PtwITYxuibadE106JoU/7dLok3XJJusrT7PSLAbNdqooSOrysIeX+dvmdY9e32E/Mpt11NL9lscmO1nRG04OSInQPdke4eBazC8nuuPHFD3fLfb/KzBz0akcfbtEqIkHN3pdNzi6ggZ7XlZAstHYCfnob/MWMX1R/WnoNqmuCb+GiT6Lbol21uCyNowcutwMivJxmc37FzUkPPA1xdmUVzjMfOHCF+sC/PFuvj5qKgm/mb9vdqO8H4bhmX5643CzEpqxIyLRo40L6h0+WxthP9v777j46jOvYH/puzMFvUuWe4d94axTcfBECAN7iUJIZQACQESEkJxGjckl5Z2Q2KSlwRwIIG0S2iXGjAQbGMb94KNu2yr15W2zOzMnPePMzu7q7qqu5Ke7wez2qLd0Wq0M/Ob5zzn3xUa/n1S6zRUnZkv46yxKs4aq+DMcjVhGCYACPQ5SMiId/Y4FZuvLcJPP2jFTze14tUjGt59shY/XJGJWxZlJH5e9vA5xBjDtho+y/ff94fQEIrtjy0sceFLs7z4z5ke5HtotFl/9avCcqi0tbVh4cKFePTRR/GTn/wE8+fPx//8z/+gpaUFhYWFeOaZZ3DFFVcAAPbv34+ZM2di48aNOOOMM/Dqq6/i0ksvRWVlpVN1+bvf/Q5333036urqoCgdh6dqmgZN05zrfr8fY8eOpQpLQuLEB5WtTZX4yWYLa3YBJgNy3QIePDcbV8/2pv1w0NFKkN1oViai5Ef/6vIxp36wEhnhI1CgdfmY7jBmwdL9YFoLBJeP+lz2Ae8VqfUcSjILgJAQSgqiyxmiTTq3pVbE2DHTMPH+t7p8zJHvXoBPPbEZe6pbk3pOWQQKPCKKfRKKvKIdZPKvi312sGnfVuARwTIndVlZ9YNPTMUnp+fhume34kBDx96+kgDMLnRhcYkLS8oULC5RMCNfhpRkSBFFk5+RlBFkCHmzUPKjric8OfGDlbjpz+/jiukuXDjRnXQIl+7CBsPLh0J4r1LEPavmY3I3n0Mnf7ASh44dQKasoSxDQrYqDPh2tC+fA7rJsLM2go2neIj5wanOT6RMypHs8JKHmDPyOw4jT7bSvLrNdIZ3//ukhv0NHcOEWQXRgFLFmeUKipIITOlzkJDRY39DBLe+0Yz1J3UAwPwiF36zKgeLx2R1+zlU2Wbi2b1B/HlvEB/FffaU+ER8cZYXV83y4rQCV7+XjyosY4ZF2dMtt9yCSy65BCtXrsRPfvIT5/atW7ciEolg5cqVzm0zZszAuHHjnMBy48aNmDNnTsIQ8VWrVuHmm2/G3r17sWDBgg6v98ADD+BHP/rR4P5QhAxT8UGl2VaFtypMfPM9Ecf8/P4rZnjws/Oze3c2nQw5ZhrI8XTfsynL48LCNaewaqKM6+f6MLOXG2BBECGpOYCa4/S5NP0VkLwlkDPHQPQUUJ/LOMzUYYYbwIxQF6GkHVdRpWS/HWyMYPU7fmyqtnD0e7O7/TsozVLxj09noapVRW3QQm3AQl3QRE3QQm3ARF3Qsm830awxGBZQHbA6PWhvr8Cn4Oj35nVZWfXr94/hrvOmoD4sggEYny1hcYmCJaW8gnJBsQteV/9/9zT5GUkZZkAL+fGNMyd0Ohz31hUT8ObH9Xh2byue3QuMyZRw7RwvrpnjxdisYXEYk4Axhh21EfxxdxB/+yiIpjBDgU/BLy7vfntc4FOQXyoCrP8Hwl0uWx8+BxRJcFpNfGNxBhhjONZiOgHmxlM69tUbONJs4khzCH/eGwLAT2wvLYsFmEvKM6F0UWl+17lT8ObO3Xh5fzP+fVLHx40dA8o5hYkBZUEfJgaiz0FCRo8Z+S688fkCPLU7iO++24IdtRHc9EYI79+6EL98r+MEcHecMwXffm4LntzeCMv+UHDLwGVTPPjSbC/OH6+OmJNp6Sbtt/R/+ctfsG3bNmzZsqXDfdXV1VAUBTk5OQm3FxcXo7q62nlMfFgZvT96X2dWr16dMON5tMKSkNGsfVBZFzTxvU0qnvnIBGChPFPCI5/IwcWT3aleVJKMHg4SbztzAv59pB4HGzUcbNTwm60BLB+j4CvzfPjsNE+v+1OJLh9Elw/MCMMIVMIInKQ+lzbLCMMM1sBoOQ5Ta+ITaVMoOSgaQxbu3+jH/9segGHxCsX91U1d/h1848wJ0EN+jM8Cxmf1vI7qJnPCSx5kmqgJWPzrgJlwX13IQkmmitq27mfpbg7qePazRZiaZQz+iSCa/IykQE/DkSsq9uGbizPwp71BnGo18d8bWvHAxlasmqji+nk+XDQp/asu64Mm/vJRCE/tDmB3XexvbEymhKtnqwgEut4ef+PMCdBCfihD1cOzH58DgiBgYo6MiTkyvjjLCwBoDlvYXKU7IeaWqgiawgyvHdHw2hE+guP56ybiwx2HO514yWLAwvIxeHxXJX8NAHOLXE4PyhXlysAOu6TPQUJGBVEQcO1cHy6e7Mbd61rw+aUz8Yt3O58AzmLAJXMn4/FtjVg2RsGXZnnxuemeIZltfLTrVWAZiURw0UUX4Xe/+x2mTp06WMvkOHHiBL75zW/izTffhNs9dCGIqqpQ1dF78ExIvPZBpWWZ+PuxDNz9bhD1IQ0CgJsX+vBfZ2UhU6EP7eGkp4NEtHyM5y/Px+M7A3jlcBgbTunYcErHHW8144uzvLh+rg+zCntZdSm7IWeUxfpc1mzlfS4zxo66PpeWEYLRVgnTfxyW3gJBzoCcMYaCyUEQMRke2xHAf2/wOxNWXDxJxQPnZmOGtw6nDVDvMkUSUJ4poTyz54Nn02Jo0kQU9DBLd2GGioIyKVZhS8gIw8wwJP9B3LG8FN+9YGrCcFzJfxATMk08eF42fnRWFl44GMITuwJ4t0LHq0c0vHpEQ2mGiGvn+HDNHG+/J08YSIbF8OZRDU/tCeD/DoURsYuuVQm4bKoH18z24rzxKiRRgGBWj9geijluERdOdOPCifxYLmIy7KqLDiPXcaCJ4YKpBbj2Lzs6/f7frD+Gkz9YidUrcrGwSMCKchW5FBIQQgZIsU/C2suKwHILcd1fd3T6mN+sP4ZTP1yJfV8dg4nUIXBI9bqHZWFhITZs2DAkgeXzzz+Pz372s5Ck2I6/aZoQBAGiKOL111/HypUr0dTUlFBlOX78eNx+++341re+hR/+8Id48cUXsWPHDuf+o0ePYtKkSdi2bVunQ8Lbo1nCyWjUPqhkzMQJLQe3rwvhjaP8jPisAhlrVuViaVnHXrBkeEi2Z1Nlm4mndwfxxK4AKvymc/sZZQq+Mo+fZezL0FTGLFhaC5juj/W59JXwPpcjdLi4FQnYQWUFLN0PQcmCqGZTUDkIGGN49UgYq9/xO8MIZxXIeOi8bFwwIXYiNJW9y2iWbkLiJDnhysHGCJ7cFcTTe4Kotyc7EABcaFddXjypdzOyDqSPGyN4ajfvcRbfGmJhsQtXz/biP2d6kefp+Hk/ansoSiqalEkou6/rnto1965Etn4UzBjB7wMhJGWS6e0/lJ9D1MMypteB5be+9S2oqooHH3ywXwuZjNbWVhw/fjzhtuuuuw4zZszA3XffjbFjx6KwsBDPPvssLr/8cgDAgQMHMGPGjA6T7lRVVaGoqAgA8Nhjj+HOO+9EbW1tUpWUFFiOfGa4GWawFgCzJ6uQAdEFQZT5xBXOpWvETxbSWVBpKXn47U4D961vRTDCoErA6mVZ+NbpGVBSdEBABliSB4mmxfD2cQ2P7wzg5UNhmPYWJFsV8IXTeNXlnKK+9diy9DZYejMAAZI7D1JmOSRPIUSXt0/Pl24szQ8jUMWDykgbRDUHgpI14j9TUmVPXQR3r2vB28f5CZZCr4gfrsjCtXO9XQ8f7eXstAMhOkv4Q+sOd11ZNZLDCkL6QTMYXjoUwhM7g1hXEZsgrsQn4po5Plw7x4sJOYNfdenXLPzvgRCe2h3EB5W6c3uBR8TnT/Pgy7N7sW1MwedQSiUx8VL1vZ8Aa9w7Ot4PQsjQS7PPIQosY3odWN5222146qmnMHXqVCxatAg+ny/h/l/84he9X+JeOPfcc51ZwgHg5ptvxiuvvIK1a9ciKysLt912GwBgw4YNAHhF5vz581FWVoaHH34Y1dXVuPrqq3HDDTfg/vvvT+o1KbAcucxwM4zWEzADp/jZEkGyZ9uNEuzwUoIg2JeSCkhuiLIbgqzy2yWXfX9cyCm5hk3FFGMMYBYsrTkhqBTd+djTKOHm15uwrZp/eJ81VsGaC3MwNW/wGr+T4aGqzcSf9vCqy2MtsarLJaUu3DDPh8une+DrQ5sAZkZgac1gZgii7IOYUQrZWwzRnTcsqy7NcDOvqGw7CcsIQlJzISqZqV6sEas2YOK+9/14cncQFgMUCbh1UQbuOiMT2Wp6fiaP2soqQgbQ4SYDT+4K4Ok9QdQGY1WXKyeouG6uD5dOGdiqS4sxvH9Cx1N7Avjnx2EEI/yQShSAiya5cfVsLz452U0ndpNAleaEkFRLp88hCixjeh1YnnfeeV0/mSDg7bff7s3T9Vr7wDIcDuOOO+7As88+C03TsGrVKjz66KMoKSlxvuf48eO4+eab8c4778Dn8+Gaa67Bgw8+CFlO7owrBZYjC2PMDuZOwGw7BWbqEL3FkNSsDmezeZBnglkGwEzAMpyvndsAvkfMYFdixoWbogLIbgh2wBmt1Iyv4OSXroQghjGLB6d2kMgQvc5vY8wC4m7j11ni9bjbmBVdXgPMMu3HGYBlgjH7uiABDLCMIEQlExpT8d8b/PifLW0wGa+gu/+cbFw71wuRKsJIHIsxrLOrLl86FIZhZ/5ZCq+6vG6uF/OKe982gDEGFgnA0lsAAJKay6suvYUQXb4evju1+OdME4zWk7HPGXde2i/3cBY2GH6ztQ0Pf9CKVp3v2nx2mhv/fU42Jg5BhdWAGG2VVYQMAt1kePlQGE/sDOCt47Gqy2KviKvn8JEAXX4mJPE3WOE38Oc9fDj60biTddPyZHx5thdfnOVFacbwO7mWSlRpTghJtXT6HKLAMqbXgeVoRIHlyOAECH67otKMQMooR8Q3CaonC80hHTkeBVrID1Wr6vUHUjTchGXwELB9uAkrcdIEQUoINyG6IEDoEE7ywJIhFkiyuICS384ACNHQ1ElPnRcCBNF+gGBXfcZuE2QfjMwpUL259nugorqpCTf+Yy/ePOwHwA/6f35BDu2Akx7VBEw8vSeIJ3cFcKQ5diC3qMSFr8zz4T9meJDRVdVlNweKzDJ41WUkwHtd+kp4r0t3flpVXfKWCg32CZEqMGZAVPOGx7D2YRqWMcbw3MdhfP/dFqfSd2GxCw+dn40zy2kCPUJGs6PNvOryqd1B1ARjI2guGK/iunk+XDaFV0DGVzl3tj8YNhhePMiHfL99XHP2sjIVAVfM8ODLs71YWqZQi49+oEpzQkiqpcvnEAWWMX0OLA8dOoTDhw/j7LPPhsfjAWNsxG6kKbAc3mI9GU/AbKvkAYI7H5KaCzNrKh5cdxi/TsFZFF7paMRd2gGBIEKAYAeMdtDY1W39HHIePZPU/j24dcUE3HbmRPzH2g9w2wIZl07x9PvnJaOLxRjerdDw+M4gXjwYcmZHzXAJ+PxpHlw/z4cFdtVlTweKHZ47WnXJrFjVpacwpRt0xixYwTpEWk/ADFQDAnhQKbt7/uYU6+37n062Vuu46+0WbDjFe8aVZoj48VnZ+MIsD1WCE0IcEZPh/w7zqst/HYsFjoVeEXcsK8Ct5y/AQ+8c6bA/eOe5k/DT17fhkU31aNZih0xnj1VwzRwfPj3V3afWJ6Qbw/TkGSFkBEnx5xAFljG9DiwbGhrwn//5n1i3bh0EQcDBgwcxadIkXH/99cjNzcXPf/7zfi18OqLAcnjqbPIY0Z3vBAi6dyJ+tqEGP06DPhWp0t178IOVU3H7siJ4w8eGfsHIiFIbMPGnvUE8sTOAw3FVlwuLXbhjeQE+s2QuHlzX8UCxpxMHvOqyBcxogyD7IHmLedWlJ5+3WxgCzDJhhmph+CvsibsESJ583ut2GOjqpEW6D8M72Wri3vda8My+EADAIwv49ukZ+NaSDAoPCCHdOtZsYO3uIP64O4DqgIV/XrsEW0824yf/6rgv9P2VU7GwPAefW7sF5ZkSrp7txdWzvcOnzQQhhJBhhwLLmF4Hll/+8pdRW1uLP/zhD5g5cyZ27tyJSZMm4fXXX8e3v/1t7N27t18Ln44osBxenCGZLRUwglUAsxKCSgBJzQRW+cNP4N87t6LUxzA2S4ZbHsRqnUE+i6ObDBV+E0ebDf6vxURDWMBvv3Amyn/8r7SYDY2MfIwxvHdCx+M7A3jhYAi6iW4PFHtz4oBXXfoBZkJUcyBljIHsLRq0yW2YGYkFlaE6QJAhufMhSMNrMqrhduImoFv4ny1t+PnmNoQMvvvyxdM8+NHZ2SjPTJ/WAISQ9BcxGd6qMPCJhYu63Rc6+YOV2LB7G5aXSZBEqtwmhBAyuCiwjOn16cE33ngDr7/+OsrLyxNunzp1Ko4fP97bpyNkwDDGYIXqYfhPwAhUAgIgqXkQOhmSeagZyFK0TndOAaA5FEF1q4Y73gliT3UrAKDEJ2JcloTx2bJzOT5bwrgs/s/r6n1Vz0ANxWSMoT5k4WiziaMtBo7Zl9Fw8lSrCavdqYnZJZmoadO7fQ9aQjqyJRnMoMCS9J8gCDhnnIpzxqmoC5p47mAEK6cV4Lq/7uj08Y+8fwzfvWAqWEjuMTQXXT6ILp9TdRmp2wXD5YXkLYLkKx2wMJGZOsxgDYyW4zBC9RBlNyRvyZBVdA4EzWDYUx/BvgbgqjMz8ev3N3X6uEfeP4a7zpuC+98OYmwGw/Q8F6bnyymZadtiDH/ZF8IP3mtBZRvvL7BsjIKHz8vG4tLeT+hECCEuScDFUzPRrEW63RcKaBGcPSEDzEi/anNCCCFkJOv1EVYgEIDX23HygMbGRqjq8BgCR0YWxixYoXpE/BV277jOh2T6NQt/3x/Ck7sCON4q4Oj3TkOOx9XlGfWiDAU5LhMZLgFtEYbqgIXqgIXNVZ3v1BZ5RYyNBplZkh1mxkLN9hONRIdi/mzdYfz6/U3thmJO7TAUM2wwVPgNHkraQeTRZgPHWvhtbZHui6W9LgETsyVMzJExIVvCaUUqSjPVbt+DbI8CFqKwkgy8Qq+Ery3y9Xig2BzSkdOL0FwQZUiefMCTDysShNF6Coa/AqKaCylzDGRPIUS195XylhF2gkpTa4Ao+yBnlKV9UBkxGfbVR7CtJoJt1Tq2VUewuy6CiMVPWlwwv/uTFrVtOv550HBO3AD85M2MfB5ezsiTMT1fxvR8F0p9Yv96WXdRab7+pIa71rVgWzVfzvHZEv77nGx8bpp7xPbOJoQMDWYayPEotC9ECCGEpKFeH2mdddZZeOqpp/DjH/8YAK+YsSwLDz/8MM4777wBX0Ay+AK6AZcoojkcQY7bhYhlwaek90E40D6orEJnveMYY9h4Ssfa3UH874EQgnao5xKBXacacduZEzodCvmNMyfA1Frx5udzwVgOGsMWKvwmjreYON5i4LjfxAk///pYi4lWnaE2aKE2aGFrdecH//keEeOzJIzLljA+S8ZNZ4/DX9YdTnj95lAE9715EAzA5bMK8fN/7XLCycpWEz31bxiTKTmh5MRsCRPsy4k5Moq8HcMEPezHN86cgPu6eA+0kB8KDQcngySZA0Wf6sK3X67Hl2cpmFfcu0o60eWF6PLyqkvdj0j9bhiyG5K7CFJmKSR3QY9Vl5YRgtFWCdN/HJbeAkHOgOwrH5yZyfvZGsK0GA40GthWrWNrNQ8od9VFEO7kqfI9ImbkMJRkdv/+l2SqWDVBQoGiYn9DxDlxUx3Q8E6FlvD4bFXAtDwZM/Jd9iX/ekK2BLmbYZRdVZrX15/Anf+qxXMHeJ/KTEXAXWdk4tZFGYPbooMQMnowA1qI9oUIIYSQdNTrVOrhhx/GBRdcgA8//BC6ruOuu+7C3r170djYiPXr1w/GMpJBFI6YeHjdYfz6/aNxFX4Tcc/5U+B2pWc/sNhsvMdhBmrAg8pCCFIszKgNmPjz3iD+uDuIA42xncwZ+TKunePFF2d5UZRZj/nnTYUAPvSx08kmwEP5fI+EfI+EBcWdLQ9Ds8ZQYQeZx1tMHPcbqGgx7ZDTQLPG0BCy0BCysK0mggKfgp98Lge/fv/DTn/GX9tDMV89aqA+oDu3+1wCJuVImJAtO6HkxBwZE3N4NWdvD+JVrQp3nzcV6OE9IGRQ9HCgeOuKCXjz43o8urUFj24FzixXcMuiDFw2xd2rPmKCKENy5wHuPB5ABiphtJ2I63VZCEHJSgj0rUjADiorYOl+CEoWpIyxEISBHw7dl9YQFmM43GRga3UEW+3KyZ21EQQ6qbTOVgUsKFawqMSFhSX8clyWBEEQoIdbuz1Qj4T9+MlZPgA+AECLZuFAg4EDjRHsbzCcr480m2jRGLZURbClXRW6IgFTc2UnzIxWZk7Nk+FzezutNL/tzAm4dcV07GtqgCgA183x4gdnZqHYl57bJULI8EX7QoQQQkh66vWkOwDQ0tKC3/zmN9i5cyfa2tqwcOFC3HLLLSgtLR2MZUy5kTrpTkA38PC6w/jxmx93uO+Hn5iGO8+bnFaVlnw23joY/uMwgzWAINl96XhQaVoM/zqmYe3uAF4+FIbB25zB6xLwHzM8uGaOF2eUKQmhRHxQ0BLSke1RoIVaoGrVAzozbotmocIOMo+3mNCh4ovL5mDCf7/V5fdUfP8CvLxtH7xiGBOzeShZ4OnnkMtODNV7QEhnoq0RHlp3uNMDxT2H9uJnG+rx3IEQTHtrNS5LwtcW+HDdXB9y3H0LEJllwtL9sCKtECUVoqcIckYpBNkLM1jDg8pIG0Q1p0OYOZCSmaXbMkI41mI6weS2Gh3bqyPw6x033z6XgAXFPJhcWOLCohIFk3IkiF0sf0/vf7KzhGsGw6EmA/sbDRxo4GHmx408zOyswhMABACv3LAE6491PTvvyim58IaOYU7R8JrMiBAyvNC+ECGEkHRBk+7E9CmwHG1GamCpGxZKfvRGNzNEXwhFHvrJFdrjQaU9G2+wpsNsvMdbDDy1O4g/7gniVKvpfN/iUheum+PDFTM8yOppkohBnqW709frYZbyIZ+he6jfA0JsyRwonmw18dj2NjyxK4iGED8b4XUJ+NIsL76+0Ifp+X0PtCwjDEtrAjMjEGUVlqlBUnMHbYbxeN3N0v2DT0zFysm5+OzaLWgMd9xUu2VgXpEdTBbzy2l5cq9nsR3MA3WLMVS0mNjfaGB/QwQfNxp2ZWYEouTC0e9dgLHdzM475J+DhJDRjfaFCCGEpBgFljF9Kp9ramrC448/jo8++ggAcNppp+G6665DXl5eX56OpEhzuPvJLmpaNfxlxymUZrmxcEw2phdl9PpAuD+YZfJJLvwVMEO1EAQXJE8xBMkFzWB4aX8Qa3cF8fZxzRmqk+cW8IVZXlw7x4fZhb0IMJgxtDNhp2PPpKF+DwixMTMMJXgULCTzWelDBhRmJAzBK8+UcN/Z2Vi9LAt/+SiINVvbsLfewGM7AnhsRwCfmKDilkUZ+MREtctqwq6IshuiXApmmWBWBC7ZPbA/YFcEGaonq8tZuqOtIUTJBZeoY05RLJhcVKJgZoHcbW/IZCXz/veVKAiYkCNjQo6MiybF3lfGGJojKvyh7if9aQnpfJnos4kQMhRoX4gQQghJG70OLN977z1cdtllyM7OxuLFiwEAjzzyCO677z689NJLOPvsswd8IcngyHG7up1sIc/nwk/fOez0UPS6JMwry8L8MdlYOCYbC8uzMas4c8CrMJllwAzW2kO/6yCILkjeEgiijL11Eazd3Yxn94WcKisAOH+8imvnenHZFM+wmYyBeiYR0k4SB4oel4Dr5vpw7Rwv3q3QsWZbG/7vUBhvHtPw5jEN0/JkfH2hD1fN8iJD6d1nkyBKgzOZTpyAbmFzlY71J3VUhhR8/2Kth8Augje/WIKJGQbUwf5sG8IDdUEQkKtaEHwqzc5LCCGEEEII6aDXQ8LnzJmDZcuW4be//S0kiR/YmaaJr3/969iwYQN27949KAuaSiN1SHhAN/DTdYdxXxc9LK9aOAa/Xn8MO061YPupFgR0s8PjXJKAOSWJIebc0kx4+9D7kgeVdTBajsIM1UGQVIjuPLQZIv6xP4S1uwLYHDeZQ1mGiC/P8eGa2V5MyEmfXpu9QT2TCOm/I00Gfru9DX/cHUSr3dcxWxVw7Rwfbl7ow/js1H0+NIYsbDilYf1JHetPatheE3H66xb4lFE/JFr3TsTPN9R0Wmn+w09MxR3Li6EEj6ZgyQghhBBCCBl6NCQ8pteBpcfjwY4dOzB9+vSE2w8cOID58+cjFAr1fonT3EgNLAE+S/iDbx/CIwmzhE/APedNhqTVABavrjRNC4eaNOyoCmN7VQjbqzXsqAmjOWx1eE5RAGbkuzC/2IV5RQoWFLswp8iFbFUAmP14+1KQFejusVA9OWgOasjxKggHGqBo1dh0ks/y/ff9IWfmW1kEPjnZjevm+vCJCeqQDlEfVNQziZB+a9UtPL0niEe3tuFwMz/BIgrApVPcuHVRBs4sVwZt8pyok60m1p/UsP6EjvWnNOyr7/j3XJ4pYUW5ghXlKq5YMgu/21I7agO7gZr0hxBCCCGEkJGAAsuYXgeWK1aswJ133onPfOYzCbc///zzePDBB/HBBx/0eoHT3UgOLAFeaekSBTSHNOR4FITb6iC37AOLtMUeJAgAY+DzuvLrjAEVrcCOemBnHbCzHtheB9R1kVlPzgbmFQqYXyhiXoGAReWZyB17Oh5cdyRhdtzbzpyAb5w5EWet2YD9tXwZpubKuHauF1fN8qLYN7hDNgkhw5vFGF4/omHN1ja8dVxzbp9b6MIti3z4z5nezltH9PLEAWMMB5sMvH+CV0+uP6XjeEvHSvTpebITUK4oVxIqPimwo0pzQgghhBBCoiiwjEkqsNy1a5fz9UcffYS77roLt912G8444wwAwAcffIA1a9bgwQcfxJVXXtnPxU8/Iz2wBAAzWAetfjckd0G/KvwYY6gKWNhRo2NHTYT/q43ghL/jQfw/r12CrSeb8ZN/daws+v7KqVgyNgd/37wX1871YvmYwa+MIoSMPB/VR/Dotjb8eW8IIYNv7gq9Ir4yz4cb5/tQliElBGbNIR05HgVayA9Vq0oIzAyLYVdtxBnevfGUjtpgYpW5KADzi1xYXq7gzHIVy8sVFHq7P8lCgZ2NKs0JIYQQQsgoR4FlTFKBpSiKEAQBPT1UEASYZsdgargbHYFlLcKVGyFnjh2U568PmthZG8F2O8SsaAXevvXcbnu3Vd37CWAE924jhAydxpCFJ3cF8LvtAZxs5dspWQRuOz0f9122GA+/k1jpHa1w3PHxXrx5qAXrT2r4oFJ3emRGqRJwepldPTlGwdIxCjJ7OdmPgwI7QgghhBBCRjUKLGOSmong6NGR2z+LDI0Cr4QLJki4YIIbACDIbjSFI93OjusP6ciW5CGbtZYQMnLleUTcsTQT31ySgRcOhrFmaxs2ntJx9oxJeGjdkYRK7+ZQBPe9eRAWAxaWl+C/3j/h3JetClg2RsFyO6BcVKIM3OzdQzhLNyGEEEIIIYSks6QCy/Hjxw/2cpBRhpkGcrMV5HhcXVZYZnsUsBAdvBNCBo4sCrh8ugeXT/dgV52FWdMKcN1fd3T62N+sP4YTP1iJa+dlYW6BgBXlKmYVyCNnsi9CCCGEEEIISVNJBZbtVVZW4v3330dtbS0sK7F/1ze+8Y0BWTAywjEDWsiPb5w5odPZcb9x5gRoIT8UGhZJCBkk80q9aNa6r/QOahH87pOFYMYo6iVJCCGEEDJapbpFT6pfn5A00uvAcu3atfjqV78KRVGQn5+fMBGKIAgUWJKkqVoV7j5vKgB0PTtuipeREDJyMdNAjocqvQkhhBBCRjtBckP05EFy58IMNzmXVqhxSCZBTPXrE5KOeh1Y/uAHP8APf/hDrF69GqLYx4kFCAHAzDAk/0HcsbwU371gasLsuJL/IH0wE0IGF1V6E0IIIYSMeoLkhpw9Hi0f/gz+HWtgac0Q1Rxkzb8F2Yu/A6Pl+KAem6b69QlJV70OLIPBID7/+c9TWEkGBDPDUIJHwUIyn2AnZEBhBlVWEkKGBFV6E0IS0FA8QggZdURPHlo+/BmaN/23c5ulNTvXfdO/AL16FyC6IIgyIMoQRBcE0WV/Ldv32deF3vU77+n1M+d+FWZb5QD8pIQMLwJjrFfHYnfddRfy8vJwzz33DNYypZ3eTLs+XJnBWoQrN0LOHJvqRSGEkCElSG5oailUT1ZCpbeqVdPZbEJGibQZikeBKSGEDAnGLBitFTCajyBr/tdx4g8TYGnNHR4nqjkYe8NRnHhiKqxQfXJPLkh2eJkYcMaCTtm5T/QUoPiyf3T7+uNuOgG94QBtF0YJZmqwtGa4x5wFUclI9eIMuN7ka72usHzggQdw6aWX4rXXXsOcOXPgcrkS7v/FL37R26ckhBBCUoYqvQkZ3dJhKF7aBKaEEDJCWXob9Ia9iDTsgV6/G3rDPjDdD1f+bPimXd5pWAjwSkcr1AClYB4iDXvBmAGYETArAmYZgBUB2u81MhPMNAEz3OP+pCt/NsxgTbevb4bqYQZrILrzel29Schw1qfA8vXXX8f06dMBoMOkO4QQMixRVQthBphBv3tCRptUD8VLh8CUEEJGEsYsGP7jiNTvgd6wG3r9HhgtR9E+WBQkFZKnEJKvBKKa02WFo+QrRt5ZD3V5jMAsE7ADTGZFnK9hX+e3GU7AyeLuhyj3+PqimoO616+BIMhQS8/g/0qWQHT5BuDdIiR99Tqw/PnPf44nnngC11577SAsDiGEDK20qWqhwJQQQoYUYwxmsBau/Jnw71jT6WP8O9Yge/F3UPPWLWCR1rhhfXwoX/wQv+6G/CU+PnGIoHfSpWjZ8jM0b6beZYQQ0pd9Yqd6sp6Hk3rDXv6Z3Y7kK4NSMBtKwRy4CubAlTMFgijD0lqQNf+WhBNXUVnzb4EZbup2WQRRAkQJfS3f6vb1590CrfpDWJofsHQEDz+P4OHnAUGCUjgXaukyuEuXQc6ZQgVkZMTpdWCpqipWrFgxGMtCCCFDKh2qWtImMCWEkBHODDch0rAPeuM+RBr2Qm/YBzlzHJT8/+1hKF4dmKkh0vTxgC+T6ClA1vyvw7+z68A0Z8k9MAO1dDKLEDKiJbtPHK2e1Ot3OwGl4T+GzqonXXmnQSmYDVfBHCj5syB58jt9bSvUiOzF3wGALo8JBlMyr19y+RvQa7dBq/oA4aqNMFtPQK/dDr12O1p3PgrRUwC15Ay4y5bx6ktlZM69QUaXXgeW3/zmN/HrX/8ajzzyyGAsDyGEDBkaBkgIISOTZYQRaTrgBJORhn0wAx0/z81wAyRvcfdDAb0lyF5wO6xIK28dYUV45Y8V4b3M7OvOMEBmOv3NYkMEjbghgrHhgHLWeJih+m4DUyNYjZbt/wPJWwR3yVJImeOoioYQMqL0tE8cOPQiwqfeQ6R+b9fVkxljoORHqydnO9WTyWBmGEbLcWTO/SpyTr8HVrgZojsHZqhpSPbHk3l9UXbDXbYc7rLlyAZgtJ50wku9ZiusUD1CR19G6OjLvPoyfxYfOl62HK7caRAEcVB/BkIGQ68Dy82bN+Ptt9/Gyy+/jFmzZnWYdOe5554bsIUjhJDBwCwDRltlUsMAK1+6Apbubzf0Lzq8L3Y9cZhfZ0MFE4cACqILGad9GS1bformzfc7r0vDAAkho1YfW2Mwy4ThP8arJ+2A0mg5DDCzw2PlrPFw5c2Ckn8aXPmnwZUzFZbu73YooKU1Qymc3a8frUuCDLmn3mmeAoSOvQYrVA8/AMlbDLXkdKilS6EWL4GoZg/OshFCyBDptoiAMSjFC9G253HnPkFyw5U/E0p+z9WTyWJmGGZbJcxALQRJhhGoGdLK9t6+vpxZDjnzCvimXQFmatDrdiJc9QG0yo0w/Eeh1++CXr8Lrbsfg6jmxnpfli6FpOZ0vSDUpoqkkV4Hljk5Ofjc5z43GMtCCCEDjlkmjNYKRBo/QqTxI+iN+xFp+hiunKlQi+b1OAxQVHNgtp0c8BmjRU8BclfcB//ORzu9379jDbKX3A2j9QQEQRrgVyeEkPTRm9YYjDFYoTroDXvsgHIfIo37wYxgh+cV3flQ8mfBlX8aDyjzZkJUMjs8LqVDAZkBM9zUfe+0QDV80/4TWvVm6HU7YQZrEDzyEoJHXgIgwJU3E2rJEqilS6Hkz4EguTq+DiGEpCnLCMGlZnddRLDzUYy94Si8U/8Drqzxva6e7LVUT8LYh9cXJJWfyCo5HVjwDRiBKmhVm6BVbYRWvQWW1oTQsVcROvYqAAGu/NOglp4Bd+kyuPJmQhAlalNF0pLAGBvo4/ARx+/3Izs7Gy0tLcjKGpm9IMxgLcKVGyFnjk31ohDSZ4xZMNtOQm/YbweU+xFpOtDpgayUOQ7lX96FE3+Y0GVVy7gbKxA88S6YEeg4s58ZAZgZG/IXd51ZEXs4oBE3fDA6O2AEYAYk3xjkLL4DJ56Y0uXPU379x6h5+UqIogtK8WKoJafDlTOVN/YmhJARoKdhgHr9Pui12/hkCnb/SStU3/F5ZA9ceTNiAWXeLIjeoqSHTscfqMUPxbPCg3+g1pv2IJYRhl67HVr1JmjVm2G0HEl8LtkDpWghr74sOR1y5ngaPk4ISSvMMhFp3MerAas2AYKA4sv+gZNPTu/ye8bdeAJmuAHMoOCst5gZgV6/yxk+bjQfSrhfVLLhnXY58s96GC3bfkltqtIAMzVYWjPcY86CqGSkenEGXG/ytUE6LUEIIb3Uy+EHjDGYgSoeSjbu45WTjfvBIm0dn1pyw5U3Ha68mfyANm8mpMyxPQ4DNLVmyN5CAIUD8RO2WygZkq+HvmmeQpitJxAJ1UOr3ozWnY9CULKgFi+CWrwYaskSSBlj6WCUEDJsJTMMsGHdbYnfJEiQsydDyT/NCSjlrAn9OpmTyqGAvemdxnuYLYO7bBkAfsJZq95iB5i8ikarXA+tcj2APgwfp6GAZLSjv4FBYQZqEK7mAaVWvSWhB6XoKYDkLep2n1h05/DPZdJrguSyjx0W8eObYJ0dXn4ArXoTLL0F3omXoGXrL6hNFUk7va6wnDhxYrcHx0eOHOnyvuGKKiwJGTzJDD9whgDaw7ojdgWlpbd0fEJRgSt3GpS8GTygzJ/JK0w6OZBN9aQ3UkYZWnf9v04D05yl30PmnK8iXLkeWs0W6NVboNVuA4sEEp/DWwyleAnUksVQi5f0u38PIYQMFQYJav50VPx+XJcHqWNvOIrKv5wFyVcS6zuZOwOi7B76BR4K/QhLGLNgNB1EuHoztOpN0Ot2AlYk/snhypvhBJjxw8dpKCAZ7ehvYGAxIwytbgc0u4rS8B9NuF9wZTqtLNwlZ0ApXtD9PjEFZoOCWQYizYfgm/pZnPj9+K63xTceh1a9FaLLO/QLOQpRhWVMrwPLX/3qVwnXI5EItm/fjtdeew133nkn7rnnnt4vcZqjwJKQwdFtYLjwW2jZ+j8InVzHw8lwY8cnEGW4cqYkVE7K2ZN61dNmuAwDBOydisb90Gq2QKveAr1+d7uDUUDOnuRUXypFCyG6fEkuDFUUEEJ/B4PPDNZCq/mQVwNGWlF44ePdDgMce2MF/zymYYC9Fhs+vtkePn444f7o8HHvxEuRNe+raNn6cxoKSEalVJ/AHgkYYzD8R52AUqvbAZha7AGCCFfeaTygLD3D7psY21+n30HqCLIbojsPJ34/rsvHlF//MWpevByCIEItWwF36TLIOVNolNcgocAyZsB6WK5ZswYffvghnnzyyYF4urRCgSUhg6PbCsPTvwuleCFqX7qC3yBIkLMnQsmbaQeUM+HKmQxBUgZmYVIUVPQnMLWMMPS6ndDtADPS9DEQPz2QIPGm2tEAM392h/eLKgoIob+DwWRFAtBrttonWj5MqLIRPQUYe/1BnPjDxK57Cd90AnrDAQqQB4AZrHPCS616MyytCQBQdNn/Qq/ZmjAUMIoqm8ho0OOIl6H8G0iHE2dJLoOltfDP9qpNCFdvghWsTbhf9BbBXbKUz0xdvLjHlhSpLCIY1QQZSv50VDw2ttvRDieemJrQQ1ryFkMtWw532XIoxUtG7siHFKDAMmbAAssjR45g/vz58Pv9A/F0aYUCS0IGDrNMRJoPItL4EXJOX93tpDdjbziG5q0/hytzHOScqSN7QzgAO6h8x3GrU4Fptp1MfAlJhVK4wBk+7iqYA1fORDqbTUY1quoYWMyMQG/Yw/sq1mxBpGEfwMy4R8TNal28BN7Jl6J19+/TIygYRRizYDQfgla/B7lLv9v9tvjGCugN+yHAGvoFJWSQWZYBtXAuTvTUmuKv50AAILpzIbrzIKq5kNx59nV+m6TmQlCy+lR1lg4nznpaBmYZiDTsQ7h6E7SqDxBp/AhgcZ8Lkgq1cD7vmVu6jPcW7ksFXjqEtqNMMqG9VrMVWuUGhCs3QK/5ECy+glZUoBYvhLtsBdSyFZAzyoZw6UceCixjBmzSnX/84x/Iy8sbqKcjZGjRhnHQ8IOiw9Bqt/Eqm9rtYJFWuPJnI3P29Z3uHAK80TPTW5Ex9fLRMRSQGWBG/9Y9Uc2GZ9z58Iw7HwBgBKqgV3/IA8yaD2GFG6FVfwCt+gMAQPGnX0Dw4D+owTYZ1bqd9AVD/HeQ6m1RH16fMQaj5bBdtbcFet0OMCOU8BgpcyzU4iU8pCxamFBlY4Wbkb34OwDQZWBMBp4giLzfc+FcWLq/222xGaxG4zvfhKhkQi1dBrXkdOqXTIY1o+2UE7xYZhjFl/yl+7+BUB3ALOgNe3p+ckHiAabKg7/EgNP+2g43RXcuBElJixNn3bdpuh0N734HgYPPJUyWAwBy1kQ7oDwDauF8CANRXDAA+8Skd6xQY4/bYtlXCnnq5fDZx2Za7TaEKzdAq1wPM1BltwP4ANj6c8hZE/jQ8bLlUArn9apdFyHxer3mLFiwIOFMCWMM1dXVqKurw6OPPjqgC0fIYEuHs5kjDWMMRutxewjgVui12zrsBAouH+Ss8ZB8JTQj4CCSfaWQJ18G7+TL7FDhiFP1ZPgr4C4/G3WvXdPp9/p3rEHO6ffADNRSiE9GLkGG5M6Ff8eaTu/271iDnCV3I9J0CILshiCIg7MYKd4W9fb1jUA19JoPnZAyOrQ4SlRznQpKpWQxZF9pl6/dmxmyycBjpsFDlG62xZKnEJHmg7BC9QgdfwMA4MqdzgOK0mVQCmbTwShJa8yMQK/bwcOVqg0w/LETIcnMUC17S5C96Dswg5Wwwo388zHcBEtrSrjOIq0AM2GF6mGF6pHM3pPgykDRJX9B4OO/dX4CmTF4J38KrXv/CAiCvR0SAEG0/wkQwC8Rd1/i4wQAIj+Gj7vOH8e/9kz4BFq2/AzNmzs5eccYvJMvQ9u+P0JQsvgJqNKlcJcsheQr7tsvhaSV3m6LBdkNtz0cnLE7YPiPQatcj3Dleuh1u2D4j8HwH0Ng/58huDKgliyFu2w51LJlkNxJFLml+gQuSRu93rv4zGc+k3BdFEUUFhbi3HPPxYwZMwZquQgZdOlwNjO2MMP3Q5kxBrPtFLTarXYF5baE/iaA3di/YB6U4oVQixfDlTsNgijD0lqQNf+WTocfZM2/BWa4adi9H+lKEAS4cibDlTMZGTM+D4guWFpL9xUFgRoEDj0HObM8YTZZQoY7PjkA35mW3J0fpAL878AIVqNh3TcQafyIn0hRcyC67aGA9teiXSnDK2ZyIKp5EFy+pIbCpXpblMzrm6FaaDXbYu0mWis6PIdStMAJKeWcyb0Kd5kZhtlWCTNQC0GS+Ykq+uwfGsyAGW7qdltsaX7kLv8JtKqNfBho0wHnX9u+P0Jw+ewA4wy4S5dRgEHSghmsRbhqI7TKDdCqt4AZwdidggSlcK49fHU5LK21+/1RrRlK/gwgv/tjXWbqfP8p3MgDzXAjLK0pFnCGG2FpdsCpNQGWwYOfMStQ9+qXOn1O/85Hkb3kTgQO/r3D/vVAET0FyJxzPfw7uzh5t/NRjL3xOAovetqe3FIalOUgqdXXbbEgCHBlT4QreyIyZn4Jlt4KrXoTwqc2QKvaCEtrQvjEWwifeAuAAFf+TGfouCt3WsL+QqpP4KYNUYbgGnlDwfui14HlvffeOxjLQciQS4dhgGn1odyL0NQM1ECr3Qqt5kPoNdtgBqsTHyAqUArnQi1aCKV4EZS80zoNu5IZfkAGCWOQPPndV7h68tG6+zFYoXpnNlm15HSoJaf3vS8RISli6X5o1R/ytghVm2AGayB6CpA172s9VpeZwWpeNRNugBVuAFqSeEHRxb/fHhrIg8z4YJNXtbnHnpPSbVG320LGoJafhZp/XpLYpyw622vJEntCrwE6oUHDAFMimW2xWjQfatF8YN7NMEMNvLq2aiO0qk2w9BaET76D8Ml30ILoENEz+L+i+RAkNaU/H+mlYXoSnVkG9Ia99lDvjTCaP064X3TnQS3lFWFqyekJfeGs8MDsjwqSAslbBMlb1PPyMgYWaQWzzB5PIFvhJmRMuxIR/zGAMQAW/0xmDAz8kn9G80sW9zUYS7wO5jye2bfJ2ZNhhuq7b9Ok+aEUzhkdbZpGu35ui0UlE55xK+EZtxKMWbzvqT10PNJ0AJGGfYg07EPr7t9DdOfblZfL4S4/B650KSZKEScbUHNhao0QJAVWJADR5Uv1oqXMgE26M5LRpDsjT7INtqufuwQAi1XQOAefOXGVNTkQZG+vw5tUV9XEL0dPoakZarCHd/Nh3u0nc4EoQ8mfBaVoEdTiRXx4WJIHKDQjYOr01GDbO+VzaHr/uwmzyUaJ3iKoxafDXboUSskSSGrOEC01IclhlolI40fQqj5AuHoTIg17E0M3UYFatAD55/8awcMvdNto3mg5zg8ao5UyWrRahn9tak2wws3O7QmVPN1IZpbssTccQ/Vzn4SlNwP2sD9ejZA4BFBwhgd2NkQw/vtiQwIFJQeFKx/tYfIzPjOoaFfRKSWn8z6UI7AJ/GjW120xs0xEmg7wv7OqjR3+zgRJhVK8CO7SZVBLz+h5P3OYhmUDKkXvQdqcRO/NCfRwk903byPCVR+A6fGTvwpw5c9ywpD2lVwdXjZV+6NJzNA87qYT0BsODN76kA7LQEYFM1hnVz6v71D5XHTZ/0Kv2ZrQGiFqNEzC13U2cCuyl9w1oiafHZRJd0RR7DGQEQQBBp0ZJ2mI71B/bPfb2gzGTBRf+tceG2xbuh+RZBpsiwpEdw4kNccJNmPDBPltkt2TUVRzIbgyIKVJhWfXDba/hcYPfoTQ4Zdg+I+1+0aRz/JatIhXUBbOhSh7+rQMNBQwdZKpqsld/qPYbLLVmxGu2gS9biesYC1CR19G6OjLAAS4cqdBLVkKteR0KIVzIUhKan84MiqZwVpoVZsQrv6A7wgnHLyCN4EvPQNqyVIoRQsgym4IotLj34EguSB5CyF5C5FMHSEzwjDtqhgn3GwfdmrNkDxFMIN1PWyLau1t0b5+vjsdufJnwwzWdF/Zo7Wg6JK/QXR5B/z1Sfro81BAUYKSfxqU/NP4RHq6H1r1FoQrN0Kr/gBWqJ4Pya3cAACQMsrtoeNnQCla6KxXaROWpVAq34N0OImezM/PmMX35+0JcyINewHEam8EJQtuu7eqWnoGJHdu0q+fsv3RJNoyDHqLpHRYBjIqSN5C+CZ/Cr7JnwIzdae3rN74ETzjzkf9G1/p9PtGQ2/9rke8/AQAkL34jlFZaZl0heULL7zQ5X0bN27EI488AsuyEA6PvJ0KqrAcnoy2U86EAFrNhwkHrklVtdxYgba9f4QRqHKGY0QrbKJfm1ozYGq9XjbRV4Kx137Uw+sfR+N7q8GMgFM1IyQ02e6uqqbr67Gm2xK8ky5B4MDfEhpsR+Wc/l0oxQtR+9IV4IHUVLuCcjGUovmj8gNzJOpLRQEzwtDqdkKr3gStejOM5kMdnlMpms8DzNKlkLMmJleBTJU1qZXq978vM1SbGrTaHXxdrPoARsuRxKd0ZfBhy3ZIKftKOn/pNK6sGXtjBdo++hNYJBg31C82BJA5wwNjw/0YsxKGBzrfF/dYxiwILi9yz/g+Tvx+PFXVkAHHGIPRfAhhe+ZYvX4nYMWtR6ILSuE8+CZ/Glnzv46Wrb8Y1cMAUxkY9jTiYrBPovf087ft/yuCR17m/fDCDQnfK+dMg7tsGdSy5VDyZw3LCaBS/ftPl2Ugo5cguyGquTjxh/FdPmbs9YfQsu1XkLxFUIoXJTd5T5pjZgSRpgPQmz5G7tLvdjviZdxNJ0dMQUhv8rV+DQk/cOAA7rnnHrz00ku46qqrcN9992H8+K5XsuGKAsvhwdJaoNVsdaoozUDijpXg8kEtWmT33DodaukytO7u384ZYwzMCMUFmfal1mxX0jTHhZ38OjNCcOXPRvGn/hcnn5ze5XOXX/8xal74XHIVnn2Q3FDE42jduxZK3gyIavagLAdJE/0Iq5x+Zva/9gcToqcw9ndXvASSJz/xpamyhhulwwB78/qMMRitx6FVfgCt+gPotdvBEk4a8WbuaukyuEuWwpV/Wu8OXlPwO0h1UJDq1yejhxUJQK/ZageYG2EGqgDQMECgd3+HjFmAFQGzDDArApgRfmnxS2YZgKnHvo7ebsYeA8sAs3Qwy4Agqchd/l/dnrgYe+NxNG34EZgZ5p+pogxBsC9FmX92ivHXpYTr0cdClBK/z75Pzp2Ctt2/7/znTziBDgiyl+9TlC3nkzwl0S9yOEiHFknpsAxklErmBK7doiY6+ZScPYm3IiteDLVoAUQl/XMaywghUr8HWt0O6LU7EGnYA2ZqSWUD4246BclbOIRLO3gGZUh4vMrKStx777344x//iFWrVmHHjh2YPXt2nxaWpAsBgpIJCPKwqqzR63bzkKRmCyKN+xE/LASCBKVgjhOUuPJmJhy4DkSDbUEQILi8fEhTRllyy22EYUaCkHylPUz0UAy1bBmU/NM6aaBtV9U4lTbxjbc7a8Rtdmi6LWdPhNVTg23dD8/Yc6jB9mjQjwbbkicf3okXwzvxYh4otRyGVrWJVzfXbYcVqkPo6CsIHX0FACDnTIVawvtfqqVnjPoz+qN5GGByM1TX8dmpqzbZk+UkTvLFA/GlfH0qOb1/J1dSMOlLqicfS/Xrk9FDdPngLj8b7vKzwRiD2XoCWv0ueMZd0O0wwOwld0Gv3wfJnTO0CzxEGCRIag78O7qYoXnHGmQv/g4qX7zcmQBsILnyZyNr3te6b00RrEHo+BuDchI9egK9y59/56MYe8NRZMy5CWrBXCiF8wZmkq80kw4tktJhGcgolURbAsNfAc+4ldBqtsJoPgij5QiMliMIfPx3RNtTKcWLeYhZOC8tRgNaWgv0up08oKzbgUjjgQ6f4aKaA1f2JEi+ku4nQx2lxUO9CixbWlpw//3349e//jXmz5+Pt956C2edddZgLRsZIlYkAFHNgpI3E5InL40ra6J99LZAq94MvW5Hu8oae2bKktP5rKVFC7r9oGJmGEbLcWTO/SpyTr8n4UziYB6kC7IbsuyGpTV3+6Fs6S3Imt35DvwALUjPH4zuHL6zQkiSBEGAK2cKXDlTkDHzKvvEwi5o1ZsQrtoMo/ljvpPRfBCB/X9G0aeeQ/DQ8wmVNUPdyzWVhiowjK/IgV2Vw6wIlPxZ3fbSzTjtGkRajnRaMcMraqR+LVdPM1S7y89G9T8vSdy5E11QCufbfcqWQs6ePKxnrE/VtihdXp+MToIgQM4aB1feNFi6v8ewrPG978DSW6AWLYBSuABq0UJIvuKhXegBwkwNeuN+6HW7EKnfDWYZKLzoyR77qovuXJiBUx0fIEgQRBcgung1o6Q4X/NLFw/4ovc7j+WXoicPkrf7/UHJUwSlaD7krHGAZYKx6LbE6HidGXHbmuh1s9P7AQbJWwIzWNvDCfQ2ZM//+ug4gZ6CE2dpuQxk1EnmBGr2wtsBAKbWDL12G58UtmYrDP8xPgN50wEE9v8ZECS48k+DWrSQtzMrmAOhN5PW9HHEjRmshVa7A3rdduh1Ozu0KgIAyVsCpXAelKL5UArnQ86aAEEQYGkt3WQDt4JZkREzJLw3kh4S/vDDD+Ohhx5CSUkJ7r//fnz6058e7GXDAw88gOeeew779++Hx+PB8uXL8dBDD2H69FipbDgcxh133IG//OUv0DQNq1atwqOPPori4thOTEVFBW6++WasW7cOGRkZuOaaa/DAAw9AlpPLa0fykHDLCKNly0NpW1lj+I/HhprWfNhxpmJ3vhNQqsVL+l4mnYJhgKmubAJoKCAZema40TnpEGk+hDFf/KDbtgTjbjwBvXHk9s/r9m/w9O/CM2EVmrc8HBc2xg35iw4HdIYGGh0eFztA7FiRk1xbiMThNx0JnQwJjB/yJ3UyVJBfip58FH3ymeRmqJZ9UO2KXD5ZTt8m+Up7w7CPKCH9ktQwwGP251Bdwn2SrwxK0QIeYhYthJzkSJehZoYaoNfvtv/t4iOCrIhzfzKfxeNurEDwxHsQwADJDiGjgWQ3M18nK1X7g8wyAQFQC+ai4vc0QzUho11f2xKYoXoeXtZuhVazFWZbu5M7oouPvCy2J4zNm9VppXZv2xSZrRX28O6d0Ou2O61O4slZE6AUzndCStlX2uXPTrOEd5R0YCmKIjweD1auXAlJ6rqi4rnnnuvd0nbjoosuwuc//3ksWbIEhmHgu9/9Lvbs2YN9+/bB5+OVczfffDP+7//+D2vXrkV2djZuvfVWiKKI9evXAwBM08T8+fNRUlKCn/70p6iqqsKXv/xl3Hjjjbj//o69cjozUgNLKxLoUNkSlbP0e7yypuGjdn1mJN6DRpD6XdHS04G6WrYcNc9fmnC7IHv4zmnx6VBLT09+Mo80lepeMekQmpJRTFIhufO6bbBdfv1BNL7/PYhKJtTC+XAVzB72YZUZaoDesBdGyzHknXV/UoFd14FhHwkSlMK5KLrkrzj55LQuH1Z+/UHUvnwl9PpdiZNlDIBk+vWMveEY9KZDkJSMAX1tQkj6SCYsizQe4MPqardDr92OSFPHYXWStwRK0QInxJQyyod8H5ExC0bLUej1u6DX8YDSbDvZ4XGimgulcC6UgrlQCufCM/4TaO2qh2MaTHoz0if9IYSkmX6eQDXaKp0KTK3mww4nvATJzQPEYj6hrCt3GkRXRrefg5HmI/zEU91O6HYPyvbFVBBEPjS9cL4TUkru3OR/7Gg2oObC1JogufPArEhaDG8fSIMSWF577bVJbfSffPLJ5JayD+rq6lBUVIR3330XZ599NlpaWlBYWIhnnnkGV1zBGzHv378fM2fOxMaNG3HGGWfg1VdfxaWXXorKykqn6vJ3v/sd7r77btTV1UFROpbVapoGTYsNNfb7/Rg7duyICyyZqaPisfK+Hyi3b7gdF2gmVNd08jhJzUfhJ5/u+UD9yemQPEWxYd75s0dk35pUVrWkOjQlo1gfGmxDkODKmw6lIDqUYh4kNWdIF7s3mBlBpPlj6PV7EGnYC71+jzMhWFKB3VeOovWjP8EK1dvD9+TEoX9xQ/4g8fsEQbYrcOKGAzrfGzeUO4n3P76qhUX74VoGGIsb3mcZ7YYH8uuJQwJNZyggLP61ICrIWngrzVBNyCjXl7DMigSg1+3iB6S12xFp/KhjXzBPoV19yf/JmeN7Ppbp5f6YFQki0rCPB5T1u6DX7wGLtLV/UsjZk+yAcg6UgrmQMsYkLEuqA8PoMqRqfzAdfn5CyMjk9Eyu5eGlXrOtQ9AouHwo/vSLCFe81fkEcKd/F0rJYtS++LnEO0QFSv4sZ3i3UjB7QMJFxkwwI2xPJjTyTtoPyqQ7a9eu7e9y9VtLSwsAIC+PT2G/detWRCIRrFy50nnMjBkzMG7cOCew3LhxI+bMmZMwRHzVqlW4+eabsXfvXixYsKDD6zzwwAP40Y9+NMg/TepFZ7Du6j4zVA8poxxWqAEJk9k4DzLAYABmp/d2y5U/G2awptvXt7QWFH/q+QEZ6pL2Utgrhhpsk5RJosG2GaxB5qzr+ZnMup0wgzWINOxDpGEfAgeeBZD8UIvBxhiDFayF3rAHev0e6A17eHNtS2/3SAFy9kQetvbQR1byFsA74eLB+ZtM5v0PNzmvLQgCn5hNlDFQNUvd9+tJfH1CyMjUlz6qossHd9kyuMuWAeAzr+p1u3jfsNrt0Bv28gnfjr+B0PE3+Pe48xKHkMeN0kl2GKARqEYkWmFTvxuR5kMdglJB9sCVP4tXTxbM4QewSuaAvwcDLZX7g+nw8xNCRqZoz2Q5axx8Uz5rTxB6xA4vt0Kr3QZBdkMtXojaly7v9Dn8Ox/F2CVHIWWOg5wxhh93FM2HkjdzcPpKWkYnJ79Gpz7NEp4KlmXh9ttvx4oVK5wZyaurq6EoCnJychIeW1xcjOrqaucx8WFl9P7ofZ1ZvXo1vv3tbzvXoxWWIw2fbarrA2XZV4LCT/wh1iy7q4qZLqprOl6PPR6S0vOBuicfZrCeDlaHCjXYJimQTINt39TPwTeVn9E0AlXQa3c4wzEM/zHnX/Dw8wAAyVvMw0t7Z4I3s07ixEdvK2uMMCKN+xFxAsq9HYacAICoZMNVMJufgS2YDVfeac7Z0lQHdqmeITrVr08ISQ/9DctE2QN36VK4S5fy5zPC0Bv2QqvdBr12G/T6vbDCjQhXvIVwxVv8e9QcKIXz4Rm/ClnzbkLL1l90/Bxa9G34dz6G0Im3oNfvghWs7fDakreEB5OFc+EqmANXzhRezT7E78GASdH+YNr8/ISQEY1PEDoZrpzJwPQrwSwTZqgWVrip+2Iq3Y/iTz3fSSECGUzDJrC85ZZbsGfPHrz//vuD/lqqqkJV1UF/nVRjVgRZ829F86afdLivQ2WNKAGQIEgD976k+kCdEJJ6va2qkH2lkCeWwjvxYgD2LIF1O50QM9J0AGawJqGqRlCyoEYDzMJ5cOXNSDiYTKayhjEGs+2kE0xGGvYg0nSw42Q2gsRnSS+YDSV/NpSCWZAyxnY5DDHVgV2qq1pS/fqEkDQzQGEZr5ZZBLV4EX9aU4PesA967XZotdsQqd8NS2tG+OQ7yFpwG1o+/HnCMEBLa+b7p4xBKV6IpvWr7SeW4Mqd6vSeVArmQvIW9Xt5E4z2E8ij/ecnhAwpQZQgZ4yF5C3svpjKnQcz0LEwgQyuYRFY3nrrrXj55Zfx3nvvoby83Lm9pKQEuq6jubk5ocqypqYGJSUlzmM2b96c8Hw1NTXOfaOZ6PIhe8ldAAD/jt9QZQ0hJCX6U1UhqTnwlJ8DT/k5AKL9xPZAs0PMSMMeMN2P8Kl/I3zq3wB4QOkqmA2lcB485efCO/nSzvtmLfo2Wrb9CqGKtxCp3wNLb+nw+qI7H0rBbCgFc+DKnw1X3oxezeKXDoFdqqtaUv36hJCRT5BUqPZw8Excz/sLN34EveljeMZdgPo3vtLp9/l3PoqxNxxD1qI74MqeBFf+acN+4jdCCCHt9LJNEhk6SU+6kwqMMdx222345z//iXfeeQdTp05NuD866c6zzz6Lyy/n/QYOHDiAGTNmdJh0p6qqCkVF/AzoY489hjvvvBO1tbVJVVKO1FnCo6xIAIIoxyqLhniWaprwhRAyWJgZQaTpgDOEXKvbCab7nfuLLvtf6DVbu26wXbwQtS/xSd0guuDKmxEb2p0/G5K3eOBmoU3h5FuEEDIaCbIbojsPJ34/rsvHjLvxBMxwA5hB+6WEEDJSpdPkX8zUYGnNcI85a9RPupPWgeXXv/51PPPMM3jhhRcwfXpsFtXs7Gx4PPzs5s0334xXXnkFa9euRVZWFm677TYAwIYNGwAApmli/vz5KCsrw8MPP4zq6mpcffXVuOGGG3D//R0PUDsz0gNLADCDddDqd0NyF6TmQJkO1AkhQ4AxC4b/GK++bDmCwgt/jxN/mNjNLOXH0Pzhz+DKnghXztTBaaxNCCEkNQQZSv50VDw2tsvtwLibTkBvOED7p4QQMsKlSzEVBZYxaT0k/Le//S0A4Nxzz024/cknn8S1114LAPjlL38JURRx+eWXQ9M0rFq1Co8++qjzWEmS8PLLL+Pmm2/GsmXL4PP5cM011+C+++4bqh9jmGBgeiug5qTo5alfDSFk8AmCyIf1ZU+CILth6a3dNthmeisypl1BlTWEEDIS0TBAQgghNmpTlH7SOrBMpvjT7XZjzZo1WLNmTZePGT9+PF555ZWBXDRCyDDGmGXPYh9xZrNnVsSeQEUABAECREAQAEG0bxP5TNOCADj3SfZw4Nhjk5qNmqQFZhqQ3LndNtgW3Tl8Z4UQQsiIRD3VCSGEJKBiqrSR1oElIYT0Fg8jI2CW4YSSzLJbDURPgggCBNEFQZAByQVRzYQgeyBIHgDMeTyzTMD52gCYZf8zAWaBgYGB38YYs+9jALo72WKHoE64Gb1uB56iC4LkhiBKg/9mjXZUWUMIIaNeOkx+RgghhJCOKLAkhAwbPECMgDEzrjqSXwI8JhQEEYIoQxBdgOiCqGZBkH0QXV5+m6RAkBQeDIoKILmSroqMhZLRkNKM+9oCYCVeZ+2vm/xnYKYdqJpgzA5TTYP/XEaIV/sxC4AAQXbzAFN2QxDpI3ugUWUNIYQQGgZICCGEpB86+iWEpAXGLMDU+fBsZgBmJG6YNuyh2AIEiVdGCqILgpoBQfZCdHn4ZCiiyw4jlVg4OVAzOAP8uQQJAK9+HLhn5hhjYGYYLBLkwWUkACvcBBYJwAy1AlYE/D1Q7SBThSCpA7wUowtV1hBCCHHQMEBCCCEkbVBgSQgZMowxwNLBzAiYqYFZOq+OFAAexCkQBBcPJV0ZEFw+HkY61ZB2ZWQ0nBzAMDIdCIIAQfYAsifhdmbqsCJBMCPIQ0ytBUz3w9KawMwIf5DoilVjSuqIe28GE1XWEEIIIYQQQkh6ocCSjGrMMmPBmanzGwWJD70VJECUIAiS3VuQ/lySxcwImKWDmfx9ZSzCeztGe0eKCh+irZRAVHyxkE1SR2wY2R+CpECSFAA5zm3MMmKVmEYQVrgFlt4CFmmFFa7nQ8oFOa4Sk/pi9ogqawghhBBCCCEkLVACQ0YFZhlgpg5mavawY92u6hNjQZm3iIc8pmYPRTbAImG7X6KZMDSZMWYXBbYPN0V75mgJsG8fqcGbM7O2/b7y98wCADuUdEGQVYjufAiKD6LsiRvK7IYguVL8EwxvgihDULMANYsPUM/mw+qZEQKLBHmIqbeBhZv419G+mIIYCzCpLyYhhBBCCCGEkDRER6pkROk5mHRDdOfHZoWW3fbs0GrCxCt86LLdS9GKzhAdnSglet2AZWi8itCKXvLeixbskNMy0WHGaCFWtelUcCaEm/as0fzBvCoxyUlhBlqsr6Ruv686GDNjYa09gY3oKYCoZHYIJQe6hyTpniCIEFw+wOVDtJbS6YsZDTIjAVjhRrBIkPpiEkIIIYQQQghJSxRYkmGJB5NaLJy0IgAYHwIrKRDkroJJd1IBmiAIfPZoJF8FyGeQNp1w0wk27eDTCT0NHczSwAyNLzszeFVndNZpMP4fs/jX9vVo8Mmiy8figtD4qk/7uv1ARENPQIAQ97VzCfCAVBD4rNVWxH4/+fcLkgohOtu2KxOiyxcLtqKXKQpUSc8S+mK685zbe98XU6HfMyFkxGOMb3fp844QQgghJLUosCRxGJgRtoMsMS7YElNWJZdMMCm58yG6s+whrp5YwDLEy8xnkJZ7PcSWMSuuatMOKZnlHDRFryN6nTEwxF+37NuYfVvsPmZZPCRllv04OxRl/HZEQ1b7PsGlQlAyICqZsb6S0VCShg6PKL3vi6nZfUilxKH91BeTEJLGoicT+clDM260hMmvWwb4fkX0xJ99Qi+6HYW9O2SfI2RA3MlBEbH9JLHz2+L3qQTRfn4xNpIi/nsJIYQQQoiDEgjCCRJENRtWpNUJzfhOfnwA1q66z75M2HkH4nbWBQgJwWfcpbPTHh+Ool0waS+XpEKQVUiefF7ll+JgcqAJgsiHTktKqheFjHI99cVkRgim3goWbuJfa808CIiGmNHemNSflBAyiHhfacPpL53QtiV6Ui6eKEMQJQiQAEnmn1WqO3ZiTlL4STlRhiC67P2b6Ek+q93JxLgTgFb7AJS3i+H3Gc7jAAuw+Pey+BON0fvajZjg+1giBFGBIKsQRMVusULBJiGEEEJGDwosCQBA8uRDLT0jVsnnhJaxnfRYJV8nj3GCTStW1WeZAEznemwn3kzY+Y/uyAN21ZeX90N0hnA7PSaHdzBJyHAU3xcT4BsN3hdTAzOCdl/MICytEUwPwIo08LYCQFyIqQL0N0wI6Qbv+xzhld6MB4DxVZEA+NlRBnvCO8mZ+E6QXBCkjMQWFgkBpP0YQXbCyyH5mVj8/pNl7z/F7U85gWW7cNQyYBkh3qoj0gYr4gcL6YhWgjoBpsTDTKp0J4QQQshIRIElcYiyZ0hfj7ULR8EYTdJCyDDA+2K6AdndoS+mM5xcD8DS/WC6PazcjICB2eGCm/qfkrQRnawNVoRfMgsQJXuoLg/F+ARpIv/amSCNJMuZyM7ukcyiXzMjNlJDEO1Q0WVXe3shiG5eYSirPGxMCB1d9mXvW7EMFd4qRgLsadD6stYwywAzwvbkaWEeZOqtYHorWCQAy2wEDz3B+w5Hg0xq5UIIIYSQYY72ZEjK8IM/AKDKAEJGAmfWeDUb4AWZYJbJKzGNEK/E1FvsqqEArFADeMVQfF9MOsgmA4uHZToPzS09FpxFhw3b4ZcgKRDduRBEBcyy25Mwu+rPDINF+/1aJg/f41/E7knYdcBpB6AjtBIuoToyLpR0KiOBWMAoufgoCpeXT+ImKXEVg4r9OBeFwjZBlCEoGQAyEm7n7TpiQSYzw7D0VliaHzDCMHU//x0AEJy2HTzMpPeXEEIIIcMBHRUSQggZNIIoQVAyASXTOTXBGON9MaNBpt4GK9xo98VsiYUcohxXKaRQb0zSJScoM3X7a92eTAUABF65J/KwRnQX8LDMDshh90nurOLXCSjtIco8hDMSb2MGmGlPEGdFgOilZQBmBAy8FQpr11vR6QkN0Qk0edBp/6XE9YOOvxSi19vdN1jVyr2ujpRcENw5EGWffRJCSQwlRdeIDW6HEm/X4QVc3oTbGWOAqcMyQrGqzEgATPfzz1utEcyM9gm3+2RKCv87oD6ZhBBCCEkjFFgSQggZUoIgdH6gbWiwjGDsIFtvA9NaYpVD0d6YCZP8DO8Jq3gYZFejRS/bS6iEEjrcLnQ10LTT7+v4/R2/jwdlTjAWP5FaisKM2PsUiQsmI3ZfwOg6wUNtUc2E4MqE6PIk9FHtS2UZnxRNhIDeheVO78JoD8a4voyJ4adpTzZnV3SaOr8f9szW9kzVPBiMzlod7YuI2Nf8CpyprCEAAoumorFJXeJmu+40DLW/TqiOFITYMGzJBVHJgODyQpB9EOMnhImGkqJM1XspJAgCIKuQZLXDfcyM8JNF8cPLtRYwIwAWaYUV0tChT6YY/d3SIQMhhBBChhbtfRBCCEkLQicH2dFqIWbyg2unWkhrtg+42+KqhaTEEFNMbU/czsJIp/IuLlgSJBmC4ALsMCiWKrFY0OQEVoj7XiTOLoz2X7N29ycsXOff11Uw5kwOYj8+IQSLfh2fhrWr/oMYd90OPQXRvi8xFAWzeIBnV/RFX4P3KrTDEzWHDyeOthGI/5cG1XtO70JR6nXfQuaElLE+zwztbnNmrI67Pfr77uLxrN33Aiw2SZ4z2Qsf7i7K0QnvqDpyJOGTE7kAZCXczizTDjFDHftkGkFYWnNi5buo8L89qnwnhBBCyCCiwJIQQkjailYLCbLKe2PG4ZP88INsywzzGcu1ZnvYYzOfQAWIDXt0qsH6P2N5p5WR0UCy0zBSjqtM8yYEQYLoilWo9aGCkXUTPiZ9e9xtfCbj+BAsGozFZjd2QrFo0JUQiNkzHkfDMMsEYF9GZ3xmln09GoTGVRMKIg8jFR9EV0bHKskRPjmb0D7YRd8mayEkWYIoQRB9gMuXcDtjFm91ED/pT7vKd2bFnzCKD7j7/zlLCCEDgY96MGMn6Ky4r6P7JMzktyec/LW/H/HbYcE54cpHo7Rv39LFydiE0SuJJ3Hps5KQrlFgSQghZFhyKinVrISpu5gZ6VgtpDXziX4ifrCw7lQEOpNQxPVv6zGMFAR+MQRhZFLvQ5dDxvv4fP1amt7prJoQokTDTwlJA4IgQpA9gOzpcB8/YWR/xkZPGOkt/DLiBwvp6DC8PNqPmKp0CSG9FBsJYMS+ZnH9oRN6RbdvgyIkTIYnCBIgirEqcTH6+eSy9+3k2ElDZtmjTFjCyVb+WoZzcpb3de7iZGzcyAfmnORtNzrCXlQhoXULeCsb0RVbTlGmfSQyqtDaTgghZERxhj0qmQm3M8uIqxQKwYqE7APsNt6/LazFBZmdhJGSx56cpV0YScNk+6yzakJCSPqLnTDKTjxhlPA52254eSQAy2yE015CdDknjWh4OUk1Zpn8JKXddxgAb+0hiE7QxavnqCJuILBo+Bjt5xw9ORzt8wzGT6BG2844/ZRFACIP7QQRouiO9duVFTvgs0M9J5y0vxbl2OR2ojy4k9V1aO0Sd2I2YWRK/GgWK+77eHscKxLk+6lGCCzSBsvUwZgJp4u5pMRadUguu1c37VORkYMCS0IIIaOCIMoQlAwAGQm3x/q3hcEs3Q4gqWcfIYT0Vpefs87w8pATaFp6KyzND5hax+HldpjphJpUUUT6KDocONpDOnZpTy7mBGJS7GSlKIMHRwZgmrAQbXFiB0wC7Pvjhgs7YabU6dc8PIv/euSFnnyESvtJ5uLea2bFHmz3pobAw0VBckFQMnn/ZNlt73+1Dxgluz+0/XW0ajLNDEZrF76vqsUm6DM1WIZd3R5pBUwdlhm02yExO+OV7JPrrti+LU2MR4YZ2voTQggZ1brq30YIIWRgdDW8PH5itcTh5XzCH2bwoeZOxZtTURQNMqMVRSPnAJx12kfP/vmcnzOuo94I+tl7K1alFxdC2oEZY5bz3vDKvGgwpsZN3BZtUxA3YsJevwAWN8zY7PLraH9mZhlxE8bpfELA6ONNHQx8GLETeoJFk044E9o5PQ2lhL6H9g+BWM/E2PX2k9yBd09M7J8IOF/3NuCLBb78ve1QDWmHkHw4s5D4XosyBGeCPI9z8iE+RIN9nU5KdI/vq3oBl7fT+3k7JB5oMksHMzR7NFEALBIAjDAs1mqHx/bnS7QyU5TjTtLT74GkF1ojCSGEEEIIIUMufmK1DsPLnapMDbAPxC0jDCvSBhZp45WZkVYeDEXDnoShkelTJZ8w7DUh8OHDjxMm9YhW4QGxYIFfSbxMyDQ7CzhZwj1C3G1xL9buNZAwBJcxllgZlhCgifbEIp2EZu3vazcpiTPUN2HykWggJ8TeMzuEjFXqRUNA5iyrILZr4SJ57DYuihNq961aVwAkEQL63qrAmeylk4DT6b8Yf59p/4xmJC4MjPZujBtWHB02zF8E0T6ITp9Epy+iXQXq9HWMKwllLK46FABr3zwx7n2we0tHw0hRyYQguSG4PHEnDqLBox1GRoPLURyoDyWnHVK76naAr4fxlZnMsis09QCYEbCHmwdg2cE/f0LBqTZOODmUBp+nZHShwJIQQgghhBCSVrqd9CdamWkfeEf/WXogrt9bKyxTt/vHxYZHDsRQ84Sqs2jo2C6U5D9E9H8iH24MCZBiVX6C5I7rjSzHgh9BsvvgOa+YeNnZfT3cxto/R8L97W+LC8ASJhyxe+vFT3TiTC7Cg0RmGc7jY/344iccQULwxt9LBqe3qR2mxQ/RFkQZgpoBQfZAdHk7rYgczMnt+koQBCAa3A3Qc7K4349zGTepS/vbnffYud9CZyFn+9shCIkhpDNEe2RVNI8GgiBAkN2A7O70/thwcz12csjUwKKBpqnBioTsqmE7KBfE2HoR/Syl/plkEFBgSQghhBBCCBk2nMpMqAAyO9zPh+fGgkxneGRXQ82j1USS3ecNcPrwOZWQ0RCSf0Nc1ZlkV535AMkNUe5YdZYY/MijokopcRZkq9MANDHIbBeajeBh//0R64/Y7vaULA0ZCZIabp5wckjnLTwigbhq9zYeaArRKt74E0Qy9c8kfUaBJSGEEEIIIWTEcGYJ7qQ3MbNn30V8ZaYRBtMDzuQVPMCUIKheCGJ06GtipVmHQJIqixLw6sLEYJaiCkKGH2e4eaefpwywIolhpqnxQNM+QQQjDMtqtdscUP9M0ju0VhBCCCGEEEJGBT7UvPPhkdGDb6cfJlUDEUJIlwRB4IGjpKDTaveEE0SxHppO+w4z3EP/TJc9k7yLPpNHKQosCSGEEEIIIaNe9OCbEEJI/3V3ggjopH+mpTsV79H+mcwM8jYfVsSZJ0wQxNjETiMx1Gw/GdooRoElIYQQQgghhBBCCBkyPfbPtEwwS7cnWYvYVZr2v0iQh5qWznsTRyc/ExgPNSHEte6wJwUawlAzOjlb4kRlBu/Zy/hkZYyZvFcy2geUAkQ1i09+NcpRYEkIIYQQQgghhBBC0gYPND2A7OnyMbFQMzo5kB1uGtqAhJrMMu1w0bIDSNO+LS50jIaQ0WUCf24+m7rEJyESRHuytuhkRAoESbWvu5wJ3PilBEFUIHbSN3S0ocCSEEIIIYQQQgghhAwrAxJqmiHeT9MIgjEDzDTAwPhEYYIEQRT5sPNo6Ci5+MznksInD5IUCJJsD1OXnEs+VN0OLEXZvpS6XE7SEQWWhBBCCCGEEEIIIWTEST7UjNjDz3U+VLtD2Eih41CjwJIQQgghhBBCCCGEjEo81JS6nCCIpIaY6gUghBBCCCGEEEIIIYSQKAosCSGEEEIIIYQQQgghaYMCS0IIIYQQQgghhBBCSNqgwJIQQgghhBBCCCGEEJI2KLAkhBBCCCGEEEIIIYSkDQosCSGEEEIIIYQQQgghaYMCS0IIIYQQQgghhBBCSNqgwJIQQgghhBBCCCGEEJI2KLAkhBBCCCGEEEIIIYSkDQosCSGEEEIIIYQQQgghaUNO9QIMB4wxAIDf70/xkhBCCCGEEEIIIYQQMvxEc7VoztYdCiyT0NraCgAYO3ZsipeEEEIIIYQQQgghhJDhq7W1FdnZ2d0+RmDJxJqjnGVZqKysRGZmJgRBSPXiDAq/34+xY8fixIkTyMrKSvXikBSgdWB0o98/oXWA0DpAaB0gtA4QWgdGN/r9k8FeBxhjaG1tRVlZGUSx+y6VVGGZBFEUUV5enurFGBJZWVn0wTTK0TowutHvn9A6QGgdILQOEFoHCK0Doxv9/slgrgM9VVZG0aQ7hBBCCCGEEEIIIYSQtEGBJSGEEEIIIYQQQgghJG1QYEkAAKqq4t5774WqqqleFJIitA6MbvT7J7QOEFoHCK0DhNYBQuvA6Ea/f5JO6wBNukMIIYQQQgghhBBCCEkbVGFJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYprH33nsPl112GcrKyiAIAp5//vmE+2tqanDttdeirKwMXq8XF110EQ4ePJjwmHPPPReCICT8+9rXvpbwmC1btuCCCy5ATk4OcnNzsWrVKuzcubPH5XvnnXewcOFCqKqKKVOmYO3atb1aftKz4b4O/Nd//VeH154xY0af3ovRarivA62trbj99tsxfvx4eDweLF++HFu2bOnTezFaDdU68NZbb2H58uXIzMxESUkJ7r77bhiG0ePy0bZg8A33dYC2Bf033NcB2hb0z0D8/gFg48aNOP/88+Hz+ZCVlYWzzz4boVDIub+xsRFXXXUVsrKykJOTg6985Stoa2vrcfloOzD4hvs6QNuB/hvu6wBtB0hfUGCZxgKBAObNm4c1a9Z0uI8xhs985jM4cuQIXnjhBWzfvh3jx4/HypUrEQgEEh574403oqqqyvn38MMPO/e1tbXhoosuwrhx47Bp0ya8//77yMzMxKpVqxCJRLpctqNHj+KSSy7Beeedhx07duD222/HDTfcgNdffz2p5SfJGe7rAADMmjUr4bXff//9fr4ro8twXwduuOEGvPnmm3j66aexe/duXHjhhVi5ciVOnTo1AO/O6DAU68DOnTvxyU9+EhdddBG2b9+Ov/71r3jxxRdxzz33dLtstC0YGsN9HQBoW9Bfw30doG1B/wzE73/jxo246KKLcOGFF2Lz5s3YsmULbr31Vohi7HDwqquuwt69e/Hmm2/i5ZdfxnvvvYebbrqp22Wj7cDQGO7rAEDbgf4a7usAbQdInzAyLABg//znP53rBw4cYADYnj17nNtM02SFhYXs97//vXPbOeecw775zW92+bxbtmxhAFhFRYVz265duxgAdvDgwS6/76677mKzZs1KuO3KK69kq1atSmr5Se8Nx3Xg3nvvZfPmzUvipyPJGG7rQDAYZJIksZdffjnhMQsXLmTf+973uv1ZSecGax1YvXo1W7x4ccJtL774InO73czv93f5fbQtGHrDcR2gbcHAGm7rAG0LBlZff/9Lly5l3//+97t83n379jEAbMuWLc5tr776KhMEgZ06darL76PtwNAbjusAbQcG1nBbB2g7QPqKKiyHKU3TAABut9u5TRRFqKra4WzVn//8ZxQUFGD27NlYvXo1gsGgc9/06dORn5+Pxx9/HLquIxQK4fHHH8fMmTMxYcKELl9/48aNWLlyZcJtq1atwsaNGwfgpyPJGC7rwMGDB1FWVoZJkybhqquuQkVFRV9/ZNJOuq8DhmHANM2E5QMAj8dDZ9UHyECtA5qmdfp7CofD2Lp1a5evT9uC1Bsu6wBtCwZPuq8DtC0YXMn8/mtra7Fp0yYUFRVh+fLlKC4uxjnnnJPw/m/cuBE5OTlYvHixc9vKlSshiiI2bdrU5evTdiD1hss6QNuBwZPu6wBtB0hfUWA5TM2YMQPjxo3D6tWr0dTUBF3X8dBDD+HkyZOoqqpyHvfFL34Rf/rTn7Bu3TqsXr0aTz/9NL70pS8592dmZuKdd97Bn/70J3g8HmRkZOC1117Dq6++ClmWu3z96upqFBcXJ9xWXFwMv9+f0AODDJ7hsA4sXboUa9euxWuvvYbf/va3OHr0KM466yy0trYO8LsxOqX7OpCZmYlly5bhxz/+MSorK2GaJv70pz9h48aNCctH+m6g1oFVq1Zhw4YNePbZZ2GaJk6dOoX77rsPALr9XdG2IPWGwzpA24LBle7rAG0LBlcyv/8jR44A4H0Eb7zxRrz22mtYuHAhLrjgAqfHXXV1NYqKihKeW5Zl5OXlobq6usvXp+1A6g2HdYC2A4Mr3dcB2g6QvqLAcphyuVx47rnn8PHHHyMvLw9erxfr1q3DxRdfnNCD4qabbsKqVaswZ84cXHXVVXjqqafwz3/+E4cPHwYAhEIhfOUrX8GKFSvwwQcfYP369Zg9ezYuueQSZwOTkZHh/GvfnJ2kznBYBy6++GL8x3/8B+bOnYtVq1bhlVdeQXNzM/72t78N7JsxSg2HdeDpp58GYwxjxoyBqqp45JFH8IUvfCFh+UjfDdQ6cOGFF+KnP/0pvva1r0FVVUybNg2f/OQnAcB5HtoWpKfhsA7QtmBwDYd1gLYFgyeZ379lWQCAr371q7juuuuwYMEC/PKXv8T06dPxxBNPJP1atB1IT8NhHaDtwOAaDusAbQdIX3RdOkPS3qJFi7Bjxw60tLRA13UUFhZi6dKlCSXc7S1duhQAcOjQIUyePBnPPPMMjh07ho0bNzofFs888wxyc3Pxwgsv4POf/zx27NjhfH9WVhYAoKSkBDU1NQnPXVNTg6ysLHg8ngH+SUlXhts6kJOTg2nTpuHQoUP9+bFJnHRfByZPnox3330XgUAAfr8fpaWluPLKKzFp0qSBfBtGtYFYBwDg29/+Nr71rW+hqqoKubm5OHbsGFavXu38rmhbkL6G2zpA24KBl+7rAG0LBldPv//S0lIAwGmnnZbwfTNnznSG5ZaUlKC2tjbhfsMw0NjYiJKSEgC0HUhnw20doO3AwEv3dYC2A6QvKLAcAbKzswHwviAffvghfvzjH3f52OgHTPQDKxgMQhRFCILgPCZ6PXoWZsqUKR2eZ9myZXjllVcSbnvzzTexbNmyfv0spG+GyzrQ1taGw4cP4+qrr07uByNJS/d1wOfzwefzoampCa+//nrCzLRkYPRnHYgSBAFlZWUAgGeffRZjx47FwoULAdC2YDgYLusAbQsGT7qvA7QtGFxd/f4nTJiAsrIyHDhwIOHxH3/8MS6++GIA/PfY3NyMrVu3YtGiRQCAt99+G5ZlOeE2bQfS33BZB2g7MHjSfR2g7QDplRRP+kO60drayrZv3862b9/OALBf/OIXbPv27ez48eOMMcb+9re/sXXr1rHDhw+z559/no0fP5597nOfc77/0KFD7L777mMffvghO3r0KHvhhRfYpEmT2Nlnn+085qOPPmKqqrKbb76Z7du3j+3Zs4d96UtfYtnZ2ayysrLLZTty5Ajzer3szjvvZB999BFbs2YNkySJvfbaa0kvP+nZcF8H7rjjDvbOO++wo0ePsvXr17OVK1eygoICVltbOwjv1sg03NeB1157jb366qvsyJEj7I033mDz5s1jS5cuZbquD8K7NTINxTrAGGMPP/ww27VrF9uzZw+77777mMvl6nEmV9oWDI3hvg7QtqD/hvs6QNuC/unv758xxn75y1+yrKws9ve//50dPHiQff/732dut5sdOnTIecxFF13EFixYwDZt2sTef/99NnXqVPaFL3yh22Wj7cDQGO7rAG0H+m+4rwO0HSB9QYFlGlu3bh0D0OHfNddcwxhj7Fe/+hUrLy9nLpeLjRs3jn3/+99nmqY5319RUcHOPvtslpeXx1RVZVOmTGF33nkna2lpSXidN954g61YsYJlZ2ez3Nxcdv7557ONGzcmtXzz589niqKwSZMmsSeffLJXy096NtzXgSuvvJKVlpYyRVHYmDFj2JVXXpmwQSQ9G+7rwF//+lc2adIkpigKKykpYbfccgtrbm7u9/symgzVOnDeeeex7Oxs5na72dKlS9krr7yS9PLRtmBwDfd1gLYF/Tfc1wHaFvRPf3//UQ888AArLy9nXq+XLVu2jP373/9OuL+hoYF94QtfYBkZGSwrK4tdd911rLW1Nanlo+3A4Bru6wBtB/pvuK8DtB0gfSEwxljf6zMJIYQQQgghhBBCCCFk4NCUTIQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJG/8fMlPlP2iSP8wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sktime.utils.plotting import plot_series\n", + "plot_series(y_test, forecast, labels=[\"actuals\", \"forecast\"], pred_interval=pred_interval)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tsbootstrap", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 0a895de489413955e28066c99d19b6aa48962e03 Mon Sep 17 00:00:00 2001 From: benheid Date: Mon, 5 Feb 2024 19:23:02 +0100 Subject: [PATCH 2/2] clear cell output --- examples/bootstrap_with_sktime.ipynb | 169 +++------------------------ 1 file changed, 13 insertions(+), 156 deletions(-) diff --git a/examples/bootstrap_with_sktime.ipynb b/examples/bootstrap_with_sktime.ipynb index 8da93e95..67ae9166 100644 --- a/examples/bootstrap_with_sktime.ipynb +++ b/examples/bootstrap_with_sktime.ipynb @@ -2,152 +2,9 @@ "cells": [ { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: sktime[all_extras] in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (0.26.0)\n", - "\u001b[33mWARNING: sktime 0.26.0 does not provide the extra 'all-extras'\u001b[0m\u001b[33m\n", - "\u001b[0mRequirement already satisfied: numpy<1.27,>=1.21 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.26.3)\n", - "Requirement already satisfied: packaging in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (23.2)\n", - "Requirement already satisfied: pandas<2.2.0,>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.1.4)\n", - "Requirement already satisfied: scikit-base<0.8.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.7.2)\n", - "Requirement already satisfied: scikit-learn<1.5.0,>=0.24 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.4.0)\n", - "Requirement already satisfied: scipy<2.0.0,>=1.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.11.4)\n", - "Requirement already satisfied: arch<6.4.0,>=5.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (5.6.0)\n", - "Requirement already satisfied: cloudpickle in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.0.0)\n", - "Requirement already satisfied: dash!=2.9.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.15.0)\n", - "Requirement already satisfied: dask<2024.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2024.1.0)\n", - "Requirement already satisfied: dtw-python in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.3.1)\n", - "Requirement already satisfied: gluonts>=0.9 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.14.4)\n", - "Requirement already satisfied: holidays in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.41)\n", - "Requirement already satisfied: kotsu>=0.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.3)\n", - "Requirement already satisfied: matplotlib>=3.3.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.8.2)\n", - "Requirement already satisfied: mne in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.6.1)\n", - "Requirement already satisfied: pycatch22<0.4.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.4.2)\n", - "Requirement already satisfied: pykalman-bardo<0.10,>=0.9.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.9.7)\n", - "Requirement already satisfied: scikit-optimize in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.9.0)\n", - "Requirement already satisfied: scikit-posthocs>=0.6.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.8.1)\n", - "Requirement already satisfied: seaborn>=0.11 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.13.2)\n", - "Requirement already satisfied: seasonal in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.1)\n", - "Requirement already satisfied: skpro<2.2.0,>=2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.1.3)\n", - "Requirement already satisfied: statsmodels>=0.12.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.14.1)\n", - "Requirement already satisfied: xarray in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2024.1.1)\n", - "Requirement already satisfied: filterpy>=1.4.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.4.5)\n", - "Requirement already satisfied: hmmlearn>=0.2.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.3.0)\n", - "Requirement already satisfied: keras-self-attention in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.51.0)\n", - "Requirement already satisfied: pyod>=0.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.2)\n", - "Requirement already satisfied: stumpy>=1.5.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.12.0)\n", - "Requirement already satisfied: tslearn!=0.6.0,<0.7.0,>=0.5.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.6.3)\n", - "Requirement already satisfied: h5py in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (3.10.0)\n", - "Requirement already satisfied: numba<0.59,>=0.53 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.58.1)\n", - "Requirement already satisfied: pmdarima!=1.8.1,<3.0.0,>=1.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.0.4)\n", - "Requirement already satisfied: prophet>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.5)\n", - "Requirement already satisfied: statsforecast<1.7.0,>=0.5.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.6.0)\n", - "Requirement already satisfied: tbats>=1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (1.1.3)\n", - "Requirement already satisfied: tensorflow in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (2.15.0)\n", - "Requirement already satisfied: tsfresh>=0.17 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from sktime[all_extras]) (0.20.2)\n", - "Requirement already satisfied: property-cached>=1.6.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from arch<6.4.0,>=5.6->sktime[all_extras]) (1.6.4)\n", - "Requirement already satisfied: Flask<3.1,>=1.0.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (3.0.2)\n", - "Requirement already satisfied: Werkzeug<3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (3.0.1)\n", - "Requirement already satisfied: plotly>=5.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (5.18.0)\n", - "Requirement already satisfied: dash-html-components==2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.0.0)\n", - "Requirement already satisfied: dash-core-components==2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.0.0)\n", - "Requirement already satisfied: dash-table==5.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (5.0.0)\n", - "Requirement already satisfied: typing-extensions>=4.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (4.9.0)\n", - "Requirement already satisfied: requests in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (2.31.0)\n", - "Requirement already satisfied: retrying in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (1.3.4)\n", - "Requirement already satisfied: nest-asyncio in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (1.6.0)\n", - "Requirement already satisfied: setuptools in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (68.2.2)\n", - "Requirement already satisfied: importlib-metadata in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dash!=2.9.0->sktime[all_extras]) (6.8.0)\n", - "Requirement already satisfied: click>=8.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (8.1.7)\n", - "Requirement already satisfied: fsspec>=2021.09.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (2024.2.0)\n", - "Requirement already satisfied: partd>=1.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (1.4.1)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (6.0.1)\n", - "Requirement already satisfied: toolz>=0.10.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from dask<2024.1.1->sktime[all_extras]) (0.12.1)\n", - "Requirement already satisfied: pydantic<3,>=1.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from gluonts>=0.9->sktime[all_extras]) (2.6.1)\n", - "Requirement already satisfied: tqdm~=4.23 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from gluonts>=0.9->sktime[all_extras]) (4.66.1)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (1.2.0)\n", - "Requirement already satisfied: cycler>=0.10 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (4.47.2)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (1.4.5)\n", - "Requirement already satisfied: pillow>=8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (10.2.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (3.1.1)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from matplotlib>=3.3.2->sktime[all_extras]) (2.8.2)\n", - "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from numba<0.59,>=0.53->sktime[all_extras]) (0.41.1)\n", - "Requirement already satisfied: pytz>=2020.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pandas<2.2.0,>=1.1->sktime[all_extras]) (2024.1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pandas<2.2.0,>=1.1->sktime[all_extras]) (2023.4)\n", - "Requirement already satisfied: joblib>=0.11 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (1.3.2)\n", - "Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (3.0.8)\n", - "Requirement already satisfied: urllib3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pmdarima!=1.8.1,<3.0.0,>=1.8->sktime[all_extras]) (2.2.0)\n", - "Requirement already satisfied: cmdstanpy>=1.0.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from prophet>=1.1->sktime[all_extras]) (1.2.0)\n", - "Requirement already satisfied: importlib-resources in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from prophet>=1.1->sktime[all_extras]) (6.1.1)\n", - "Requirement already satisfied: six in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pyod>=0.8->sktime[all_extras]) (1.16.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from scikit-learn<1.5.0,>=0.24->sktime[all_extras]) (3.2.0)\n", - "Requirement already satisfied: polars in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.20.7)\n", - "Requirement already satisfied: fugue>=0.8.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.8.7)\n", - "Requirement already satisfied: patsy>=0.5.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from statsmodels>=0.12.1->sktime[all_extras]) (0.5.6)\n", - "Requirement already satisfied: pooch>=1.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (1.8.0)\n", - "Requirement already satisfied: decorator in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (5.1.1)\n", - "Requirement already satisfied: jinja2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (3.1.3)\n", - "Requirement already satisfied: lazy-loader>=0.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from mne->sktime[all_extras]) (0.3)\n", - "Requirement already satisfied: pyaml>=16.9 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from scikit-optimize->sktime[all_extras]) (23.12.0)\n", - "Requirement already satisfied: tensorflow-macos==2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow->sktime[all_extras]) (2.15.0)\n", - "Requirement already satisfied: absl-py>=1.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.1.0)\n", - "Requirement already satisfied: astunparse>=1.6.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.6.3)\n", - "Requirement already satisfied: flatbuffers>=23.5.26 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (23.5.26)\n", - "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.5.4)\n", - "Requirement already satisfied: google-pasta>=0.1.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.2.0)\n", - "Requirement already satisfied: libclang>=13.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (16.0.6)\n", - "Requirement already satisfied: ml-dtypes~=0.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.2.0)\n", - "Requirement already satisfied: opt-einsum>=2.3.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.3.0)\n", - "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (4.23.4)\n", - "Requirement already satisfied: termcolor>=1.1.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.4.0)\n", - "Requirement already satisfied: wrapt<1.15,>=1.11.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.14.1)\n", - "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.34.0)\n", - "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.60.1)\n", - "Requirement already satisfied: tensorboard<2.16,>=2.15 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.1)\n", - "Requirement already satisfied: tensorflow-estimator<2.16,>=2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.0)\n", - "Requirement already satisfied: keras<2.16,>=2.15.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.15.0)\n", - "Requirement already satisfied: stanio~=0.3.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from cmdstanpy>=1.0.4->prophet>=1.1->sktime[all_extras]) (0.3.0)\n", - "Requirement already satisfied: itsdangerous>=2.1.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from Flask<3.1,>=1.0.4->dash!=2.9.0->sktime[all_extras]) (2.1.2)\n", - "Requirement already satisfied: blinker>=1.6.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from Flask<3.1,>=1.0.4->dash!=2.9.0->sktime[all_extras]) (1.7.0)\n", - "Requirement already satisfied: triad>=0.9.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.9.5)\n", - "Requirement already satisfied: adagio>=0.2.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.2.4)\n", - "Requirement already satisfied: qpd>=0.4.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.4.4)\n", - "Requirement already satisfied: fugue-sql-antlr>=0.1.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (0.2.0)\n", - "Requirement already satisfied: sqlglot in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (20.11.0)\n", - "Requirement already satisfied: zipp>=0.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from importlib-metadata->dash!=2.9.0->sktime[all_extras]) (3.17.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from jinja2->mne->sktime[all_extras]) (2.1.5)\n", - "Requirement already satisfied: locket in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from partd>=1.2.0->dask<2024.1.1->sktime[all_extras]) (1.0.0)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from plotly>=5.0.0->dash!=2.9.0->sktime[all_extras]) (8.2.3)\n", - "Requirement already satisfied: platformdirs>=2.5.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pooch>=1.5->mne->sktime[all_extras]) (4.2.0)\n", - "Requirement already satisfied: annotated-types>=0.4.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pydantic<3,>=1.7->gluonts>=0.9->sktime[all_extras]) (0.6.0)\n", - "Requirement already satisfied: pydantic-core==2.16.2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pydantic<3,>=1.7->gluonts>=0.9->sktime[all_extras]) (2.16.2)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (3.6)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests->dash!=2.9.0->sktime[all_extras]) (2024.2.2)\n", - "Requirement already satisfied: wheel<1.0,>=0.23.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from astunparse>=1.6.0->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.41.2)\n", - "Requirement already satisfied: antlr4-python3-runtime<4.12 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fugue-sql-antlr>=0.1.6->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (4.11.1)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (2.27.0)\n", - "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.2.0)\n", - "Requirement already satisfied: markdown>=2.6.8 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.5.2)\n", - "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.7.2)\n", - "Requirement already satisfied: pyarrow>=6.0.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (15.0.0)\n", - "Requirement already satisfied: fs in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (2.4.16)\n", - "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (5.3.2)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.3.0)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (4.9)\n", - "Requirement already satisfied: requests-oauthlib>=0.7.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (1.3.1)\n", - "Requirement already satisfied: appdirs~=1.4.3 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from fs->triad>=0.9.3->fugue>=0.8.1->statsforecast<1.7.0,>=0.5.2->sktime[all_extras]) (1.4.4)\n", - "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (0.5.1)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /Users/benediktheidrich/anaconda3/envs/tsbootstrap/lib/python3.10/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-macos==2.15.0->tensorflow->sktime[all_extras]) (3.2.2)\n" - ] - } - ], + "outputs": [], "source": [ "import sys\n", "!{sys.executable} -m pip install 'sktime[all_extras]'" @@ -183,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -208,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -230,17 +87,17 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
TransformedTargetForecaster(steps=[LogTransformer(), Deseasonalizer(sp=12),\n",
+       "
TransformedTargetForecaster(steps=[LogTransformer(), Deseasonalizer(sp=12),\n",
        "                                   BaggingForecaster(bootstrap_transformer=TSBootstrapAdapter(tsbootstrapper=MovingBlockBootstrap(config=MovingBlockBootstrapConfig(block_length=10))),\n",
-       "                                                     forecaster=PolynomialTrendForecaster(degree=2))])
Please rerun this cell to show the HTML repr or trust the notebook.
LogTransformer()
Deseasonalizer(sp=12)
MovingBlockBootstrapConfig(block_length=10)
PolynomialTrendForecaster(degree=2)
" ], "text/plain": [ "TransformedTargetForecaster(steps=[LogTransformer(), Deseasonalizer(sp=12),\n", @@ -248,7 +105,7 @@ " forecaster=PolynomialTrendForecaster(degree=2))])" ] }, - "execution_count": 26, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -273,7 +130,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -285,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -295,13 +152,13 @@ " )" ] }, - "execution_count": 28, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAAFfCAYAAABEEoKYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrOklEQVR4nOzdd3xV9f3H8dc5547c7ISRhB2GgyUorYIoDhS1ah0/d621/sTWqsWttc460Ko/R62K1apVq1brrIulVlRAEWTJDDIkAbLnHed8f3/cEIisBBKy3s/HIw+Se84993MvyUnu+3y/349ljDGIiIiIiIiIiIiItAJ2SxcgIiIiIiIiIiIispkCSxEREREREREREWk1FFiKiIiIiIiIiIhIq6HAUkRERERERERERFoNBZYiIiIiIiIiIiLSaiiwFBERERERERERkVZDgaWIiIiIiIiIiIi0Gr6WLqAt8DyPH374gZSUFCzLaulyRERERERERERE2hRjDOXl5XTr1g3b3vkYSgWWDfDDDz/Qs2fPli5DRERERERERESkTVuzZg09evTY6T4KLBsgJSUFiL+gqampLVyNiIiIiIiIiIhI21JWVkbPnj3rcradUWDZAJungaempiqwFBERERERERER2U0NWW5RTXdERERERERERESk1VBgKSIiIiIiIiIiIq2GAksRERERERERERFpNbSGpYiIiIiIiIgI4Lou0Wi0pcsQabMCgQC2vefjIxVYioiIiIiIiEiHZowhPz+fkpKSli5FpE2zbZvc3FwCgcAeHUeBpYiIiIiIiIh0aJvDyq5du5KYmNigLsYiUp/nefzwww+sX7+eXr167dHPkQJLEREREREREemwXNetCys7derU0uWItGldunThhx9+IBaL4ff7d/s4arojIiIiIiIiIh3W5jUrExMTW7gSkbZv81Rw13X36DgKLEVERERERESkw9M0cJE911Q/RwosRUREREREREREpNVQYCkiIiIiIiIiIiKthgJLEREREREREZEWYoyHcaN4sTBetArjRjDGtHRZe+RXv/oVp5xySkuXIW2YAksRERERERERkT1UGYkRiXlsqAgTiXlURmLb3a9eQBmpxEQq8KKVmFg1xo3UhpY1GOM1a7233XYbw4YNa9bHENldvpYuQERERERERESkLauJutw3fQWPfpZHSXWU9JCfK0bncsNR/Qk6gPEwxgUvVvt5bRhpWViWjWX5YXOvEmMwsRrwXPAlYNmKbqTj0QhLEREREREREZGtGGOoDMca9FFWE+Weacv50+SllFRHASipjnLH5KVMnLacspoI5ZVlVFRVUhGOUBn1qHLt+EfMojJqqIy6VEbc+FRwy8KyAxgTw4tW4sXCO5wi/sEHHzB69GjS09Pp1KkTJ554IitWrKjbvnbtWs455xwyMzNJSkpixIgRzJw5k2effZbbb7+defPmYVkWlmXx7LPPsmrVKizLYu7cuXXHKCkpwbIsPv74YwBc1+Wiiy4iNzeXUCjEvvvuy8MPP7zT1/O1115jyJAhhEIhOnXqxNixY6msrNyz/yRp1xTTi4iIiIiIiIhspSriknLT+7vcr3NSgLybjubRz/K2u/2Rz/K49sh+5N77FZsqI7s8XuntY0gKOGARH3XpuZhYNRgXnCCW7dTbv7KykquuuoqhQ4dSUVHBLbfcwqmnnsrcuXOpqqpizJgxdO/enbfffpvs7GzmzJmD53mcddZZLFiwgA8++IApU6YAkJaWRkFBwS5r9DyPHj168K9//YtOnTrx+eefM378eHJycjjzzDO32X/9+vWcc8453HfffZx66qmUl5fz3//+t82v0ynNS4GliIiIiIiIiMhuyE4JsqEiUjey8sdKqqNsrIiQnRJsUGC5DdvBMjbGDdeGlglYjr9u8+mnn15v92eeeYYuXbqwaNEiPv/8czZu3Mjs2bPJzMwEoH///nX7Jicn4/P5yM7OblRJfr+f22+/ve7r3NxcvvjiC1599dUdBpaxWIzTTjuN3r17AzBkyJBGPaZ0PAosRURERERERES2khhwKL/reAwGjAfGja876cXi/xoPsLBsh2BCkPSQf7uhZXrIT7fUIJ//9qD4sXb1uP7trNxnWVhOAOPFMLEqLBPEcgJYls2yZcu45ZZbmDlzJps2bcLz4mtjrl69mrlz5zJ8+PC6sLIpPfbYYzzzzDOsXr2a6upqIpHIDhv4HHDAARx99NEMGTKEcePGceyxx/I///M/ZGRkNHld0n5oDUsREREREREREeJrVxovBl6UkB0l0aohZNUQssIk2jES/TbJwQDJoRDJoQSSgn6isRhXjM7d7vGuGJ1LNBYjMWCTFHB2+WFZ1naPA2DZPizLjncTj1VjvBgnnXQSRUVFPPXUU8ycOZOZM2cCEIlECIVCjX7+tm3XvQ6bRaP1g9iXX36Za665hosuuoiPPvqIuXPncuGFFxKJbH8EqeM4TJ48mffff5+BAwfy6KOPsu+++5KXt/1p9CKgwFJEREREREREJD6CMVoZb3QTrcS48WY3luXERzQ6/vgakj8KFUOOyw1H9eeWY/YhPRSfrp0e8nPLMftww1H9CTlu0xVp2fGGPG6UTflrWbJkCTfddBNHH300+++/P8XFxXW7Dh06lLlz51JUVLTdQwUCAVy3fm1dunQB4tO4N9u6AQ/AjBkzGDVqFJdeeinDhw+nf//+9Rr9bLdsy+LQQw/l9ttv55tvviEQCPDGG2805plLB6Mp4SIiIiIiIiLSoRnjYWJhjO1g2T6wGxOXGAKEuXZMH/5w9ABKa6KkJfiJxKIECEMDpoI3igWW4yc9I51OnTKZ9OQT5ORks2bNWm644Ya63c455xzuvvtuTjnlFO655x5ycnL45ptv6NatGyNHjqRPnz7k5eUxd+5cevToQUpKCqFQiEMOOYSJEyeSm5vLhg0b+OMf/1jv4QcMGMDzzz/Phx9+SG5uLv/4xz+YPXs2ubnbH2U6c+ZMpk6dyrHHHkvXrl2ZOXMmGzduZP/992/a10XaFY2wFBEREREREZEOy4tUghvFGDfe0GYn07J3zBByYvhMNZ2CLj5TTaITo8nDyq04Pj8v/eNZ5sz5miFDhnLllRP485//XLc9EAjw0Ucf0bVrV0444QSGDBnCxIkTcZx4p/HTTz+d4447jiOPPJIuXbrwz3/+E4g37onFYhx00EFMmDCBO++8s97jXnLJJZx22mmcddZZHHzwwRQWFnLppZfusM7U1FQ+/fRTTjjhBPbZZx/++Mc/8sADD3D88cc3w6si7YVlWrCP/Keffsqf//xnvv76a9avX88bb7zBKaecUrfdGMOtt97KU089RUlJCYceeiiPP/44AwYMqNunqKiIyy+/nHfeeQfbtjn99NN5+OGHSU5Ortvn22+/5Xe/+x2zZ8+mS5cuXH755Vx33XUNrrOsrIy0tDRKS0tJTU1tkucuIiIiIiIiIi3Li1ZRvv5b1pb4yc3NJSEh2NIl7RbjRQELywnGP3YrdBXZczU1NeTl5dX+PCXU29aYfK1FR1hWVlZywAEH8Nhjj213+3333ccjjzzCE088wcyZM0lKSmLcuHHU1NTU7XPeeeexcOFCJk+ezLvvvsunn37K+PHj67aXlZVx7LHH0rt3b77++mv+/Oc/c9tttzFp0qRmf34iIiIiIiIi0jp5sRoihQuIVW2Mr03Zhlm2f6uGPFUYrwnXzRRpAS06wnJrlmXVG2FpjKFbt25cffXVXHPNNQCUlpaSlZXFs88+y9lnn83ixYsZOHAgs2fPZsSIEQB88MEHnHDCCaxdu5Zu3brx+OOPc9NNN5Gfn08gEADghhtu4M033+S7775rUG0aYSkiIiIiIiLSfhg3QmTjAmLl3xMLdmddWZA+vXu22RGWdWq7nFu2jeUkgO3XaEvZq9rFCMudycvLIz8/n7Fjx9bdlpaWxsEHH8wXX3wBwBdffEF6enpdWAkwduxYbNtm5syZdfscfvjhdWElwLhx41iyZEm97llbC4fDlJWV1fsQERERERERkbbPuFEihQuJVXyPk9y9zY+urMeysBw/xhi8aBXGrcEYr6WrEmm0VhtY5ufnA5CVlVXv9qysrLpt+fn5dO3atd52n89HZmZmvX22d4ytH+PH7rnnHtLS0uo+evbsuedPSERERERERERalPFiRIq+I1a2CicxJ94RvB2ybB+W7WBiNZhoFcaLtXRJIo3SagPLlnTjjTdSWlpa97FmzZqWLklERERERERE9oDxXCJFS4mVLMdJzMZyAru+U1tm2Vh2AGNieNFKPDdMK1kVUGSXWm1gmZ2dDUBBQUG92wsKCuq2ZWdns2HDhnrbY7EYRUVF9fbZ3jG2fowfCwaDpKam1vsQERERERERkbbJGI9oyXKiJUuxE7OwnDa+VmVDWfGGPGBhotXxpjxqyCNtQKsNLHNzc8nOzmbq1Kl1t5WVlTFz5kxGjhwJwMiRIykpKeHrr7+u22fatGl4nsfBBx9ct8+nn35KNBqt22fy5Mnsu+++ZGRk7KVnIyIiIiIiIiItwRhDtGQF0aLvcBI6Y/sSdn2ndsayHSzbh3HD8S7ibnTXdxJpQS0aWFZUVDB37lzmzp0LxBvtzJ07l9WrV2NZFhMmTODOO+/k7bffZv78+fzyl7+kW7dudZ3E999/f4477jguvvhiZs2axYwZM7jssss4++yz6datGwDnnnsugUCAiy66iIULF/LKK6/w8MMPc9VVV7XQsxYRERERERGRvcEYQ7R0JdGixdgJmdj+xJYuqeVYFpYTwBgPL1aFF6vRFHFptVo0sPzqq68YPnw4w4cPB+Cqq65i+PDh3HLLLQBcd911XH755YwfP56f/OQnVFRU8MEHH9Rri/7iiy+y3377cfTRR3PCCScwevRoJk2aVLc9LS2Njz76iLy8PA466CCuvvpqbrnlFsaPH793n6yIiIiIiIiI7FWx8tVECxdhB9Kw/UktXU6TM8ZwyW8vo3NWT5xAMnPnfrvL+1i2D8uy49PDY1WaIi6tkmUUp+9SWVkZaWlplJaWaj1LERERERERkTYgVr6WyMZvsXwh7GDaDvcLRw1rS3z06d2ThISmWNvSAvZO1PL+Bx9x6ulnMW3K+/TNzaVz5074fA3sfG7AeFEsy8byJYDtx7Ks5i14B/r06cOECROYMGFCizy+NJ2amhry8vLIzc2tN+AQGpevNfC7WERERERERESkbYhVridSuACcwE7DyqZjYYyL7QTxwiXYwXQ8twbL8tGc4eXKlSvJyclm1MhDGn9nC7B9RKMRfKYq3ojIF8SyWm27E+lA9F0oIiIiIiIiIu2GW7WByMb5gIOTkLkXHtECy6Ls6wdZPalH3UfZ1w+BZcW3N4MLL7qEKyZcw+rVa3ACyfQdMJBwOMzvr7yG7O59SEzpxOFHHMPsr7Y0Kv74k09xAsm8/8FH/OTg0YSSM5nxxUwMNvdMvIe+uX0JhUIccMABvPbaa/Ueb+HChZx44omkpqaSkpLCYYcdxooVKwCYPXs2xxxzDJ07dyYtLY0xY8YwZ86cuvsaY7jtttvo1asXwWCQbt26ccUVVwBwxBFH8P3333PllVdiWVaLjfKU1kUjLEVERERERESkXXCrNxHZ+C0YDyex624fxxiDiVU1aF/L9lP2zSOUzLyr7jYvXELJzDsBSB1+OcZrWFduy5fY4MDuoQfvo1/fXJ56+u/M/PxTHMfm+hv/yL/feIu/Pz2J3r168ucHHuL4n53C0sXzyMzcEt7+4aZbuO/eu+mb24eMjHQm3vcAL770Co89+gAD+vfnsy9m84tf/IIuXbowZswY1q1bx+GHH84RRxzBtGnTSE1NZcaMGcRiMQDKy8u54IILePTRRzHG8MADD3DCCSewbNkyUlJSeP311/m///s/Xn75ZQYNGkR+fj7z5s0D4N///jcHHHAA48eP5+KLL27Qc5f2T4GliIiIiIiIiLR5bk0xkY3f4rkRfEnZe3QsE6tizaQeu9zPDnWm56+XUTb3se1uL5v7F9JGXM3a5wbhVW/a5fF6jl+L1cDmQGlpaaSkpOA4DtnZWVRWVvLEk3/jmb89yfHHHQvApCf+Qt8BA3nm789zzdUT6u57261/5JixRwEQDoe55977+eiDdxh5yMEYz6Vvbm8++2wGTz75JGPGjOGxxx4jLS2Nl19+Gb/fD8A+++xTd7yjjjqqXm2TJk0iPT2dTz75hBNPPJHVq1eTnZ3N2LFj8fv99OrVi5/+9KcAZGZm4jgOKSkpZGfv2f+btB+aEi4iIiIiIiIibZoXLiWycT5erHqPw8rGcBKzcas24IVLdlBXCW71RpzE5q9pxYo8otEoh47asp6l3+/nJyMOYvF3S+rtO+KgA+s+X758BVVVVYw7/mRSM7JI69SNtM49+McLL7Ji+TKM8Zg7dy6HHXZYXVj5YwUFBVx88cUMGDCAtLQ0UlNTqaioYPXq1QCcccYZVFdX07dvXy6++GLeeOONutGZItujEZYiIiIiIiIi0mZ5kfJ4WBkpxUnq1iTHtHyJ9By/tiF74gRT4012thNa2sF0fEk5ZJ/+IQ1pvmP5Ehtd6+5IStryOBWVlQC889ZrdO+21etnDAG/jYlWEfpRt+cfu+CCCygsLOThhx+md+/eBINBRo4cSSQSAaBnz54sWbKEKVOmMHnyZC699FL+/Oc/88knn+wwBJWOTYGliIiIiIiIiLRJXrSSyMb5uDWFOMndm6xhi2VZDZ6a7bkRUoddVrdm5dZSh12G54ax/c0fRPbrl0sgEGDG51/Su3cvAKLRKF99PYffX/67Hd5v4P77EQwGWb16LWMOP6z+RgPGizJk8H48/8LLRKPR7QaMM2bM4K9//SsnnHACAGvWrGHTpvpT4EOhECeddBInnXQSv/vd79hvv/2YP38+Bx54IIFAANd19/AVkPZEgaWIiIiIiIiItDlerJrIpgXEqjbgS+mBZbXMqneW5ZD2k2uB+JqVXrgEO5hO6rDL4rcbQ0NGV+6ppKQkfnPJ/3L9jTeRmZlBr549+PMDD1FVVc2vL/zlDu+XkpLC1VdewdXXXo/neYw+dCSlZWV8/vkXpKSkcsEvz+PS31zMX/76JGeddSY33vgH0tPT+fLLL/npT3/Kvvvuy4ABA/jHP/7BiBEjKCsr49prryUUCtU9xrPPPovruhx88MEkJibywgsvEAqF6N27NwB9+vTh008/5eyzzyYYDNK5c+dmf72kdVNgKSIiIiIiIiJtiomFiWxaSKzyB3zJLRdW1lYDBlIPmkD6T2/AC5diB9Pw3Jq9FlZuds9dd+B5Hhdc+L+Ul1cw4qADef8/b5KRkbHT+91x+y106dKZe++7n0vyVpGensbw4cO48fprAOjcpStTPniH6268mSOOOALHcRg2bBiHHnooAE8//TTjx4/nwAMPpGfPntx9991cc801dcdPT09n4sSJXHXVVbiuy5AhQ3jnnXfo1KlT/PHvuINLLrmEfv36EQ6HMWbvvWbSOllG3wW7VFZWRlpaGqWlpaSmprZ0OSIiIiIiIiIdlnEjRDYuIFb+fXwauL1nY7HCUcPaEh99evckISHYBBVa7M2Qcq8yBuNFsZwAlpOAZTstXZG0MjU1NeTl5ZGbm0vCj9Y+bUy+pi7hIiIiIiIiItImGC9GpHBxPKxM6rbHYWXzaKdhJYBlYdl+jBvBxKoxnjp9S/NQYCkiIiIiIiIirZ7xXCJF3xErW4mTlIPlqLt0i7AsLCeAMTFMtArjRlq6onbDeC5etApjvJYupcUpsBQRERERERGRVs0Yj2jxUqIly3BCWVhOoKVL6vAs248BvFgVXqxG607uIWM8jFuD8aK1a592bAosRURERERERKTVMsYQLV5OpGgJTqgrli9h13eSvcKyHSzLiU8Pj1VrZOBuMsZg3LBGq25FgaWIiIiIiIiItErGGKIlK4gWLcYJdcL2hVq6JPkxy65d1zJcu66l29IVtT1eBBMLY1lqYrSZAksRERERERERaZWiZauIFi3GDmZg+5NauhzZEcvCsgMYN4qJVcWnNUuDGC+GF6sBy45/CKDAUkRERERERERaoVjZaqKbFmIHUrADyS1djuyKBZbjxxgv3jjGjWhdy10wnouJVQMGy9boyq3tcWDpui5z586luLi4KeoRERERERERkQ4uVrGOSOECLH8idiC1pcuRRrBsH2DVhpZhhZY7EF+3sgbjxbBsdbz/sUYHlhMmTODpp58G4mHlmDFjOPDAA+nZsycff/xxU9cnIiIiIiIiIh1IrDKfyKYFYPlxguktXY7sBst2sGw149mRrZvsKKzcvkYHlq+99hoHHHAAAO+88w55eXl89913XHnlldx0001NXqCIiIiIiIiIdAxu1UaiG+eDASfUqaXLwbgRvGjVXvlodx2it27GE63CeLEmO/QRRxzBhAkT6r7u06cPDz300B4dsymOsSvPPvss6enp4EUxsZr4aFTLatbHbGqrVq3Csizmzp3brI/ja+wdNm3aRHZ2NgDvvfceZ5xxBvvssw+//vWvefjhh5u8QBERERERERFp/9yaIiKb5mO8GE5SVkuXg3EjhAu+xotW7pXHs/1JBLMOwnICDdq/vLycW277E2++9Q4bNmxk+LAD+L8H7+MnIw6q28cYw22338nfnnmWkpJSDh11CI89+hADBvQHIBwOc/Elv+Ptd/5DdlYWf3n0/xh79JF197//gYdYvWYNjzz0wO49qc3NeLwoRKvAF8Jymn5E4ezZs0lKalhTpmeffZYJEyZQUlKy28fYXWeddRbHH3csphFNdo444giGDRvW7GFqa9PowDIrK4tFixaRk5PDBx98wOOPPw5AVVUVjqMFQkVERERERESkcbxIBZFNC/Bi1fiSclq6HKC2e3O0EssJYNkNCxF3/7EieNHK+HqGDQwsL77kdyxcuIjn/v4U3XJyePGllzn2uJNYMO8runfvBsCf7/8/Hn3sCf7+9JPk9unDLbf9ieNPPIUF874iISGBp/72DHPmfMOMT6fywYeT+cUvL2T92jwsyyIvbxV/e/pZZn356Z49uc3NeLwYJlaFZRKwnADRaJRAoGle1y5durSKY+xKQkKQoJOKMXt/3cpIJNJkr/fe0Ogp4RdeeCFnnnkmgwcPxrIsxo4dC8DMmTPZb7/9mrxAEREREREREWm/TCxMpGgRXk0xTmJ2S5ezDcsOYPkSmvejkYFodXU1/37jLSbecyeHHzaa/v37cestN9G/X1+eePIpID668uFHH+OmG6/j5yefyNChg3nu75P44Yf1vPnWOwAs/m4JJ534MwYNGsilvx3Pxo2b2LRpEwCXXj6Be+6+g9TUXTc9uvCiSzj19LO54093k9WtN+mdcvjt764gEtkyzf3oY0/kignXcuWECXTp0oVx48YBsGDBAo4//niSk5PJysri/PPPr6sBoLKykl/+8pckJyeTk5PDAw9sO9rzx9O5S0pKuOSSS8jKyiIhIYHBgwfz7rvv8vHHH3PhhRdSWlqKZVlYlsVtt9223WOsXr2an//85yQnJ5OamsqZZ55JQUFB3fbbbruNYcOG8Y9//IM+ffqQlpbG2WefTXl5+XZfI2MMf3/mKTK7dsey4mHl7XfcxYEjRvKPF/5J3wEDyejSnXPP/3XdMX71q1/xySef8PDDD9fVu2rVqga9bkcccQSXXXYZEyZMoHPnzowbN45zzz2Xs846q15d0WiUzp078/zzzwPwwQcfMHr0aNLT0+nUqRMnnngiK1as2O5zak6NDixvu+02nn76acaPH8+MGTMIBoMAOI7DDTfc0OQFioiIiIiIiEj7ZDyXSNF3uBXrcJJysNrYen4tJRaL4bouCQnBereHQiFmfP4FAHl5q8jPL+Doo7ZM8U5LS+Pgn47gy5mzABg6dAgzPv+C6upqPvxoCjk52XTu3JkXX3qFhGACp55ycoNrmjb9YxZ/t4Rpk9/nxX/8nTfefJs7/nR3vX2ef+GfBIJBPp32Hn999EGKiwo56qijGD58OF999RUffPABBQUFnHnmmXX3ufbaa/nkk0946623+Oijj/j444+ZM2fODuvwPI/jjz+eGTNm8MILL7Bo0SImTpyI4ziMGjWKhx56iNTUVNavX8/69eu55pprtnuMn//85xQVFfHJJ58wefJkVq5cuU3Yt2LFCt58803effdd3n33XT755BMmTpy43bqMGwbPJT7kdKtjrMzjrbff4e03/sXbb7zKp/+dwcR77wXg4YcfZuTIkVx88cV19fbs2ZOSkpJdvm4Azz33HIFAgBkzZvDEE09w3nnn8c4771BRUVG3z4cffkhVVRWnnnoqEA+Ir7rqKr766iumTp2KbduceuqpeN7ebZzUqCnh0WiU4447jieeeILTTz+93rYLLrigSQsTERERERERkfbLGEO0ZAXRsjx8idnxBiTSICkpKYw85GDuuvte9t9vP7KyuvLPl//FF1/OpH+/fgDk144GzMrqWu++Xbt2JT8/vu3Xv/ol8+cvYPABI+jcqRMvv/Q8xcXF3HbHnUyb/D4333I7r/zrdfr2zeXpSY/XTTXfnkAgwNNPPU5iYiKDBg3ktlv/yPU3/JE7br8F246PlxvQvx/3TrwLTHwa/N33PsjwYcO4++4tweYzzzxDz549Wbp0Kd26dePpp5/mhRde4OijjwbiIVyPHj12WMeUKVOYNWsWixcvZp999gGgb9++ddvT0tKwLKuuP8v2TJ06lfnz55OXl0fPnj0BeP755xk0aBCzZ8/mJz/5CRAPNp999llSUlIAOP/885k6dSp33XVXveMZNxoPLLezZqXnefz96SfjxzCG8849i2nTptXVGggESExMrFfvX/7yF4YPH77D123z8x4wYAD33Xdf3T79+vUjKSmJN954g/PPPx+Al156iZNPPrnuOfw473vmmWfo0qULixYtYvDgwTt8zZpao0ZY+v1+vv322+aqRUREREREREQ6CLd8DdHiJTgJnbCc4K7vIPU89/enMMbQs88AQsmZ/OWxxzn7rDOw7YaPUvX7/fzlkf9jxdKFzPziU0YfOoprrvsDl//uN3wzdx5vvf0u33z1BYf89Cf8/sptRyJu7YChg0lMTKz7euTBB1NRUcGaNWvrbjvwwOHxTyywnADz5s1n+scfk5ycXPexebnBFStWsGLFCiKRCAcffHDdMTIzM9l33313WMfcuXPp0aNHXWi3OxYvXkzPnj3rwkqAgQMHkp6ezuLFi+tu69OnT13QB5CTk8OGDRvqHct4LiZWXfu8t/2/6dO7V/1jZGexYcPGndY3b948pk+fvsPXbbODDjqo3v18Ph9nnnkmL774IhAfTfnWW29x3nnn1e2zbNkyzjnnHPr27Utqaip9+vQB4lPk96ZGX774xS9+wdNPP73DIa4iIiIiIiIiIjvjVhYQKVqE5U/C9jdvZ+b2ql+/vkyf+iGVlZWUlZWTk5PN2ef+kty+uQBkZ8U7rRcUbCAnZ8vovA0bNnDAAUO3e8zpH3/CokWLeerJx7juhps4/rhxJCUlccb/nMZjj0/a45qTkhLrfV1RVcWJPzuOe+68DcsJxhsc1YZ6OTk5LF++vNGPEQqF9rjOhvL76zfOsSyr3tRpYzxMrBpjvB12R9/VMbanoqKCk046iXtrp45vLSdnS9Oq7XU9P++88xgzZgwbNmxg8uTJhEIhjjvuuLrtJ510Er179+app56iW7dueJ7H4MGD661Hujc0OrCMxWI888wzTJkyhYMOOmibJ//ggw82WXEiIiIiIiIi0r64NSVECheCASeY3tLltHlJSUkkJSVRXFzMR5OnMvGePwGQm9uH7Owspk3/mGHD4gFlWVkZM2d9xSXj/3eb49TU1HD5FVfxj+eewXEcXNfFGANANBpfM3Nn5n27gOrq6rrA8MtZs0hOTqZnzx1P3z5w2AH8+423yM3NxbGJh5a+BKzaqdP9+vXD7/czc+ZMevXqBUBxcTFLly5lzJgx2z3m0KFDWbt2bb2p0VsLBAK7fC77778/a9asYc2aNXWjLBctWkRJSQkDBw7c6X03M8ZgYmGMF92jLvPbq/fAAw/k9ddfp0+fPvh8jYv2Ro0aRc+ePXnllVd4//33OeOMM+pC08LCQpYsWcJTTz3FYYcdBsBnn32227XviUY33VmwYAEHHnggKSkpLF26lG+++abuY+7cuc1QooiIiIiIiIi0B160imjhQrxoJU5i113fQXbow4+m8MGHk8nLW8XkKdM4+pgT2G/ffbjwgvjahJZl8fvLf8dd99zH2+/8h/nzF3DBhePp1i2HU35+0jbHu/OuiRx//DiGDz8AgFEjD+GNN9/m228X8NjjTzJq1CE7rScSifC/4y9l0aLFvPf+h9x+x1387reX1K1fuT2X/vYSioqLOff8X/PVnG9Zvuw7PvjP21z4qwtwXZfk5GQuuugirr32WqZNm8aCBQv41a9+tdNjjhkzhsMPP5zTTz+dyZMnk5eXx/vvv88HH3wAxKdxV1RUMHXqVDZt2kRVVdU2xxg7dixDhgzhvPPOY86cOcyaNYtf/vKXjBkzhhEjRuz0ddjMuBGMG8ay/fWa7DRWnz59mDlzJqtWrWLTpk14nsfvfvc7ioqKOOecc5g9ezYrVqzgww8/5MILL9xlGAtw7rnn8sQTTzB58uR608EzMjLo1KkTkyZNYvny5UybNo2rrrpq94vfA40eYTl9+vTmqENERERERERE2jHjRokULiJWvRFf8o5H3bU2xotAbC88RiOVlpZy0823sXbtOjIzMzjt1J9z5x231ptifO01V1JZWclvLr2ckpJSRh86kvfeeYOEhIR6x1qwYCH/ev0N5sz+vO62/zn9VD759L+MOepY9t1nAC88/8xO6znqyCMY0L8fRxw9jnA4wtln/Q+33vKHnd6nW7cc/vvxFG74w80c97NTCIfD9O7Vk2OPPRrLRDHG5s9//nPdFOiUlBSuvvpqSktLd3rc119/nWuuuYZzzjmHyspK+vfvX7e04ahRo/jNb37DWWedRWFhIbfeeiu33XZbvftblsVbb73F5ZdfzuGHH45t2xx33HE8+uijO33czeJNdmriI0W3s25lY1xzzTVccMEFDBw4kOrqavLy8ujTpw8zZszg+uuv59hjj42/br17c9xxx+00zN3svPPO46677qJ3794ceuihdbfbts3LL7/MFVdcweDBg9l333155JFHOOKII/boOewOy2we39tIy5cvZ8WKFRx++OGEQiGMMXXrDLQ3ZWVlpKWlUVpaSmpqakuXIyIiIiIiItKmGOPFw8riZTjJ3VtVR/Bw1LC2xEef3j1JSNjS/Me4EcIFX+NFK/dKHbY/iWDWQVjO7k8fbikXXnQJJSWlvPH6y01yPOO5YLzaKeLBuinibUG8yU5VfN3Kxn6fG4MxLrY/Gct2mqfAZlZTU0NeXh65ubnbBOONydcafYYoLCzkzDPPZPr06ViWxbJly+jbty8XXXQRGRkZPPDAA409pIiIiIiIiIi0Y9GSlcRKVuAkZrWqsHJnLCdAMOsgjNfMwys3P57ta5NhZXOwbAeMjXFrwLjgS2gT3zfGeBi3BuO5O2yyIw3T6Ij6yiuvxO/3s3r16nrt6s8666y69QBERERERERERABi5WuJFn2HHczA8iXs+g6tiOUEsP2Je+VDYeWPWBaWHcCYGF60Es8Ns5uThPcKYwzGDWPcSHzdStkjjY6nP/roIz788EN69Ki/3sSAAQP4/vvvm6wwEREREREREWnb3OpNRAoXYfkSsAPJLV2ONJO/P/1k8xzYAsvyx6dZR6vBqR1t2RqniHtRTCwcHwnaPldM3Ksa/T9cWVlZb2TlZkVFRQSDwe3cQ0REREREREQ6Gi9STmTTQowXw0nIbOlypA2zbAfL9sVHMEar9to0/YYyXgwvVg2WHf+QPdboV/Gwww7j+eefr/vasiw8z+O+++7jyCOPbNLiRERERERERKTt8WI1RDYtxAuX4CRmtXQ5DdKapxsL8SniTiAeDkYr8WKtY4q4MR4mVg2YNtsopyk11f9Jo6eE33fffRx99NF89dVXRCIRrrvuOhYuXEhRUREzZsxokqJEREREREREpG0yXoxo0WLcyvU4yT2wrNY9P9bnAMajqiZMKNS21tjsiCzHD54bDwlNy04RN8ZgYjUYL6Y1SGtFIhEAHGfPwttGB5aDBw9m6dKl/OUvfyElJYWKigpOO+00fve735GTk7NHxYiIiIiIiIhI22WMIVq8jFjpKpykbm1ixJljW6QkeGzcuAmAxIRgqw9ZBTAGY8qxrGosX6BFGt14sTDGrcGyfGCF9/yAxmDwsN2aNvGz82Oe57Fx40YSExPx+fasq7tlWsP42VaurKyMtLQ0SktLSU1NbelyRERERERERFqlSMlKooULsBM6YftCLV1Ogxlj2FgO5TVag7BtMRjjAWDZ/tqQb++EzcZz4x3BLasJv2fiz8dygq2zsVAD2LZNbm4ugcC2I04bk681Ou789ttvt3u7ZVkkJCTQq1cvNd8RERERERER6WBileuJFX+HHUhtU2ElxDONrqnQKdkj5notXY40khepwI2U40/pgS+tD7aveaf2e5FyIhsXYPBwgulA03zPGC+CFykn2PUg7EBSkxxzbwsEAtj2noetjQ4shw0bVjc0evPgzK2HSvv9fs466yyefPJJEhK09oOIiIiIiIhIe+fWFBHdtBAsH3ag7c5MdGwLp20ObOvY/CmYhACxqjwsU4Y/c3+cxC7N8lAmFiZctAI/FfiSuzftsV3wXJeEhCB2oGNnao3+MXzjjTcYMGAAkyZNYt68ecybN49Jkyax77778tJLL/H0008zbdo0/vjHPzZHvSIiIiIiIiLSinjRSiKbFuC5YZxQ55YuRzooywniS+6JF6kgXPAVkZIVGM9t0scwxiNSvCTeUCoxu0mPLfU1eoTlXXfdxcMPP8y4cePqbhsyZAg9evTg5ptvZtasWSQlJXH11Vdz//33N2mxIiIiIiIiItJ6mFiYSOFCvJpinOQeLV2OdHCWZeNLysaLlBHZNB8TKcOfsS+2P7FJjh8tzSNashJfUnabbIrTljQ6sJw/fz69e/fe5vbevXszf/58ID5tfP369XtenYiIiIiIiIi0SsZziRR9h1uxDiepuzprS6thB1KxnASiZd/jhcsJdNoPJ7HrHh3TrSwgVrwEJyEdy1HvlubW6Cnh++23HxMnTiQSidTdFo1GmThxIvvttx8A69atIysrq+mqFBEREREREZFWwxhDtGQF0bI8nMRsLLvR46FEmpXlBPAl98REK+NTxIuX7/YUcS9STqRoMWC36TVa25JGn1Eee+wxTj75ZHr06MHQoUOB+KhL13V59913AVi5ciWXXnpp01YqIiIiIiIiIq2CW76GaPESnIROGm0mrZZlWThJWfHAsXABJlyGv9O+2P6Gd+A2boRI0WK8cKmWPdiLGj3CctSoUeTl5XHHHXcwdOhQhg4dyh133EFeXh6HHHIIAOeffz7XXnvtHhfnui4333wzubm5hEIh+vXrx5/+9Ke67uQQv6pzyy23kJOTQygUYuzYsSxbtqzecYqKijjvvPNITU0lPT2diy66iIqKij2uT0RERERERKSjcas2EClahOVPalTwI9JS7EAKvsQcouWrCed/hVtZ0KD7xZvsLMctX4eTlKNlD/ai3RqznZKSwm9+85umrmUb9957L48//jjPPfccgwYN4quvvuLCCy8kLS2NK664AoD77ruPRx55hOeee47c3Fxuvvlmxo0bx6JFi0hIiLeAP++881i/fj2TJ08mGo1y4YUXMn78eF566aVmfw4iIiIiIiIi7YUXLiWyaQEYcILpLV2OSINZjh9fSk+86o2EC77GlzEAf1ruTpcziJWvIVa6HDsxS8se7GWW2Xq4YgMtW7aM6dOns2HDBjzPq7ftlltuabLiTjzxRLKysnj66afrbjv99NMJhUK88MILGGPo1q0bV199Nddccw0ApaWlZGVl8eyzz3L22WezePFiBg4cyOzZsxkxYgQAH3zwASeccAJr166lW7duu6yjrKyMtLQ0SktLSU3VWgUiIiIiIiLS8XjRKiIbvsGtKcKX3L2lyxHZbV6kAi9chC+5F/7MfbADydvs41ZvIlzwNZYdwA6m7ZW6jBvGC5eQ0P2w7dbU1jUmX2t0PPzUU0/x29/+ls6dO5OdnV1vOKxlWU0aWI4aNYpJkyaxdOlS9tlnH+bNm8dnn33Ggw8+CEBeXh75+fmMHTu27j5paWkcfPDBfPHFF5x99tl88cUXpKen14WVAGPHjsW2bWbOnMmpp566zeOGw2HC4XDd12VlZU32nERERERERETaGuNGiRYuJla9EZ/W8ZM2zg4kYzlBYhVr8KLl+DP3xZeUXbfdi1YSKVyE8Vyc0N4JK6W+RgeWd955J3fddRfXX399c9RTzw033EBZWRn77bcfjuPgui533XUX5513HgD5+fkA23Qkz8rKqtuWn59P1671W9f7fD4yMzPr9vmxe+65h9tvv72pn46IiIiIiIhImxNfx28JsfLV+JK7Y1mNboch0upYjh8nuUfdFHEvYx/8abkARAuX4FYX4Uvp2cJVdlyNPssUFxdzxhlnNEct23j11Vd58cUXeemll5gzZw7PPfcc999/P88991yzPu6NN95IaWlp3ceaNWua9fFEREREREREWqtoyUpiJStwtI6ftDOWZeEkdsUOpBLdtIDwhrlEipcRK/8eX3I3NdlpQY0+05xxxhl89NFHe6XpzrXXXssNN9zA2WefDcCQIUP4/vvvueeee7jgggvIzo4P1y0oKCAnJ6fufgUFBQwbNgyA7OxsNmzYUO+4sViMoqKiuvv/WDAYJBgMNsMzEhEREREREWk7YuVriRZ9hx3MwPIltHQ5Is3C9idhOUHcinUY4+GEuiicb2GNfvX79+/PzTffzJdffsmQIUPw+/31tm/u3t0UqqqqsO36g0Adx6lr9JObm0t2djZTp06tCyjLysqYOXMmv/3tbwEYOXIkJSUlfP311xx00EEATJs2Dc/zOPjgg5usVhEREREREZH2xK3eRKRwEZYvoV02ABHZmmX7cJJ7gHEVVrYCje4Snpubu+ODWRYrV67c46I2+9WvfsWUKVN48sknGTRoEN988w3jx4/n17/+Nffeey8A9957LxMnTuS5554jNzeXm2++mW+//ZZFixaRkBC/+nP88cdTUFDAE088QTQa5cILL2TEiBG89NJLDapDXcJFRERERESkI/Ei5YQL5uBFK+s1IxGR5qMu4Vs0OjLOy8vb7cIa69FHH+Xmm2/m0ksvZcOGDXTr1o1LLrmkXify6667jsrKSsaPH09JSQmjR4/mgw8+qAsrAV588UUuu+wyjj76aGzb5vTTT+eRRx7Za89DREREREREpK3wYjVENi3EC5fER5yJiOxljR5huVkkEiEvL49+/frh87XvobIaYSkiIiIiIiIdgfFiRDbNJ1a6Cie5B5bttHRJIh2GRlhu0egu4VVVVVx00UUkJiYyaNAgVq9eDcDll1/OxIkTd69iEREREREREWlRxhiixcviYWVSN4WVItJiGh1Y3njjjcybN4+PP/643rTrsWPH8sorrzRpcSIiIiIiIiLSPIzn4kXKcSsLiJauJFwwh2jJMuzErliOf9cHEBFpJo2ey/3mm2/yyiuvcMghh2BZVt3tgwYNYsWKFU1anIiIiIiIiIjsOWM8TLQKE6vCi1bi1ZTiRUowsWqMGwHAcoLYCZ2wfaEWrlZEOrpGB5YbN26ka9eu29xeWVlZL8AUERERERERkb3PGBMPIqOVeLEqvHApXk0Jxq3GxGowgGX7sX0h7EAaOEG9nxeRVqXRgeWIESP4z3/+w+WXXw5Qd1L729/+xsiRI5u2OhERERERERHZIWMMxq2Jj56MVuJGyvFqCuPBpFsDxoDtw/KFsPwp2AmdFU6KSKvX6MDy7rvv5vjjj2fRokXEYjEefvhhFi1axOeff84nn3zSHDWKiIiIiIiICODFajCxeDjpRSrwaorwopW14aQHlg/Ll4DlT8JOyMSyGt26QkSkxTU6sBw9ejRz585l4sSJDBkyhI8++ogDDzyQL774giFDhjRHjSIiIiIiIiLNyrhRoqV5GDeMZfuxHB9YNlhOPPTbxedYdu3Xmz/f81GMxo3Ew8hYVV04GZ/mXV0bTtpYTgKWL4QdzFBXbxFpNxodWAL069ePp556qqlrEREREREREdnrjOcSKfqOWOlysAPxadTGA0x8vUcswNTuXRtEWtZWIaUd38ty6m7HcrBsX3w6tuUH22lQEGrcSDycDBdhIpvDSXercDIBJ5AaP7aISDvV6DPcnDlz8Pv9daMp33rrLf7+978zcOBAbrvtNgKBQJMXKSIiIiIiItIcjPGIFi8lVroCJ5SF5UtowH22BJoYD2O8rb52wRiMF8HEarYEn7W37zIIpXbkpB3E8oVwElMUTopIh9Pos94ll1zCDTfcwJAhQ1i5ciVnnXUWp512Gv/617+oqqrioYceaoYyRURERERERJqWMYZo8XKixUuxQ10aFFZCbfNZa8v066ZqYWOMUUMcERGg0avvLl26lGHDhgHwr3/9izFjxvDSSy/x7LPP8vrrrzd1fSIiIiIiIiJNzhhDtHQl0eLvsBMysX2hli5JYaWISK1GB5bGGDzPA2DKlCmccMIJAPTs2ZNNmzY1bXUiIiIiIiIizSBWvppo4WLsQBq2P6mlyxERka00OrAcMWIEd955J//4xz/45JNP+NnPfgZAXl4eWVlZTV6giIiIiIiISFOKVawjumkhtj8JO5DS0uWIiMiPNDqwfOihh5gzZw6XXXYZN910E/379wfgtddeY9SoUU1eoIiIiIiIiEhTiVXmE9m0AJwAdjCtpcsREZHtsIwxZte77VpNTQ2O4+D3+5vicK1KWVkZaWlplJaWkpqa2tLliIiIiIiIyG5wqzYS2TAXYzycxC4tXY6ISD3GDeOFS0jofhh2ILmly2lyjcnXGj3Ccs2aNaxdu7bu61mzZjFhwgSef/75dhlWioiIiIiISNvn1hQT2TQf48UUVoqItHKNDizPPfdcpk+fDkB+fj7HHHMMs2bN4qabbuKOO+5o8gJFRERERERE9oQXLiWy8Vu8WDVOknoviIi0do0OLBcsWMBPf/pTAF599VUGDx7M559/zosvvsizzz7b1PWJiIiIiIiI7DYvUkFk43y8SBlOYnZLlyMiIg3Q6MAyGo0SDAYBmDJlCieffDIA++23H+vXr2/a6kRERERERER2kxetIrJpAW5NIU5SDpZltXRJIiLSAI0OLAcNGsQTTzzBf//7XyZPnsxxxx0HwA8//ECnTp2avEARERERERGRxvJiNUQKFxCrzMdJ6oZlNfrtr4iItJBGn7HvvfdennzySY444gjOOeccDjjgAADefvvtuqniIiIiIiIiIi3FuBGimxbhlq/Dl9wNy3ZauiQREWkEX2PvcMQRR7Bp0ybKysrIyMiou338+PEkJiY2aXEiIiIiIiIijWG8GJHCxcTKv8dJ7o5lN/ptr4iItLDdOnM7jlMvrATo06dPU9QjIiIiIiIisluM5xIp+o5YWV58zUqFlSIibdJunb1fe+01Xn31VVavXk0kEqm3bc6cOU1SmIiIiIiIiEhDGeMRLVlGtGQ5vlBXLCfQ0iWJiMhuavQalo888ggXXnghWVlZfPPNN/z0pz+lU6dOrFy5kuOPP745ahQRERERERHZIWMM0ZIVRIuW4CR0xvIltHRJIiKyBxodWP71r39l0qRJPProowQCAa677jomT57MFVdcQWlpaXPUKCIiIiIiIrJD0dI8okWLsRMysf3qrSAi0tY1OrBcvXo1o0aNAiAUClFeXg7A+eefzz//+c+mrU5ERERERERkJ2Jlq4kWLsIOpGL7k1q6HBERaQKNDiyzs7MpKioCoFevXnz55ZcA5OXlYYxp2upERERERNo540bxopW4NcW4NSX6m1qkEWIVPxApXIDlT8QOpLZ0OSIi0kQa3XTnqKOO4u2332b48OFceOGFXHnllbz22mt89dVXnHbaac1Ro4iIiIhIm2W8GMYNY9wIxg2DG8Fzw5hIJSZWGd/mRTFuBMt2cJJy8KX0wk7IxLKsli5fpNVyKwuIbFoAlh8nmN7S5YiISBOyTCMv4Xqeh+d5+HzxrPPll1/m888/Z8CAAVxyySUEAu2vE1tZWRlpaWmUlpaSmqqrdiIiIiKyRTyQ3BJGGje8g0AyijEuFoBlY1k+cPxYth/s+L/Gi+LVFGJZDk6ygkuRHXGrNxHZMBfjxXASu7Z0OSIiTcK4YbxwCQndD8MOJLd0OU2uMflaowPLjkiBpYiIiEjHZTy3boQkbhjjRfBiNZhYFSZSUS+QxLjxO1kWluUH24flBOoCSct2GvSYXqwGr6YQLBtfcjd8KT2xEzopuBQB3JpiIhu+wYvV4EvKbulyRESajALLLRo9JRyguLiYp59+msWLFwMwcOBALrzwQjIzM3fncCIiIiIiLc6LVWMi5XXhpBetwESrMLHqulGU8UDSgGWD5YuHkI4fy5+CHfRh2bv15/U2bF8CdnJ3TKyGWPlaYhU/KLgUAbxwGZGN8/Fi1fiSclq6HBERaSaNHmH56aefcvLJJ5OamsqIESMA+PrrrykpKeGdd97h8MMPb5ZCW5JGWIqIiIi0X8YY3Mr1RIuX4oVL4zdaVr1AcssIyaYJJBtdY6wGN1wEWPgSc/Cl9VJwKR2OF60ksmEubk0hTlJ3ff+LSLujEZZbNDqwHDJkCCNHjuTxxx/HceJTWlzX5dJLL+Xzzz9n/vz5u195K6XAUkRERKR98qKVRIuXEyv/HstJaPUhYF1wacCX1A1fak/sUOdWXbNIU/Bi1UQ2zMOtysdJ7oFl2S1dkohIk1NguUWjA8tQKMTcuXPZd999692+ZMkShg0bRnV1deMrbuUUWIqIiIi0L8Z4uBU/EC1eihspwxfqiuVLaOmyGkzBpXQkJhYmvGk+sYq1+JK6N3gtWBGRtkaB5RaNvix14IEH1q1dubXFixdzwAEHNPZwIiIiIiJ7lRepILJxPuENczCeiy+5Z5sKKwEsXwK+pG44oU7EqtZTs34mkYJvcKs2op6a0p4YN0qkcCFu+Rp8Sd0UVoqIdBCNXoTniiuu4Pe//z3Lly/nkEMOAeDLL7/kscceY+LEiXz77bd1+w4dOrTpKhURERER2QPxUZXriBYvww2X4UvKwnKCLV3WHrGcIL6kHIwbJla1nljlOpykHPypvWpHXGrarLRdxosRKVxErOx7nKRuLbaGrIiI7H2NnhJu2zv/o8eyLIwxWJaF67p7VFxroSnhIiIiIm2bFyknWrKcWNkaLF8IOyGzXU6fNm4Yt6YIjKfgUto047lEipYQK16Ck5Td5i8uiIg0hKaEb9HoS1R5eXm7XZiIiIiIyN5kPLduVKUXrcBJzMJyAi1dVrPZesSlW5mPW7lewaW0OcZ4REuWEy1ZWvszq7BSRKSjaXRg2bt37+aoQ0RERESkSXnhsngH8Io1WP4kfCk9W7qkvcZygviSu2HcSP3gMqUndmIXBZfSahljiJasJFq0BCehM3YbW19W2jjLh+X4MG4MTKylqxHp0LQIiIiIiIi0K8ZziVWsJVa8DC9a2e5HVe6M5QS2E1xm40/ppeBSWhVjPIwbIVa5nmjRYuxgOrY/saXLkg7CchIIB3MIhlIpqY6QHgoQri4jGF6PcWtaujyRDkmBpYiIiIi0G164lEjxMmIV67D9yR1qVOXO1AsuqzbgVubjJGXhT+mt4FL2is2BJG4E44YxXvxfL1qNiVZgYtUYN4KJVWMHUtvl2m3SOllOAm7qAO6fvoJHP5tJSXWU9JCfK0b34fojB+CULVNoKdICFFiKiIiISJtnvBjR8jW4xcvxYlX4ErOxHH9Ll9XqWE6gdo3LCG7VxtrgMhtfSi+cxK4KLmW3bT+QjOBFqzDRSkysCtwoxotiTAw29361HCwngGX7sXyJ2MF0dQOXvSoczOH+6Sv40+RldbeVVEe5o/brq0flEKhSLw+RvU2/CURERESkTXNrSuIdwCvW4gTSNKqyAbYEl9EtwWViFr7U3gouZbuMMduMjtxhIOlFt9xxq0ASXwK2nQq2D8uyWu7JiGxm+QiGUnn0s5nb3fzIZ6u4/qgBTP8uRs8U6J3q4Hf0vSuyN+xWYFlSUsJrr73GihUruPbaa8nMzGTOnDlkZWXRvXv3pq5RRERERGQbxosRLVtNrGQ5xq3Bl9RNI7MayXL8W4LL6kLcqgJ8Sd3xpfXBTshUqNTBGC+GiVbVCyRNrBovEp+yjRvBmCjG/VEgafvj68QqkJQ2xnJ8lFRHKKmObnd7SXWUgvIw131SxYL8chwLeqU69M/w0TfDR790H/0y4l/3SfMR2NMwU01/ROo0+i+6b7/9lrFjx5KWlsaqVau4+OKLyczM5N///jerV6/m+eefb446RURERETquDXFREuW4Vb8gB1Iwwl1bumS2rR4cJkdb3pStR63ugAnpVe8OU8wtaXLk2Zi3ChetBwTqcANF+PVFNWuJbltIInjx/IlYNspYPsVSEq7UFkTITnFT3rIv93QMj3kp2tygAy/S8hnUR0z5JW65JW6sCpcb1/bgp6pDv3SffFAM92hX4avLsxM8O34Z0ZNf0S21ejA8qqrruJXv/oV9913HykpKXW3n3DCCZx77rlNWhzAunXruP7663n//fepqqqif//+/P3vf2fEiBFAfGrCrbfeylNPPUVJSQmHHnoojz/+OAMGDKg7RlFREZdffjnvvPMOtm1z+umn8/DDD5OcrIWcRURERNoS40aJln1PrHQFxo3gaFRlk4pPFe+GF6smWrwct+IHfGm5+FJ6YPtCLV2e7CETC+NFK/Ai5Xg1xXjhYrxoVXwkl+3H9iViBzMVSEqHsKwoyjlvFXHnidlcdmgf7pyybJt9rhjdBzdczkdnZ2BMOusrPVYWx1heHGNFSYwVxTFWlrgsL45RGTV8X+ryfanLtO/rh5kW0KMuzHTom+6jX+0Izf6dk/Gr6Y/INhr9193s2bN58sknt7m9e/fu5OfnN0lRmxUXF3PooYdy5JFH8v7779OlSxeWLVtGRkZG3T733XcfjzzyCM899xy5ubncfPPNjBs3jkWLFpGQkADAeeedx/r165k8eTLRaJQLL7yQ8ePH89JLLzVpvSIiIiLSfNyaIqLFtaMqEzJwQl1auqR2y/aFsFN74UXKiBYuwK1Yiy+tb3zavZoZtRlerBoTqcCLVuBWb8KES/FiVWA8LDuI5Q/F1yxV6C8dzL+XVPObD4opjxgemLaE9y4ZiW3F16ysHxj2iweGgGVZdEt26JbsMLpnsN7xjDEUVHqsKImxsqQ20Cx26z4vjxjWlLmsKXP5eHX9Wt74VW++nruiXmCqpj8iYBmzuT1bw3Tt2pUPP/yQ4cOHk5KSwrx58+jbty+TJ0/m17/+NWvWrGmy4m644QZmzJjBf//73+1uN8bQrVs3rr76aq655hoASktLycrK4tlnn+Xss89m8eLFDBw4kNmzZ9eNyvzggw844YQTWLt2Ld26ddtlHWVlZaSlpVFaWkpqqqbEiIiIiOxN8VGVq+KjKj0XJ9RFActeZIzBCxdjohU4oS740vviJGapMU8rY4yJT+eOlONGyvFqNmHC5XhuNcbzsH0JWL5ELF8Iy3ZaulyRFhF1DTd9UsqjX1cCMLpHgOdPyqRbWlLdlOzS6ghpoQDh6lKC4fw9Ht1ojGFjVW2YWeyyvHZk5oqSGCVhm3nXHkXPP03Z4ZT0/FuPwRQt1JqWHYRxw3jhEhK6H4YdaH+zghuTrzX6L72TTz6ZO+64g1dffRWIX2VYvXo1119/PaeffvruVbwDb7/9NuPGjeOMM87gk08+oXv37lx66aVcfPHFAOTl5ZGfn8/YsWPr7pOWlsbBBx/MF198wdlnn80XX3xBenp6XVgJMHbsWGzbZubMmZx66qnbPG44HCYc3jKEu6ysrEmfl4iIiIg0jFtdGB9VWbUeO5iJE0rZ9Z2kSVmWhZOQiQmk4dUUEs6fjZPUDX9aH+yETpo63EKMMZhoZXyKd7gMr2ZTbXOcGsBgOQlY/kSchAyFyyLAunKX898p4ot1EQCu/Ekydxyeis+2MG4Ngao8TLWPNMeHqY4RMDEaNbprByzLomuSQ9ckh5E/7lHsBCmpie606U9pdSReU0yBpXQsjf7N9cADD1BRUUHXrl2prq5mzJgx9O/fn5SUFO66664mLW7lypV161F++OGH/Pa3v+WKK67gueeeA6ibgp6VlVXvfllZWXXb8vPz6dq1a73tPp+PzMzMHU5hv+eee0hLS6v76NmzZ5M+LxERERHZOeNGiBQtJZw/C7emECepO3ZAYWVLsmwHJ7ErTqgrblUB4fWziGxagBfWxf29wRgPL1xGrOIHIoXfEV43g5ofPqNm/Uyixd/hRSqxfIk4yd3xpfTESeyC7U9SWCkCfPx9mFHPb+CLdRFSAxYv/zyTu49Iw2f/6IKLicVD/701mtFzyUgMkB7a/lIb6SE/qQmBeNdwkQ6m0SMs09LSmDx5Mp999hnffvstFRUVHHjggfVGOTYVz/MYMWIEd999NwDDhw9nwYIFPPHEE1xwwQVN/nib3XjjjVx11VV1X5eVlSm0FBEREdlL3KqNREuW41blYwc74bTDKVFtWbwxTw5erJpY6UrcyvX4UvvgS+2pxjxNyHguprZBjhsuxasuxMQqMW443rnbF8Lyp+JLCGqUq8gOeMbwwMwKbvusDM/AkC4+Xvp5J/pntJJlRUyMcHUZV4zuU7dm5dYuO7QPk5dtxF9RyRG9g9s5gEj7tds/paNHj2b06NFNWcs2cnJyGDhwYL3b9t9/f15//XUAsrOzASgoKCAnJ6dun4KCAoYNG1a3z4YNG+odIxaLUVRUVHf/HwsGgwSDOhmIiIiI7E0mFt6yVqUxOEk9tNZeK2b7QtgpPfEi5USLFsYb86T3U2OePeBFq/BqCnFrivFqCjHRaowXAcuH5QthB9OxHL1PEWmI4hqP/32vmPdWxNegPH9wIg+NTSPR37pGHQfD67n+yAHAtk1/rhidy+jHPmf5pgoeH5fOLwYntXC1InvPbgWWU6dOZerUqWzYsAHP8+pte+aZZ5qkMIBDDz2UJUuW1Ltt6dKl9O7dG4Dc3Fyys7OZOnVqXUBZVlbGzJkz+e1vfwvAyJEjKSkp4euvv+aggw4CYNq0aXiex8EHH9xktYqIiIjI7nNriogWfodbVYAd6ozj15uytsIOpGD5k/HCxUQ2fIMbWosvLRcnKVvTkRvBrdpApHAxXk0ROAFsXyJ2QiaWE2jp0kTanG8KIpz7VhGrSl2CDvzf2HR+NSSxVY5GNm4NTtkyrh6Vwx+OHlCv6Q8VyxmS6fLdBrj4/RJWlbrcNCqlVT4PkabW6MDy9ttv54477mDEiBHk5OQ06w/KlVdeyahRo7j77rs588wzmTVrFpMmTWLSpElAfPHaCRMmcOeddzJgwAByc3O5+eab6datG6eccgoQH5F53HHHcfHFF/PEE08QjUa57LLLOPvssxvUIVxEREREmo8xHrHyNUSLlmC8KE6yRlW2Rds05in4So15GsgYj2hpHrHipYCFk9JLr5fIbjLG8Pdvq7hqaglhF/qkObz080yGZ7Xu4H9HTX8Anj0xg9x0h/u+rOCuz8vJK4nx+HEZBBydJ6R9s4wxjWp8lZOTw3333cf555/fXDXV8+6773LjjTeybNkycnNzueqqq+q6hEP8hHTrrbcyadIkSkpKGD16NH/961/ZZ5996vYpKirisssu45133sG2bU4//XQeeeQRkpMbth5SY9qui4iIiEjDeLEaosVLiZWuwgok4wTTW7okaSLGjeLWbALAl9ITf2pv7GBaC1fV+nixGqJFS4iW5uEkpGMH9F5DZHdVRT1+P7mUFxZWAfCzfgk8dUIGGQntY6T337+t5PKPSnANHN4zwMundGo3z022MG4YL1xCQvfDsNvhGt6NydcaHVh26tSJWbNm0a9fvz0qsi1RYCkiIiLStNzqQqJF3+FWbcBJzMLyJbR0SdIMvFgNXvUGLF9ivDFPSg9sf2JLl9UquDXFRAsX41YVxKfPa21Kkd22ojjGOW8VMn9jDNuC20ancvXBydjtbLTy5Lwaznu7iPKIYb9OPt48vRO901pJAyFpEgost2h0HP+///u/vPTSS7tdnIiIiIh0XMZ4RErzCBd8hRsuwUnpqbByM8sXfy2s9vPm0/Yl4EvpheUEiRYuJLz+S6KlqzBupKVLazHGGGLla4nkf4UbLor/DCisFNltby2tZtTzG5i/MUbXRJv3zuzMtYektLuwEuCY3ASmnNOFbsk23xXGOPyFjXy1vuOeT6V9a/RfQzU1NUyaNIkpU6YwdOhQ/P76HQAffPDBJitORERERNoPL1ZNtGhpfPprMA0n1KWlS2oVLCeBcDCHYCiVkuoI6aEA4eoyguH1GLempctrElsa85TEG/OUr8WX3jc+urYDrVlq3CjRkuVES5Zj+UL4krSmvsjuinmGmz8t46HZFQCM7B7gHydl0j2lfZ9Thnb18+kvunLa64V8uzHKsS9v4rkTMzhpQKilSxNpUo2eEn7kkUfu+GCWxbRp0/a4qNZGU8JFRERE9oxbtZFI0WLcmkJ8iZr+upnlJOCmDmDi9BU8+tkqSqqjpIf8XDG6D9cf2Q+nbFm7CS03M56LV1OIcSM4ydn4U3OxQ53bfaMZL1JBpOg73Io12AldNDVeZA+sr3D55TtFfLY2PrrwihHJ3Hl4Kv4O1IimPOLxi7eL+CgvjAX8+ag0fndQ+5tC3NFoSvgWjQ4sOyIFliIiIiK7x3gu0bJVxIqXYozBSeyKZbXSJgGWD8vxYdwY1HZnbW6RxFzu/7yAP01ets22W44ZwNWjsghU5e2VWva2eo15knvEO4q308Y8bmUBkaLFeOFSnKQcLLv9TPsX2dv+uybM+W8XUVDlkRKweOK4DE7bt2OOLox5hgmTS3j623ijod8dlMS9R6Th2B0nuG1vFFhuod+UIiIiItIsvGgl0eKlRMu+xwmm47TSDsjNOSU75hkKKj3yK13yK1zyK73af12qXIdJ56bw6Gczt3vfRz5bxR+OHoCp9u21AHVvshw/vqQcvFgNsbJVuFUF+FJ71zbmSWrp8prElsB+CWDjJPdo9yNJRZqLMYYHZ1Vw63/LcA0M6uzjnz/PZECmf9d3bqd8tsWjx6aTm+7jj5+W8djXlXxf6vLszzJICrTSi4MiDdSgwPK0007j2WefJTU1ldNOO22n+/773/9uksJEREREpO1yqzYQKfwOt6YIX1I2lhNo6ZK2a/OU7Punr+DRz2b+aEr2gB1Oya6OmngIWemSX+Ft+3ntvxurPHY0nWlwdgoFFRFKqqPb3V5SHaW0OkKa48PE2l9guZntS8BO6YkXqSBauAi3fA1OSi98Kd3bdHBZt2Zr2SqcYDp2IKWlSxJps0pqPC5+v5h3l8fPx+cODPHIMekK5YgvzXf1wSn0SnO4+L34azTulU28flonspLa93qe0r41KLBMS0uruxKYltY+p2mIiIiIyJ4zXoxo6SpiJUsBG19Kz1Y9oiwczOH+6SvqTckuqY5yx+RlGODMwV34238XbBNIloYbvqqSY0HXJJucJIfsZIfsJJvsJIfe6UFyUoKkh/zbDS3TQ37SQgFMdfsNK7dmB5Kx/EmYaDnRwoW45avbbHDp1hQRLVxMrHoDvsScVhvYi7QF8woinPt2EStLXAIOPHBUOhcdkNiqf7e0hDP2S6R7ssOZbxbxdX6UMS9u5M3TO7Ffp447AlXaNq1h2QBaw1JERERk17xIRXxEWcX3OMHM1j+izPJhZQ4i+/bJOwwM19w8lty7prKpMrLN9gQfZCc58Y9kezuf22QnO3QO2TtcTyySmMsDnxdwx3bWsPzj2AGcP6wzvazVe/5c2xhjDCZajldTjB1IaTPBpTEGt2ItkcLFGC8a74LeWtdsFWmNfrSW8PPzK/n9lBJqYtAr1eGln2dyULYuAOzM8uIYp7y2iRUlLulBi5dP6cSYXmp011ZoDcsttIaliIiIiOyxWGU+0aIleOESfIndsJzWP6LDcnwUVe18SnZxVYSrD8nAxKrJTnZqR0nGA8m0oLXHI3yC4fVcf+QAIL5m5eYp6Zcd2ofLR+cy5q+fc3p/i5tGpXSo0USWZWEFUrH8KW1mxKVxI0SKlxMrXY7lS8KX1LmlSxJpM7a3lvDctYX835yF1MRgXG6QZ36WSWZIFwB2pX+Gj4/P68IZbxTx5Q8RTvrXJp44LoNzByW2dGkijdKgwHL48OEN/gNpzpw5e1SQiIiIiLQdxosRLVlJtGQZluW0maYiMc/wxKwSfnO0f6dTsrsmB5lwUAKY5rnOb9wanLJlXD0qhz8cPSC+ZmUoQLi6lMf/O5fvNlRw1wZYVhzjyeMySPC1/te2KbWV4NKLlBMpWoxbvg47sSu2r2N2LBbZHTtaS/iyQ/vwyaWjePXLefx6sIPdBn63tBadEx3eP6szF71XzL+XVHPRe8WsKo1x48iOdfFL2rYG/eV1yimnNHMZIiIiItLWxEOaJbjla7BDnVtNeLQrizdFufj9Yr7Oj9K/5yYuO7QPd07Zdkr2FaP7EK4uI9DMHbqNW0OgKg9T7Ys32KmOETAxfn+gn1RfOldMLuHVxdWsLnV59dRMuiR2vCYKrTm4jFXmEy1chBcpx0nujmVrEptIY+xoLeE7pyzDsuCaUQOwq/JasMK2KcFn8Y+TMuiT5vDgrAr+NKOcVaUufzk2nYCj0FJav0atYem6LjNmzGDo0KGkp6c3Y1mti9awFBEREdnCGINblU+0cHE8pEnKaRMhjesZHv6qgjs+KyPsQnrQ4m8n5XD8gUO5d/qKelOy413C++2wS/jeNP37Gs55q4jSsKFPmsO/T+vE/p1b/5T75tQa1rg0nku0NI9Y8VKwHOxQZ41cEmmsBqwlnH/rMZiihdDMF4/as6fmVjJhSgmegSN7BXnp55mkJ2h6fWukNSy3aHTTnYSEBBYvXkxubu4eFdmWKLAUERERiTNulGjpSqLFy7CcAHZCpzYR0iwtinLxe8XMWh9/QzwuN8hj4zLonuLUWztt6ynZwXB+i4eVmy0pjHLq64XklbqkBS1ePDmTo/sktHRZLa6lgksvVk206DuiZZsbTLW/N5Uie0NpLEA4qS+975y6w30Kbh1LWiQPE2sd5+O26oOVNfzi7SIqo4aBnX38+7RO9E5r/RcbOxoFlls0OlIfPHgwK1eu3O3iRERERKRt8sJlhDd+Q7RoEXYwDacNjChzPcMjX1Vw8HMbmLU+SmrA4onj0nnj9E50T4lPra6bkl20MP6muGghgapVrSasBNi3k59Pf9GFUd0DlIYNP3+tkL/NrWzpslqcZVnYgVSclF5g+4gWLiT8wxdEipfhRZvn9XGrC4nkf0207Ht8idnt8g2lSHMLxwwPzS7n0Gd/IDMxQHpo+6PG00N+0kKBeNdw2SPH9U1gyjmdyUm2WbQpxhEvbuTr/EhLlyWyQ40OLO+8806uueYa3n33XdavX09ZWVm9DxERERFpX4wxxCrWEc6fjVuxHiep9TQ72ZkVxTGOfXkT108vpSYGR/cOMvvCrlwwJGn7QauJxUfwtNJph50THd47szPnDAzhGrh8cgnXTy/F9Ro1Yapd2ia43LSgyYNLYwyxstWEC77GDZfgS+6B5QSa5NgiHYUxhte+q2LYMwXc+HEZK4rDzFxVyOWj+2x3/81rCbfW83JbMywrwCfndWFwZx/5lR7HvryJ/yyv3rKD5cPyJYClkZfS8ho9Jdy2t2ScW/+hZ4zBsixc12266loJTQkXERGRjsq4EaIlK4iWLMdyEnBCnVq6pF3yjOHJbyr546dlVEUNyX6LiUem8euhia1+RGhDGGOY+EU5d8woB+DE/gn8/WcZJAe0Htlm20wVT+2NL7nbbgftxo0QKV5OrHQ5lj8ZJ5jetAWLdABfrgtzw8dlzPwhPqovO8nm9sNS+cUBmZC2T6teS7i9KQt7nPtWEVO/D2Nb8MxJ2Zw6vD/BUCol1RHSQwHC1WUEw+v12u9lmhK+RaMDy08++WSn28eMGdOYw7UJCixFpDlVRmL4bZuSmijpCX6inkdSQFc1RaTleeFSIkXf4Vb8gB3qgu1PbOmSdmlVSYxLPijm0zXxN8RjegV48riMdrlO16uLqxj/fjFhFw7o6ue10zrRI6XjdRDfmaYILr1wGZGixfGfg8QsbJ/WDhVpjLySGDd/WsbrS+Ij+RL9Flf/NJnfj0gmqfZCS1tYS7i9ibqGKyaX8GWBzSeXjuLRz/L4ywwFxi1NgeUWjQ4sOyIFliLSXGqiLvdMW86jn+Vt9cdBLjcc1Z8Ev950ikjLMMbgVqwjWvQdXqwaJzGr1XcBN8bw9Lwqbvy4lIqoIdFvcdfhqYwfnoTdDkZV7siX68Kc+WYRG6s8cpJtXju1Ewdma5ryj+1ucBmrXE+0cDFetAInMbvV/xyItCbFNR73flHO499UEHHBAi4Yksgto1PJSd7B37mWD8vxxdes1DTwZmeMYbnbi1fnF3LnlGXbbL/lmAFcPSqLQFVeC1TXMSmw3KJBgeW3337L4MGDsW2bb7/9dqf7Dh06tHHVtgEKLEWkOVRGYtw3fQV/mrx0m223HLMP1x7ZTyMtRWSvM7EwkZIV8amvvkSchMyWLmmXVpfF+O0HJUz7PgzAoT0CTDoug74ZHeMcuqokxmn/LmRxYYxEv8Xff5bByQNCLV1Wq9TQ4NJ4MaKleUSLl2LZfpxQ5xaqWKTtibiGSXMruefzMopq4nHD0b2D3HNEGkO6br+5jrQQy4eVOYjs2ydTUh3dZnN6yE/+rcdgihYqQN5LFFhu0aC/4oYNG0Z+fj5du3Zl2LBhWJbF9nLO9rqGpYhIU4q5HuvLauiaEuTRz7Z/tfKRz/L4w9ED9nJlItJRGWPAi+FFy4kWLcWtWo8dav1TX40xPDe/iuuml1IeMST44I7D0vjdQe17VOWP9Un3Mf28Lvzi7SKmrApz9ptF3H1EKr8fkdwu1uxsSpZlYQVSsfwpmGg50U0LcMu+rxdcetEqooXfEatYjZ3QqU00mBJpDYwxvL2shps+KWVFSTwX2L+Tj3uOSOPY3KDOR62Q5fgoqY5sN6wEKKmOxte0dHyYmAJL2bsaFFjm5eXRpUuXus9FRNqTpl5DMup6rC2pYVVxFauKqvi+uJrvi6tYVRT/d01pDft3TeatX/90p38clNZE6ZIc3O06RERgcxgZxXhRjBsBNxL/3ItgYjV40SpMrArcKMYLY4yHk9QDy27dy1KsLXf53YfFfJQXH1V5cLcATx2fzoDMjjl6Jy1o88bpnbhqSilPzavkxo/LWFYU46Gx6fgdhQQ/tsPgMqUnblUBbnUhvqRuWE7H/H4Saayv1ke44eNSZqyNrx/cNdHm5kNT+dXQRHy2zkGtlXFjpIcCpIf8OxxhmRT0M3FaEWfvH2iX60FL69Wg77bevXtv93MRkbauJupy3/QVjVpDMhLzWFNSXRtIxkPI74urWVVUxariKtaV1uDtYrGNwqoIXZN3/sdBWoLeJInsTSYWxouWg2VjWQ5YDthO7ec2WE6rGx1SF0bWhpBbh5FetBoTq8LEquNhpInWrgm21WwYy8Gy/WD7sGw/ti+E1QZGVb60sJqrp5VQGjYEHbh1dCpXjEjG6eBvin22xcPHpDEg08f100t55tsq8kpcXvx5JhkJ6iC+PT8OLiNFi7HsAL6UXq3u512kNfq+NMat/y3jlcXxhjoJPvj9iBSuPjiZlIDOO62eiRGuLuOK0X24Y/K2a1hedmgfJi/dxG3/LeaOz+CEfgmMH5bE0X2CHWomg7SM3Y7HFy1axOrVq4lEIvVuP/nkk/e4KBGRvWF7a0iWVEe5o/bri37akw+WbGRVcRWr6wLJan4oq2FXq/8GfTa9M0K1H4n0yUykd0aIPhmJ9MkMkZ2SQE3M5YrRuXWPt7XLDu3DhoowPdK1BpnI3uBWbSRavBS3uhAsKx5S2jZgY1n2VoGlA44fbD+W7cdyAvEmHJYT3892tuy3+T4/vs2u3XcXth9Gxj/3otWYaGU8jPRitWFkFIy35QA/DiPtEAR9bbppyPoKl8s/KuE/K+LdSg/K9vO3EzLYr5Mu8GxmWRaXj0imb7rDBe8WM311mCNf3Mi/T+vUYdb03B2bg0s7oPXqRRqiNOxx/8xyHv2qgnDtdbBzB4a47bBUeqbqXNOWBMPruf7I+FJUj3y2bZfw6d/O58heQaavDvPu8hreXV5Dv3SHi4cl8cshSbogJs2m0V3CV65cyamnnsr8+fPrrWW5+Qpke1zDUk13RNqnSMwj+/aPdjjCcc3NY8m9ayqbKiPbbE/w2fTJTKRPRohetSFkn4zaUDIzkazkIHYDRvrURF0mTlvOI1uN8Lzs0D5cPjqXsU9+yR+O7s9Zw7o3yfMVkW0ZN0q0bBWxkmUYA06oy+YtYFyM8eIhoHHBGIxxa7/2tmzDY8tVDCt+XwDL2jIq03Kw2BxoxgNQyw7Ew0THXxss+rEsu/7ISC+KMTGMG8V47pYRX5vDSMePZdWGkLa/1U/j3l3GGF5ZXM1VU0sorjH4bbj50FSu/GmyphruxLyCCKe/UcS6cpdOIZtXTsnk0B5aakREdl/MMzw9r5K7Pi9nY1X8ItnhPQNMPDKN4VmBFq5OdpflJBAO5hAMpVJaHSEtFCBcXUownI9x4xcJlxRGmTS3khcWVFEWif+tE/JZnLl/iEuGJ+n/v4mo6c4WjQ4sTzrpJBzH4W9/+xu5ubnMmjWLwsJCrr76au6//34OO+ywPSq+NVJgKdI+FZSHybn9ox1uX3XT0dw7bTlYVr3Rkb0zEumaHGiyqWKb19AsrYmSluAnHHO5+YMlPFLbkOfBkwcx4fC+TfJYIrKFW1McH1VZ+QN2sFOT/1G4JezcHG7GQ8+dBqEWtSGnLx5G2v7a0Z7tN4zclQ2VLldMLuGtZfE3TMOz/Ew6PoPBXTSqsiF+qHA549+FzCmIEnDgiXEZnDMosaXLEpE2xhjD+ytr+MPHZSwpijdfGZDh4+4jUvlZvwQtodBeWD4sx1e7hMz2m+xURDxeWVzNk99UMH/jln1+kuPnN8OTOW3fEAk+fT/sLgWWWzQ6sOzcuTPTpk1j6NChpKWlMWvWLPbdd1+mTZvG1VdfzTfffLNHxbdGCixF2pfVxVU8+lket43bl55/mrLDEZb5tx5LwLdlikP8dGlqAwev7nNTN7qq9vbaz81W++xqf2NZgI3tC2EnpOMZi9+/uYC/fr4KgKvH9OPen+3foFGbIrJzxnOJln1PrGQ5xovghLq26WnS7cZ23iS9vqSaCZNL2FTt4bPhxpEpXHtwiprINFJlxOPX7xXzdm3o+4eRKfzx0BQFDCKyre2ci+cWRLjx4zI+Xh1vctYpZHPTqBT+94AknY87MGMMX6yL8OTcSt5YUk20dlWaziGbC4YkcvGwJDXp2Q0KLLdo9HeP67qkpKQA8fDyhx9+YN9996V3794sWbJk9yoWEdkLVhVVcc+0ZTw7ew1R1zA6txOXHdqHO6dsu8D0FaP7EK4uxitfCp67Vci41dTPzWEjteFjXThZe1vd/tTOEo3vWfcG0dRusDaHoWBZDk5iF3zJ3XnkpAH0SE/gD+99xwOfrCC/vIanzxxWL0QVkcbxwmVEi5cRrViDE0jDCXVu6ZI6vK2noZVUR0gPBaioLOVPk7/j4S+LABjSxcdTx2dwgKab7ZakgM0/f57JzZ+W8eCsCu7+opzlJTGePC5Do2BEBNj+ubisopT7py3hz59vwgABBy47KJnrDkkhLai/Rzs6y7IY1SPIqB5B7jvS5dlvq/jbvErWlrs8MKuCB2dVcHy/BC4ZnsRYNemR3dDowHLw4MHMmzeP3NxcDj74YO677z4CgQCTJk2ib19NWRSR1mdlYSX3TFvOc7PXEKtt331U/87kJNvceHR/bGt7C0znwsav8KJV8XXosLY0ybDijTioHe0Yv93Cqttm1d1ny30b9gvauBG8mmJqKtfjBFK5anhPchL35eJ/L+XFOesoKA/z2gUjSFUHcZFGMcbDrVhHtGgpXrQCX2IOlqOfo5ZmOQm4qQO4f/oKHv1sZr21fP9w3EFMyfuck/ta3DAyhYBG8ewR27K4a0waAzJ8XD65hFcXV/N9qcurp2TSNal2uYEGTAUUkfZnZ+fiq489kLeXf86QTJc/HZ6qEXOyXVlJDtePjHeHf29FDZO+qWTq92HeW1HDeytq6Lu5Sc/gJDJDCrulYRo9JfzDDz+ksrKS0047jeXLl3PiiSeydOlSOnXqxCuvvMJRRx3VXLW2GE0JF2mbVmyq5K6py/jH12txa4PKowd05o9jujGyaw1u+VoMhlj6EBKSOu9wgemWYIyHiZTjRkqxnSBTC9I59+0iKiMew7ql8t7/Hkx2akKL1SfSlnjRSqLFy4mVfY/lT8RJyGzpkqRWJDGX+z8v4E+Ttx3p/sexA7jkJ13oHPu+BSpr3z7+Psw5bxVSEjb0TnP4z9nd6Zndq97IqnB1GcHw+hb9XSjS4bTQRYNdnotHdKGzq3OxNM7SoihPza3kHwuqKA3H34sl+OCM/RK5ZHgSB2XvYNZEB794pinhWzQ6sNyeoqIiMjIy2u06OAosRdqWZRsruHvqMl6Ys64uqDxmn8788bDO/CSjDK+6AONGsYNpWP7aNbxa8S9GL1aNV1PMnA0e//O+zcYqQ5+MBN6/eCT7dm1/v8REmooxBrcqn2jRUtxwMb7ELCxHHZJbDcuHlTmI7Nsn72Qt4WMwRQtb3Xm5PVhSGOW0fxcSCIT45NJR/GVGHo9uM9ugH07ZMoWWIs1se9Oxm+KiQcQ15Fe65Fd4tf+65Fd6FFTG/82vcAkbhy8nHLmLdd11LpbdVxnxePW7ap78ppJ5G7Z8j43I8XPJsCT+Z79EEnxWs/0ctDUKLLdoksCyvVNgKdI2LN1YwV1TlvHinLXU5pSM2yeTmw7N4KC0TXg1JWA72MEMbF/bG51ovBjLNxRzylthVpZZdArZvHn+IEYN6LVlurqIAODFaoiWrCRWuhLL9mOHOrfbC6tt1ZJSh4wuA+h919Qd7lNw61jSInmYWMd5o7I3bapyWe72Yury4u2u53zLMQO4elQWgaq8FqhOpGPYPB174vQVDb5oUBHx6gLH9ZUuBbWf1wsnKz0Kq71dPv7g7BTe+vVP6Xe3zsXSvIwxzPwhwpPfVPLvpdVE3PjtnUI214zszOVHD+fej1d2+ItnCiy30AIUItLmfbehnLumLOOf36yrCypP2CeDGw5J5KDUQrzoBkwsGScpu013ArZsHwOyuzDtvBinvb6JORtcjn1mPv848XtOPqAfTqgLlk+jx0Tcqg3xUZXVG7ETu2L7Qi1dktQyxjD9+zAPzqpg3iZD3k2DSA/5dziqJy0UwFRrRE9z6ZwUpEtmZ0597pvtbn/ks1X84egBmGqfRlaJNJNwMIf7p6+oNx27pDrKHZOXYYCf79+ZiR99Wy+QrIg2fMyR346vL5idbJOd5JCz1efZyTY9UoN0Sw3qXCzNzrIsDuke5JDuQe6tdHlufhVPzatkTZnLfr16M3H6ynoXzzb/HABcPSpHF886oLb7zl1EOrxF+eXcOWUpr8z7oa5x98/2SeOGnzoMSy0BrxCcDJyEzHY1sior2ceH53TlF28X8WFemDPfKuPh4q/59QEpOMk98CVlYQVS29VzFmkI40aIlq4iVrocjIWT0lOjj1uJmGd4fUk1D82qYG7tdDDbgvnrirh8dJ/trpt2xeg+hKvLCCgoazaW46OkOrLdkALibxZLqyOkOT5MTP8PIk3O8hEMpfLoZzO3u/nRz1Zx3ZH9+XiNy6bKSL1tSX6L7CSb7GSH7CSHrNrPc5I2h5EO2Uk2mSF7l92ZI9VlXDG6T104tDWdi6U5dE1yuPaQFK76aTJTV8c4ep/OXPjK3O3uq4tnHZcCSxFpcxasL+POKcv417dbgsqT9knh+oM8hqYVY9sB7ITMdr1WXXLA5l+nduJ3H5XwjwVVXP6JTUFNlGuHLSJWugInlIWT0g0n1LlNjyoVaSi3pig+qrJqPXZCZ2x/UkuXJMTXrXpuQRWPfFXB96XxuV8hn8WvhiZyxUHJ5KZs4oAjB2ARf0Oy3SlgLfsU2jXjxkgPBXY6sio56GfdxjDd9CMl0qSKazymr40yamB4pxcNSqoi3Ht0J3xeDTm1IWR2skNKoOkuyAXD67n+yAGAzsWydzm2xbj+KZSEo7p4Jtto0LvYAw88kKlTp5KRkcEdd9zBNddcQ2JiYnPXJiJSz/z1Zfxp8lJe+3Z93W0n7xPihuExhqQXYwVSsQPdsGynBavce/yOxZPHpdMt2eHeL8u5c2aEH6pT+L8jg5jKH4hVrsUOpuNL6YWT2EUBjrRLxosRLfueWMlyjBfDSerRYc4BrdnGKpcn5lTyxDcVFNXE3+Z2Dtn89sAkxg9LonNi/P/IuDU4Zcu4elQOfzh6QPwNSShAuLq0Q61X1WJMjPBORlZddmgfPly6ibP/sZYLhyRx9cHJ9EzVRTCR3RXzDJPzwrywsIr/LK8mJSFA3k92ftGgS3KQc/cLgGm+GQM6F0tLasjFs5QELUvQETWo6U4oFGLZsmX06NEDx3FYv349Xbt23Rv1tQpquiPSsub9UMqfJi/l3/Pz6247ZUCA64dHGNwJ7GB6hw/jJn1TwYQppRjgxP4JPHdiBiHHwwuXYmKVWL5EnORu+JKy46NPNU1W2gEvXEakeCmxijU4wQzsgH5Ht7SVxTEe+aqC5xZUUlP7viI3zWHCT5L5xeBEEv07OfdYPizHh3FjmvK1F21u+HHv9BXbjKy6ZkxffvPKLF6aXwzE18L7VW1w2TtNwaVIQ83fEOWFhVW8sqiKgqotjXAGd/bx8vkjeHVB4XYvGrRI4yudi6UFRBJzeeDzgu3+HPxx7AAO7JHOyzMXcN+RaWQlte8L02q6s0WDAsuRI0eSnJzM6NGjuf3227nmmmtITt7+C3fLLbfsXtWtmAJLkeZVGYnht21KaqKkJ/iJeh5JAR/frCvljo+W8NbCAgAs4LQBDtcNjzCoSwJ2MAPL8bds8a3IW0urueDdIsIuHNwtwOunZdIp5GCMwUQr8SIlgI0T6owvpYea9EibZYyHW76WaPFSvGglTlKOlj5oYV/nR3hwVgVvLq2ua352YLafq36awikDEnBsranbmllOAuFgDsFQar2RVcFwPsat4dPVYe78vIz/romvoee34fzBiVx3SIqCS5Ed2Fjl8srial5cUFW3di9Al0SbM/cP8YtBiRzQ1Y/tC+3wokFH644sHdfOLp5NOLwvo/8yg0UFFWQkWNw1Jo0LhiTucm3WtsoYFxOrIdh1uALLhgSWS5Ys4dZbb2XFihXMmTOHgQMH4vNt+8eJZVnMmTNn9ytvpRRYijSfmqjLPdOW8+hneXW/mC4fncuEw3I59C8z+G5DBRZw+gCLa4fHGJydhhVI0QjBHZixNswZbxRSXGPYJ9PH2//Tqd6bSeNG8MIlGLcGO5CqJj3S5njRSqLFS4mVrcHyJ+EkZLR0SR2WMYbJq8I8OKucT1ZvaQYxLjfIVT9N4bCeAZ1X2ppdjKz675owd39ezserwwD4bPjFoHhwmZuu4FIk4hreW1HDiwur+GBlDbHawZR+G07ol8AvBicyLjcBv1P/3LiriwYiHcHOfg6+WlfGZR+W1IX/h/YI8Jdj09mvU/sZvLL18y+pCpOemFA3kKc9afLAcmu2bZOfn68p4SKyxyojMe6bvoI/TV66zbY/jh3AQT3S+eeMWVx7kM3AnAxsX6gFqmx7Fm+KcvJrhawtd8lOsnnz9E4ckBWot48xHiZSjhspw3YCatIjrZ4xBrdyPdHiJbg1pfGgvR031mrNoq7hte+qeXBWOQs2xUMtnw1n7hdiwk9SGNK1/bx5kO2bsTYeXE77Ph5cOhacNyiR6w9JoW+GfodIx2KMYU5BlBcWVPGv76oprN4y5fvAbD/nD0rkjP1DdAo1YBqrpmOL7PDnIOYZHvu6gjtmlFMVNfhtuPbgFK49JIUEX9u+QLp5hOnE6St4tN4I01xuOKo/Cf72Mw2+WQPLjkiBpUjziMQ8sm//aIeLK6+/ZSym6Fva9q+flrGu3OWU1zaxYFOMlIDFK6dkcmTvhO3u68Wq8WqKwbg4CZ3wpfbCTuyK7dv+/iJ7mxerJlqyglhpHpYTxE7opJF7LaAi4vH3b+Mdv9eWxzt+J/ktfj00kctGJNNLzVg6nC/WxYPLKau2BJfnDEzk+pEp9FdwKe3cDxUu/1xYxYsLq1hcuCVUyUm2OWdgIr8YlMj+nXUBR6SpfV8a48opJby/Mv67Z0CGj78cm87hvdruhexIYi73f17An7a7lu0+XHtkv3Yz0rLZA8sVK1bw0EMPsXjxYgAGDhzI73//e/r167d7FbdyCixFmseGijDZt320w+0Ft44lLZKHiWkqzO4oqfE4681CPl0TwW/DUydkcNb+iTvc33ixuiY9diAVJ6VnvElPIGUvVi1Sn1tZQKR4CV51IXZiloL05rSDEQ0FlS5/nVPBpG8qKQnH/2zMSrS59KBkLh6WREaClujo6L5cF+aeL8r5KC/+5tG24Oz9Q1w/MoV9MhXYtCkdfYTfLp5/ddTwzvJqXlhQxdTvw3Vr9ib44OQB8XUpj+od1Lq9Is3MGMO/l9ZwzdQS8ivjo5p/OTiRu49Ibdho5tbE8mFlDiL79sk7HMiTf+uxBHzt4++tZg0sP/zwQ04++WSGDRvGoYceCsCMGTOYN28e77zzDsccc8zuV95KKbAUaXrfrC1h367J9PjTlJ2cmI/BFC3smH8wN5FwzHDRe8W8vqQagHuOSGXCT3YeQBpjMJEy3EgJti8RJ6kbvuRutd3F9Qe47B3GjRAtzSNWsgKwsBO7aO3aZlJvzaTqCOmhAOHqMvI3rOa+GZt4YWEV4fiASgZk+Jjwk2TOHZTY5qdfSdObvT7C3Z+X8cHKLcHlGfuFuHFkCvu2o3XG2qMdnQeC4fUdYg3FnT1/L1bNF+sivLiwiteXVFMa3vL2eWT3AL8YlMjp+4VIC+p3lMjeVlLjcet/y3hqbiUG6Byyue/INM4eGGoT71tcz/D1Roc+Pfeh911Td7hfwW3H0iW57Y4g3VqzBpbDhw9n3LhxTJw4sd7tN9xwAx999JGa7ojITlWEo9z8n3k8+sV6Xr/gJ3y9toQ7p2xv6PsArh6VRaAqrwWqbF88Y7hueimPfV0JwOUHJTHxyLQGddbzopV44WKwHJzErNru4lrnUpqXW11ItHgZbuV67FBnbH9SS5fUbu1ozaTLDu3D5aNzGfPXz/luQwU/zYl3/D6xvzp+y659nR/hns/L+c+KeNBlAf9TG1xqimzrs+O10zpGl+qdPf8rD+/LWc9+wUcryur275XqcN6gRM4blEg/LX0g0ip8uS7MZR+VsLB2be2jegd55Jj0VvszurQovu7tS4uqCXsOeTcdTc+dDuTRCMsGSUhIYP78+QwYMKDe7UuXLmXo0KHU1LS/X2YKLEX2nDGG9+ev4NI3l7K6LD5UZ8IhGdx50k+57+OVPNIB/0Dem4wxPDS7gj98Ev+D+4z9Qjx1fAbBBo6QMm4Yt6YIPBcnIVPrXEqTMsaAcTFejFj5WmKlyzGeixPqimW3sWk9bczO1kz649gBjBuQQbhkJaO6q+O3NN43BRHu/rycd5dvCS5P2zceXA7qsp3gsqNPR24hO187rf1fQN7VefDAHumc/+JXnLpPiF8MTuSwnoEGXfQVkb0r4hoenl3B3V+UUROLL9Vw48hUJvwkmYDT8j+zxTUe/1pcxQsLq5i9fkswmR60+Gj8wbzzXaHWsPyRRgeWPXv25MEHH+SMM86od/urr77KNddcw+rVqxtfcSunwFJk9xljKCgs4Kq3F/LyoioAeqbYPHpsBuP6JtSbglNaHSEtFCBcXUownK+wshn8c1EV498vJubBmF4BXjmlU3wKUwPfJMbXuSzBRCuxg2la51LqGM+Nh47GBS8ePmK2vi22ZR83ivHCGDcKXhTjRmr39fCiFdjBdOxAC/y+7SBhyYZKl9nrIywugivHHaylOaTZzSuIcPcX5by9bMvv9VP3SeAPo1IZ3MXf4acj17MXz0NlYY+Caov+fYfR7Y6drZ3Wfs8DpRGb1OwhO33+P9xyDFUb5pPk87ZzBBFpbVYUx7hicgnTvo8vTzKos49Hj01nZPe9P6U65hkm54V5YWEV7y6vJlK7xI5jwbG5Qc4bnMTP+iUQCoZwUwdw7/QVPxrI07G7hDc6or344osZP348K1euZNSoUUB8Dct7772Xq666avcqFpF2xxiDW13I819+x3XTiimqia9ldemBSdw6OpXkQHxIu3FrCFTlYap9pDk+THWMgInR6G5g0iDnDEyka6LN2W8W8cnqCOM/quJv/zOY1OS0Br1JtGwfTqgzJiETEyknWriQWGkeTnLtOpfBDI3CasOMF9sSNHqxLeHj1l9vDhzdCMaLghvBeLWBo+dt2cd4tSGkiQ+rMsT/xQJssGwsywHLBtuJr09p+3ECqXt9yYH2HJZURT2+KYgye32Er9bH/908yn1wdgrnHhrZ7pt0gJLqaPxCkuPDxNpfUCF7zwFZ8Qtk8zdEufuLMt5cWsMbtR+/+0knJp4ymPs/Xsmjn8380WyLAR1mtkVTnodcz7ChyuOHCpd15S4/lLv8UFH7Ue6xriJ+W0XUMDg7hbd+Hd7peWBjRZgFa10GZbh0SWzbb5qLqj1mrA3z3zVh/rsmgmsn8OYunn95TYS0hICaQIq0Ef0yfLx7RideXlTNddNLWbgpxtEvbeJ/D0jijsNTSd8LzQLnb4jywsIqXllURUHVlosdgzv7+MXgRM7aP5Hs5C3nU+PW4JQt4+pROfzh6AGUVIdJDyUQ9bx2FVY2VqPfEdx8882kpKTwwAMPcOONNwLQrVs3brvtNq644oomL1BE2hZjDF5NEcvWrOSy9/KZtjZ++5AuPv46LoMROYEd3DGmN8R7ydF9Eph8Tmeu/TjMU2cfzCOf5fGXGbMa9SbRsmysYBp2MA0vWkmsZAWxsu+3Wueyi6bytlLGi2FiNRg3XPfhRSow0QpMrDoeWOJtFT5uPaKkNnm0tg4cndrPbXAC8e8Ny6693Wn1Afbmtcvun76i5cOSPRxZ5XqG7wpjteFkhNnroyzcFMX90RUgC9i3k4/Du9vkpARJD/l3OLIoLRTAVOvcLE1jSFc///x5JxZujHLPF+X8e0k1Ywf15d7pK+utZ11SHeWO2mlxV4/KadfTkaFx56HqqKkLIjcHj5vDyHXlLj9UeORXuNv83O9IVThC1+TATs8D6YkBzn9rA5sqI/TPcBjZPcjI7gFGdg+wT6avVU+PLqx2+WxNhP+uDfPf1RHmb4zWuyjeOcna5fPXeVCk7bEsi3MGJXJs3yB/+LiM5xdU8dS8St5ZXs39R6dz2j4JTf436sYql1cWV/PigirmbthyPumSaHPm/iF+MSiRA7r6d/i4mwfyeJUuKbEafMHhBALJTVpjW9PoKeFbKy8vByAlZe9MBZw4cSI33ngjv//973nooYcAqKmp4eqrr+bll18mHA4zbtw4/vrXv5KVlVV3v9WrV/Pb3/6W6dOnk5yczAUXXMA999yDz9ewvFZTwkV2bXNQWVP6PY/M+IE7Zxuqa9cO+cOoVCaMSMbfCtYOkS3KAn14dOaGJmt6ZGI1uOFiMC5OQid8qb3iaxD62kdHu7Zk21CyBi9SuVUoGYlPw8bERz7aPiw7gOX446GZZYPt2xJEtmO7WrttwsiuJFTlNWvwujsjq4wxrKvwmP1DhK/yI8xeH2FOfpTK6LZ/1mUn2fwkJ1D3MTzbX9fNNpKYywOfF9SFQ1vrCGvXSctaWmzo1/eADr8swa7WUDymfwaXvjaHHypcimsa9tbNtiAryaZbskP3FIduyQ7dUhy6130d35YUsHd6Hrj5mAGcuG8mF778NYs2bft/kJlgcUj3IId0DzCyW4CDsgOE/C33997Gqq0DyjALtlPzvpk+DusZ4LCeQUb3DNK5a3+dB0XauU9Xx5vyLCuOnxOO7xvk/8am0zttz2b1RFzDeytqeHFhFR+srCFWe53fb8MJ/RL4xeBExuUmNOp9sHHDeOESErofht0OA8tmnRK+tb0VVALMnj2bJ598kqFDh9a7/corr+Q///kP//rXv0hLS+Oyyy7jtNNOY8aMGQC4rsvPfvYzsrOz+fzzz1m/fj2//OUv8fv93H333XutfpH2anNQGStfzdd5P3DZdI+5m+LbxvQK8JdjM+jfSruzdWiWj7SUNP4yY9Z2Nz/y2Sr+cPQATLWvwW8SLV8CPl9OfJ3LmmLC+V/VrnPZq3ady/b3C7cl7X4oGcD2p0JCoN2Hkbtk+QiGUnn0s5nb3fzIZ6u49sj+7PtwITYxuibadE106JoU/7dLok3XJJusrT7PSLAbNdqooSOrysIeX+dvmdY9e32E/Mpt11NL9lscmO1nRG04OSInQPdke4eBazC8nuuPHFD3fLfb/KzBz0akcfbtEqIkHN3pdNzi6ggZ7XlZAstHYCfnob/MWMX1R/WnoNqmuCb+GiT6Lbol21uCyNowcutwMivJxmc37FzUkPPA1xdmUVzjMfOHCF+sC/PFuvj5qKgm/mb9vdqO8H4bhmX5643CzEpqxIyLRo40L6h0+WxthP9v777j46jOvYH/puzMFvUuWe4d94axTcfBECAN7iUJIZQACQESEkJxGjckl5Z2Q2KSlwRwIIG0S2iXGjAQbGMb94KNu2yr15W2zOzMnPePMzu7q7qqu5Ke7wez2qLd0Wq0M/Ob5zzn3xUa/n1S6zRUnZkv46yxKs4aq+DMcjVhGCYACPQ5SMiId/Y4FZuvLcJPP2jFTze14tUjGt59shY/XJGJWxZlJH5e9vA5xBjDtho+y/ff94fQEIrtjy0sceFLs7z4z5ke5HtotFl/9avCcqi0tbVh4cKFePTRR/GTn/wE8+fPx//8z/+gpaUFhYWFeOaZZ3DFFVcAAPbv34+ZM2di48aNOOOMM/Dqq6/i0ksvRWVlpVN1+bvf/Q5333036urqoCgdh6dqmgZN05zrfr8fY8eOpQpLQuLEB5WtTZX4yWYLa3YBJgNy3QIePDcbV8/2pv1w0NFKkN1oViai5Ef/6vIxp36wEhnhI1CgdfmY7jBmwdL9YFoLBJeP+lz2Ae8VqfUcSjILgJAQSgqiyxmiTTq3pVbE2DHTMPH+t7p8zJHvXoBPPbEZe6pbk3pOWQQKPCKKfRKKvKIdZPKvi312sGnfVuARwTIndVlZ9YNPTMUnp+fhume34kBDx96+kgDMLnRhcYkLS8oULC5RMCNfhpRkSBFFk5+RlBFkCHmzUPKjric8OfGDlbjpz+/jiukuXDjRnXQIl+7CBsPLh0J4r1LEPavmY3I3n0Mnf7ASh44dQKasoSxDQrYqDPh2tC+fA7rJsLM2go2neIj5wanOT6RMypHs8JKHmDPyOw4jT7bSvLrNdIZ3//ukhv0NHcOEWQXRgFLFmeUKipIITOlzkJDRY39DBLe+0Yz1J3UAwPwiF36zKgeLx2R1+zlU2Wbi2b1B/HlvEB/FffaU+ER8cZYXV83y4rQCV7+XjyosY4ZF2dMtt9yCSy65BCtXrsRPfvIT5/atW7ciEolg5cqVzm0zZszAuHHjnMBy48aNmDNnTsIQ8VWrVuHmm2/G3r17sWDBgg6v98ADD+BHP/rR4P5QhAxT8UGl2VaFtypMfPM9Ecf8/P4rZnjws/Oze3c2nQw5ZhrI8XTfsynL48LCNaewaqKM6+f6MLOXG2BBECGpOYCa4/S5NP0VkLwlkDPHQPQUUJ/LOMzUYYYbwIxQF6GkHVdRpWS/HWyMYPU7fmyqtnD0e7O7/TsozVLxj09noapVRW3QQm3AQl3QRE3QQm3ARF3Qsm830awxGBZQHbA6PWhvr8Cn4Oj35nVZWfXr94/hrvOmoD4sggEYny1hcYmCJaW8gnJBsQteV/9/9zT5GUkZZkAL+fGNMyd0Ohz31hUT8ObH9Xh2byue3QuMyZRw7RwvrpnjxdisYXEYk4Axhh21EfxxdxB/+yiIpjBDgU/BLy7vfntc4FOQXyoCrP8Hwl0uWx8+BxRJcFpNfGNxBhhjONZiOgHmxlM69tUbONJs4khzCH/eGwLAT2wvLYsFmEvKM6F0UWl+17lT8ObO3Xh5fzP+fVLHx40dA8o5hYkBZUEfJgaiz0FCRo8Z+S688fkCPLU7iO++24IdtRHc9EYI79+6EL98r+MEcHecMwXffm4LntzeCMv+UHDLwGVTPPjSbC/OH6+OmJNp6Sbtt/R/+ctfsG3bNmzZsqXDfdXV1VAUBTk5OQm3FxcXo7q62nlMfFgZvT96X2dWr16dMON5tMKSkNGsfVBZFzTxvU0qnvnIBGChPFPCI5/IwcWT3aleVJKMHg4SbztzAv59pB4HGzUcbNTwm60BLB+j4CvzfPjsNE+v+1OJLh9Elw/MCMMIVMIInKQ+lzbLCMMM1sBoOQ5Ta+ITaVMoOSgaQxbu3+jH/9segGHxCsX91U1d/h1848wJ0EN+jM8Cxmf1vI7qJnPCSx5kmqgJWPzrgJlwX13IQkmmitq27mfpbg7qePazRZiaZQz+iSCa/IykQE/DkSsq9uGbizPwp71BnGo18d8bWvHAxlasmqji+nk+XDQp/asu64Mm/vJRCE/tDmB3XexvbEymhKtnqwgEut4ef+PMCdBCfihD1cOzH58DgiBgYo6MiTkyvjjLCwBoDlvYXKU7IeaWqgiawgyvHdHw2hE+guP56ybiwx2HO514yWLAwvIxeHxXJX8NAHOLXE4PyhXlysAOu6TPQUJGBVEQcO1cHy6e7Mbd61rw+aUz8Yt3O58AzmLAJXMn4/FtjVg2RsGXZnnxuemeIZltfLTrVWAZiURw0UUX4Xe/+x2mTp06WMvkOHHiBL75zW/izTffhNs9dCGIqqpQ1dF78ExIvPZBpWWZ+PuxDNz9bhD1IQ0CgJsX+vBfZ2UhU6EP7eGkp4NEtHyM5y/Px+M7A3jlcBgbTunYcErHHW8144uzvLh+rg+zCntZdSm7IWeUxfpc1mzlfS4zxo66PpeWEYLRVgnTfxyW3gJBzoCcMYaCyUEQMRke2xHAf2/wOxNWXDxJxQPnZmOGtw6nDVDvMkUSUJ4poTyz54Nn02Jo0kQU9DBLd2GGioIyKVZhS8gIw8wwJP9B3LG8FN+9YGrCcFzJfxATMk08eF42fnRWFl44GMITuwJ4t0LHq0c0vHpEQ2mGiGvn+HDNHG+/J08YSIbF8OZRDU/tCeD/DoURsYuuVQm4bKoH18z24rzxKiRRgGBWj9geijluERdOdOPCifxYLmIy7KqLDiPXcaCJ4YKpBbj2Lzs6/f7frD+Gkz9YidUrcrGwSMCKchW5FBIQQgZIsU/C2suKwHILcd1fd3T6mN+sP4ZTP1yJfV8dg4nUIXBI9bqHZWFhITZs2DAkgeXzzz+Pz372s5Ck2I6/aZoQBAGiKOL111/HypUr0dTUlFBlOX78eNx+++341re+hR/+8Id48cUXsWPHDuf+o0ePYtKkSdi2bVunQ8Lbo1nCyWjUPqhkzMQJLQe3rwvhjaP8jPisAhlrVuViaVnHXrBkeEi2Z1Nlm4mndwfxxK4AKvymc/sZZQq+Mo+fZezL0FTGLFhaC5juj/W59JXwPpcjdLi4FQnYQWUFLN0PQcmCqGZTUDkIGGN49UgYq9/xO8MIZxXIeOi8bFwwIXYiNJW9y2iWbkLiJDnhysHGCJ7cFcTTe4Kotyc7EABcaFddXjypdzOyDqSPGyN4ajfvcRbfGmJhsQtXz/biP2d6kefp+Hk/ansoSiqalEkou6/rnto1965Etn4UzBjB7wMhJGWS6e0/lJ9D1MMypteB5be+9S2oqooHH3ywXwuZjNbWVhw/fjzhtuuuuw4zZszA3XffjbFjx6KwsBDPPvssLr/8cgDAgQMHMGPGjA6T7lRVVaGoqAgA8Nhjj+HOO+9EbW1tUpWUFFiOfGa4GWawFgCzJ6uQAdEFQZT5xBXOpWvETxbSWVBpKXn47U4D961vRTDCoErA6mVZ+NbpGVBSdEBABliSB4mmxfD2cQ2P7wzg5UNhmPYWJFsV8IXTeNXlnKK+9diy9DZYejMAAZI7D1JmOSRPIUSXt0/Pl24szQ8jUMWDykgbRDUHgpI14j9TUmVPXQR3r2vB28f5CZZCr4gfrsjCtXO9XQ8f7eXstAMhOkv4Q+sOd11ZNZLDCkL6QTMYXjoUwhM7g1hXEZsgrsQn4po5Plw7x4sJOYNfdenXLPzvgRCe2h3EB5W6c3uBR8TnT/Pgy7N7sW1MwedQSiUx8VL1vZ8Aa9w7Ot4PQsjQS7PPIQosY3odWN5222146qmnMHXqVCxatAg+ny/h/l/84he9X+JeOPfcc51ZwgHg5ptvxiuvvIK1a9ciKysLt912GwBgw4YNAHhF5vz581FWVoaHH34Y1dXVuPrqq3HDDTfg/vvvT+o1KbAcucxwM4zWEzADp/jZEkGyZ9uNEuzwUoIg2JeSCkhuiLIbgqzy2yWXfX9cyCm5hk3FFGMMYBYsrTkhqBTd+djTKOHm15uwrZp/eJ81VsGaC3MwNW/wGr+T4aGqzcSf9vCqy2MtsarLJaUu3DDPh8une+DrQ5sAZkZgac1gZgii7IOYUQrZWwzRnTcsqy7NcDOvqGw7CcsIQlJzISqZqV6sEas2YOK+9/14cncQFgMUCbh1UQbuOiMT2Wp6fiaP2soqQgbQ4SYDT+4K4Ok9QdQGY1WXKyeouG6uD5dOGdiqS4sxvH9Cx1N7Avjnx2EEI/yQShSAiya5cfVsLz452U0ndpNAleaEkFRLp88hCixjeh1YnnfeeV0/mSDg7bff7s3T9Vr7wDIcDuOOO+7As88+C03TsGrVKjz66KMoKSlxvuf48eO4+eab8c4778Dn8+Gaa67Bgw8+CFlO7owrBZYjC2PMDuZOwGw7BWbqEL3FkNSsDmezeZBnglkGwEzAMpyvndsAvkfMYFdixoWbogLIbgh2wBmt1Iyv4OSXroQghjGLB6d2kMgQvc5vY8wC4m7j11ni9bjbmBVdXgPMMu3HGYBlgjH7uiABDLCMIEQlExpT8d8b/PifLW0wGa+gu/+cbFw71wuRKsJIHIsxrLOrLl86FIZhZ/5ZCq+6vG6uF/OKe982gDEGFgnA0lsAAJKay6suvYUQXb4evju1+OdME4zWk7HPGXde2i/3cBY2GH6ztQ0Pf9CKVp3v2nx2mhv/fU42Jg5BhdWAGG2VVYQMAt1kePlQGE/sDOCt47Gqy2KviKvn8JEAXX4mJPE3WOE38Oc9fDj60biTddPyZHx5thdfnOVFacbwO7mWSlRpTghJtXT6HKLAMqbXgeVoRIHlyOAECH67otKMQMooR8Q3CaonC80hHTkeBVrID1Wr6vUHUjTchGXwELB9uAkrcdIEQUoINyG6IEDoEE7ywJIhFkiyuICS384ACNHQ1ElPnRcCBNF+gGBXfcZuE2QfjMwpUL259nugorqpCTf+Yy/ePOwHwA/6f35BDu2Akx7VBEw8vSeIJ3cFcKQ5diC3qMSFr8zz4T9meJDRVdVlNweKzDJ41WUkwHtd+kp4r0t3flpVXfKWCg32CZEqMGZAVPOGx7D2YRqWMcbw3MdhfP/dFqfSd2GxCw+dn40zy2kCPUJGs6PNvOryqd1B1ARjI2guGK/iunk+XDaFV0DGVzl3tj8YNhhePMiHfL99XHP2sjIVAVfM8ODLs71YWqZQi49+oEpzQkiqpcvnEAWWMX0OLA8dOoTDhw/j7LPPhsfjAWNsxG6kKbAc3mI9GU/AbKvkAYI7H5KaCzNrKh5cdxi/TsFZFF7paMRd2gGBIEKAYAeMdtDY1W39HHIePZPU/j24dcUE3HbmRPzH2g9w2wIZl07x9PvnJaOLxRjerdDw+M4gXjwYcmZHzXAJ+PxpHlw/z4cFdtVlTweKHZ47WnXJrFjVpacwpRt0xixYwTpEWk/ADFQDAnhQKbt7/uYU6+37n062Vuu46+0WbDjFe8aVZoj48VnZ+MIsD1WCE0IcEZPh/w7zqst/HYsFjoVeEXcsK8Ct5y/AQ+8c6bA/eOe5k/DT17fhkU31aNZih0xnj1VwzRwfPj3V3afWJ6Qbw/TkGSFkBEnx5xAFljG9DiwbGhrwn//5n1i3bh0EQcDBgwcxadIkXH/99cjNzcXPf/7zfi18OqLAcnjqbPIY0Z3vBAi6dyJ+tqEGP06DPhWp0t178IOVU3H7siJ4w8eGfsHIiFIbMPGnvUE8sTOAw3FVlwuLXbhjeQE+s2QuHlzX8UCxpxMHvOqyBcxogyD7IHmLedWlJ5+3WxgCzDJhhmph+CvsibsESJ583ut2GOjqpEW6D8M72Wri3vda8My+EADAIwv49ukZ+NaSDAoPCCHdOtZsYO3uIP64O4DqgIV/XrsEW0824yf/6rgv9P2VU7GwPAefW7sF5ZkSrp7txdWzvcOnzQQhhJBhhwLLmF4Hll/+8pdRW1uLP/zhD5g5cyZ27tyJSZMm4fXXX8e3v/1t7N27t18Ln44osBxenCGZLRUwglUAsxKCSgBJzQRW+cNP4N87t6LUxzA2S4ZbHsRqnUE+i6ObDBV+E0ebDf6vxURDWMBvv3Amyn/8r7SYDY2MfIwxvHdCx+M7A3jhYAi6iW4PFHtz4oBXXfoBZkJUcyBljIHsLRq0yW2YGYkFlaE6QJAhufMhSMNrMqrhduImoFv4ny1t+PnmNoQMvvvyxdM8+NHZ2SjPTJ/WAISQ9BcxGd6qMPCJhYu63Rc6+YOV2LB7G5aXSZBEqtwmhBAyuCiwjOn16cE33ngDr7/+OsrLyxNunzp1Ko4fP97bpyNkwDDGYIXqYfhPwAhUAgIgqXkQOhmSeagZyFK0TndOAaA5FEF1q4Y73gliT3UrAKDEJ2JcloTx2bJzOT5bwrgs/s/r6n1Vz0ANxWSMoT5k4WiziaMtBo7Zl9Fw8lSrCavdqYnZJZmoadO7fQ9aQjqyJRnMoMCS9J8gCDhnnIpzxqmoC5p47mAEK6cV4Lq/7uj08Y+8fwzfvWAqWEjuMTQXXT6ILp9TdRmp2wXD5YXkLYLkKx2wMJGZOsxgDYyW4zBC9RBlNyRvyZBVdA4EzWDYUx/BvgbgqjMz8ev3N3X6uEfeP4a7zpuC+98OYmwGw/Q8F6bnyymZadtiDH/ZF8IP3mtBZRvvL7BsjIKHz8vG4tLeT+hECCEuScDFUzPRrEW63RcKaBGcPSEDzEi/anNCCCFkJOv1EVYgEIDX23HygMbGRqjq8BgCR0YWxixYoXpE/BV277jOh2T6NQt/3x/Ck7sCON4q4Oj3TkOOx9XlGfWiDAU5LhMZLgFtEYbqgIXqgIXNVZ3v1BZ5RYyNBplZkh1mxkLN9hONRIdi/mzdYfz6/U3thmJO7TAUM2wwVPgNHkraQeTRZgPHWvhtbZHui6W9LgETsyVMzJExIVvCaUUqSjPVbt+DbI8CFqKwkgy8Qq+Ery3y9Xig2BzSkdOL0FwQZUiefMCTDysShNF6Coa/AqKaCylzDGRPIUS195XylhF2gkpTa4Ao+yBnlKV9UBkxGfbVR7CtJoJt1Tq2VUewuy6CiMVPWlwwv/uTFrVtOv550HBO3AD85M2MfB5ezsiTMT1fxvR8F0p9Yv96WXdRab7+pIa71rVgWzVfzvHZEv77nGx8bpp7xPbOJoQMDWYayPEotC9ECCGEpKFeH2mdddZZeOqpp/DjH/8YAK+YsSwLDz/8MM4777wBX0Ay+AK6AZcoojkcQY7bhYhlwaek90E40D6orEJnveMYY9h4Ssfa3UH874EQgnao5xKBXacacduZEzodCvmNMyfA1Frx5udzwVgOGsMWKvwmjreYON5i4LjfxAk///pYi4lWnaE2aKE2aGFrdecH//keEeOzJIzLljA+S8ZNZ4/DX9YdTnj95lAE9715EAzA5bMK8fN/7XLCycpWEz31bxiTKTmh5MRsCRPsy4k5Moq8HcMEPezHN86cgPu6eA+0kB8KDQcngySZA0Wf6sK3X67Hl2cpmFfcu0o60eWF6PLyqkvdj0j9bhiyG5K7CFJmKSR3QY9Vl5YRgtFWCdN/HJbeAkHOgOwrH5yZyfvZGsK0GA40GthWrWNrNQ8od9VFEO7kqfI9ImbkMJRkdv/+l2SqWDVBQoGiYn9DxDlxUx3Q8E6FlvD4bFXAtDwZM/Jd9iX/ekK2BLmbYZRdVZrX15/Anf+qxXMHeJ/KTEXAXWdk4tZFGYPbooMQMnowA1qI9oUIIYSQdNTrVOrhhx/GBRdcgA8//BC6ruOuu+7C3r170djYiPXr1w/GMpJBFI6YeHjdYfz6/aNxFX4Tcc/5U+B2pWc/sNhsvMdhBmrAg8pCCFIszKgNmPjz3iD+uDuIA42xncwZ+TKunePFF2d5UZRZj/nnTYUAPvSx08kmwEP5fI+EfI+EBcWdLQ9Ds8ZQYQeZx1tMHPcbqGgx7ZDTQLPG0BCy0BCysK0mggKfgp98Lge/fv/DTn/GX9tDMV89aqA+oDu3+1wCJuVImJAtO6HkxBwZE3N4NWdvD+JVrQp3nzcV6OE9IGRQ9HCgeOuKCXjz43o8urUFj24FzixXcMuiDFw2xd2rPmKCKENy5wHuPB5ABiphtJ2I63VZCEHJSgj0rUjADiorYOl+CEoWpIyxEISBHw7dl9YQFmM43GRga3UEW+3KyZ21EQQ6qbTOVgUsKFawqMSFhSX8clyWBEEQoIdbuz1Qj4T9+MlZPgA+AECLZuFAg4EDjRHsbzCcr480m2jRGLZURbClXRW6IgFTc2UnzIxWZk7Nk+FzezutNL/tzAm4dcV07GtqgCgA183x4gdnZqHYl57bJULI8EX7QoQQQkh66vWkOwDQ0tKC3/zmN9i5cyfa2tqwcOFC3HLLLSgtLR2MZUy5kTrpTkA38PC6w/jxmx93uO+Hn5iGO8+bnFaVlnw23joY/uMwgzWAINl96XhQaVoM/zqmYe3uAF4+FIbB25zB6xLwHzM8uGaOF2eUKQmhRHxQ0BLSke1RoIVaoGrVAzozbotmocIOMo+3mNCh4ovL5mDCf7/V5fdUfP8CvLxtH7xiGBOzeShZ4OnnkMtODNV7QEhnoq0RHlp3uNMDxT2H9uJnG+rx3IEQTHtrNS5LwtcW+HDdXB9y3H0LEJllwtL9sCKtECUVoqcIckYpBNkLM1jDg8pIG0Q1p0OYOZCSmaXbMkI41mI6weS2Gh3bqyPw6x033z6XgAXFPJhcWOLCohIFk3IkiF0sf0/vf7KzhGsGw6EmA/sbDRxo4GHmx408zOyswhMABACv3LAE6491PTvvyim58IaOYU7R8JrMiBAyvNC+ECGEkHRBk+7E9CmwHG1GamCpGxZKfvRGNzNEXwhFHvrJFdrjQaU9G2+wpsNsvMdbDDy1O4g/7gniVKvpfN/iUheum+PDFTM8yOppkohBnqW709frYZbyIZ+he6jfA0JsyRwonmw18dj2NjyxK4iGED8b4XUJ+NIsL76+0Ifp+X0PtCwjDEtrAjMjEGUVlqlBUnMHbYbxeN3N0v2DT0zFysm5+OzaLWgMd9xUu2VgXpEdTBbzy2l5cq9nsR3MA3WLMVS0mNjfaGB/QwQfNxp2ZWYEouTC0e9dgLHdzM475J+DhJDRjfaFCCGEpBgFljF9Kp9ramrC448/jo8++ggAcNppp+G6665DXl5eX56OpEhzuPvJLmpaNfxlxymUZrmxcEw2phdl9PpAuD+YZfJJLvwVMEO1EAQXJE8xBMkFzWB4aX8Qa3cF8fZxzRmqk+cW8IVZXlw7x4fZhb0IMJgxtDNhp2PPpKF+DwixMTMMJXgULCTzWelDBhRmJAzBK8+UcN/Z2Vi9LAt/+SiINVvbsLfewGM7AnhsRwCfmKDilkUZ+MREtctqwq6IshuiXApmmWBWBC7ZPbA/YFcEGaonq8tZuqOtIUTJBZeoY05RLJhcVKJgZoHcbW/IZCXz/veVKAiYkCNjQo6MiybF3lfGGJojKvyh7if9aQnpfJnos4kQMhRoX4gQQghJG70OLN977z1cdtllyM7OxuLFiwEAjzzyCO677z689NJLOPvsswd8IcngyHG7up1sIc/nwk/fOez0UPS6JMwry8L8MdlYOCYbC8uzMas4c8CrMJllwAzW2kO/6yCILkjeEgiijL11Eazd3Yxn94WcKisAOH+8imvnenHZFM+wmYyBeiYR0k4SB4oel4Dr5vpw7Rwv3q3QsWZbG/7vUBhvHtPw5jEN0/JkfH2hD1fN8iJD6d1nkyBKgzOZTpyAbmFzlY71J3VUhhR8/2Kth8Augje/WIKJGQbUwf5sG8IDdUEQkKtaEHwqzc5LCCGEEEII6aDXQ8LnzJmDZcuW4be//S0kiR/YmaaJr3/969iwYQN27949KAuaSiN1SHhAN/DTdYdxXxc9LK9aOAa/Xn8MO061YPupFgR0s8PjXJKAOSWJIebc0kx4+9D7kgeVdTBajsIM1UGQVIjuPLQZIv6xP4S1uwLYHDeZQ1mGiC/P8eGa2V5MyEmfXpu9QT2TCOm/I00Gfru9DX/cHUSr3dcxWxVw7Rwfbl7ow/js1H0+NIYsbDilYf1JHetPatheE3H66xb4lFE/JFr3TsTPN9R0Wmn+w09MxR3Li6EEj6ZgyQghhBBCCBl6NCQ8pteBpcfjwY4dOzB9+vSE2w8cOID58+cjFAr1fonT3EgNLAE+S/iDbx/CIwmzhE/APedNhqTVABavrjRNC4eaNOyoCmN7VQjbqzXsqAmjOWx1eE5RAGbkuzC/2IV5RQoWFLswp8iFbFUAmP14+1KQFejusVA9OWgOasjxKggHGqBo1dh0ks/y/ff9IWfmW1kEPjnZjevm+vCJCeqQDlEfVNQziZB+a9UtPL0niEe3tuFwMz/BIgrApVPcuHVRBs4sVwZt8pyok60m1p/UsP6EjvWnNOyr7/j3XJ4pYUW5ghXlKq5YMgu/21I7agO7gZr0hxBCCCGEkJGAAsuYXgeWK1aswJ133onPfOYzCbc///zzePDBB/HBBx/0eoHT3UgOLAFeaekSBTSHNOR4FITb6iC37AOLtMUeJAgAY+DzuvLrjAEVrcCOemBnHbCzHtheB9R1kVlPzgbmFQqYXyhiXoGAReWZyB17Oh5cdyRhdtzbzpyAb5w5EWet2YD9tXwZpubKuHauF1fN8qLYN7hDNgkhw5vFGF4/omHN1ja8dVxzbp9b6MIti3z4z5nezltH9PLEAWMMB5sMvH+CV0+uP6XjeEvHSvTpebITUK4oVxIqPimwo0pzQgghhBBCoiiwjEkqsNy1a5fz9UcffYS77roLt912G8444wwAwAcffIA1a9bgwQcfxJVXXtnPxU8/Iz2wBAAzWAetfjckd0G/KvwYY6gKWNhRo2NHTYT/q43ghL/jQfw/r12CrSeb8ZN/daws+v7KqVgyNgd/37wX1871YvmYwa+MIoSMPB/VR/Dotjb8eW8IIYNv7gq9Ir4yz4cb5/tQliElBGbNIR05HgVayA9Vq0oIzAyLYVdtxBnevfGUjtpgYpW5KADzi1xYXq7gzHIVy8sVFHq7P8lCgZ2NKs0JIYQQQsgoR4FlTFKBpSiKEAQBPT1UEASYZsdgargbHYFlLcKVGyFnjh2U568PmthZG8F2O8SsaAXevvXcbnu3Vd37CWAE924jhAydxpCFJ3cF8LvtAZxs5dspWQRuOz0f9122GA+/k1jpHa1w3PHxXrx5qAXrT2r4oFJ3emRGqRJwepldPTlGwdIxCjJ7OdmPgwI7QgghhBBCRjUKLGOSmong6NGR2z+LDI0Cr4QLJki4YIIbACDIbjSFI93OjusP6ciW5CGbtZYQMnLleUTcsTQT31ySgRcOhrFmaxs2ntJx9oxJeGjdkYRK7+ZQBPe9eRAWAxaWl+C/3j/h3JetClg2RsFyO6BcVKIM3OzdQzhLNyGEEEIIIYSks6QCy/Hjxw/2cpBRhpkGcrMV5HhcXVZYZnsUsBAdvBNCBo4sCrh8ugeXT/dgV52FWdMKcN1fd3T62N+sP4YTP1iJa+dlYW6BgBXlKmYVyCNnsi9CCCGEEEIISVNJBZbtVVZW4v3330dtbS0sK7F/1ze+8Y0BWTAywjEDWsiPb5w5odPZcb9x5gRoIT8UGhZJCBkk80q9aNa6r/QOahH87pOFYMYo6iVJCCGEEDJapbpFT6pfn5A00uvAcu3atfjqV78KRVGQn5+fMBGKIAgUWJKkqVoV7j5vKgB0PTtuipeREDJyMdNAjocqvQkhhBBCRjtBckP05EFy58IMNzmXVqhxSCZBTPXrE5KOeh1Y/uAHP8APf/hDrF69GqLYx4kFCAHAzDAk/0HcsbwU371gasLsuJL/IH0wE0IGF1V6E0IIIYSMeoLkhpw9Hi0f/gz+HWtgac0Q1Rxkzb8F2Yu/A6Pl+KAem6b69QlJV70OLIPBID7/+c9TWEkGBDPDUIJHwUIyn2AnZEBhBlVWEkKGBFV6E0IS0FA8QggZdURPHlo+/BmaN/23c5ulNTvXfdO/AL16FyC6IIgyIMoQRBcE0WV/Ldv32deF3vU77+n1M+d+FWZb5QD8pIQMLwJjrFfHYnfddRfy8vJwzz33DNYypZ3eTLs+XJnBWoQrN0LOHJvqRSGEkCElSG5oailUT1ZCpbeqVdPZbEJGibQZikeBKSGEDAnGLBitFTCajyBr/tdx4g8TYGnNHR4nqjkYe8NRnHhiKqxQfXJPLkh2eJkYcMaCTtm5T/QUoPiyf3T7+uNuOgG94QBtF0YJZmqwtGa4x5wFUclI9eIMuN7ka72usHzggQdw6aWX4rXXXsOcOXPgcrkS7v/FL37R26ckhBBCUoYqvQkZ3dJhKF7aBKaEEDJCWXob9Ia9iDTsgV6/G3rDPjDdD1f+bPimXd5pWAjwSkcr1AClYB4iDXvBmAGYETArAmYZgBUB2u81MhPMNAEz3OP+pCt/NsxgTbevb4bqYQZrILrzel29Schw1qfA8vXXX8f06dMBoMOkO4QQMixRVQthBphBv3tCRptUD8VLh8CUEEJGEsYsGP7jiNTvgd6wG3r9HhgtR9E+WBQkFZKnEJKvBKKa02WFo+QrRt5ZD3V5jMAsE7ADTGZFnK9hX+e3GU7AyeLuhyj3+PqimoO616+BIMhQS8/g/0qWQHT5BuDdIiR99Tqw/PnPf44nnngC11577SAsDiGEDK20qWqhwJQQQoYUYwxmsBau/Jnw71jT6WP8O9Yge/F3UPPWLWCR1rhhfXwoX/wQv+6G/CU+PnGIoHfSpWjZ8jM0b6beZYQQ0pd9Yqd6sp6Hk3rDXv6Z3Y7kK4NSMBtKwRy4CubAlTMFgijD0lqQNf+WhBNXUVnzb4EZbup2WQRRAkQJfS3f6vb1590CrfpDWJofsHQEDz+P4OHnAUGCUjgXaukyuEuXQc6ZQgVkZMTpdWCpqipWrFgxGMtCCCFDKh2qWtImMCWEkBHODDch0rAPeuM+RBr2Qm/YBzlzHJT8/+1hKF4dmKkh0vTxgC+T6ClA1vyvw7+z68A0Z8k9MAO1dDKLEDKiJbtPHK2e1Ot3OwGl4T+GzqonXXmnQSmYDVfBHCj5syB58jt9bSvUiOzF3wGALo8JBlMyr19y+RvQa7dBq/oA4aqNMFtPQK/dDr12O1p3PgrRUwC15Ay4y5bx6ktlZM69QUaXXgeW3/zmN/HrX/8ajzzyyGAsDyGEDBkaBkgIISOTZYQRaTrgBJORhn0wAx0/z81wAyRvcfdDAb0lyF5wO6xIK28dYUV45Y8V4b3M7OvOMEBmOv3NYkMEjbghgrHhgHLWeJih+m4DUyNYjZbt/wPJWwR3yVJImeOoioYQMqL0tE8cOPQiwqfeQ6R+b9fVkxljoORHqydnO9WTyWBmGEbLcWTO/SpyTr8HVrgZojsHZqhpSPbHk3l9UXbDXbYc7rLlyAZgtJ50wku9ZiusUD1CR19G6OjLvPoyfxYfOl62HK7caRAEcVB/BkIGQ68Dy82bN+Ptt9/Gyy+/jFmzZnWYdOe5554bsIUjhJDBwCwDRltlUsMAK1+6Apbubzf0Lzq8L3Y9cZhfZ0MFE4cACqILGad9GS1bformzfc7r0vDAAkho1YfW2Mwy4ThP8arJ+2A0mg5DDCzw2PlrPFw5c2Ckn8aXPmnwZUzFZbu73YooKU1Qymc3a8frUuCDLmn3mmeAoSOvQYrVA8/AMlbDLXkdKilS6EWL4GoZg/OshFCyBDptoiAMSjFC9G253HnPkFyw5U/E0p+z9WTyWJmGGZbJcxALQRJhhGoGdLK9t6+vpxZDjnzCvimXQFmatDrdiJc9QG0yo0w/Eeh1++CXr8Lrbsfg6jmxnpfli6FpOZ0vSDUpoqkkV4Hljk5Ofjc5z43GMtCCCEDjlkmjNYKRBo/QqTxI+iN+xFp+hiunKlQi+b1OAxQVHNgtp0c8BmjRU8BclfcB//ORzu9379jDbKX3A2j9QQEQRrgVyeEkPTRm9YYjDFYoTroDXvsgHIfIo37wYxgh+cV3flQ8mfBlX8aDyjzZkJUMjs8LqVDAZkBM9zUfe+0QDV80/4TWvVm6HU7YQZrEDzyEoJHXgIgwJU3E2rJEqilS6Hkz4EguTq+DiGEpCnLCMGlZnddRLDzUYy94Si8U/8Drqzxva6e7LVUT8LYh9cXJJWfyCo5HVjwDRiBKmhVm6BVbYRWvQWW1oTQsVcROvYqAAGu/NOglp4Bd+kyuPJmQhAlalNF0pLAGBvo4/ARx+/3Izs7Gy0tLcjKGpm9IMxgLcKVGyFnjk31ohDSZ4xZMNtOQm/YbweU+xFpOtDpgayUOQ7lX96FE3+Y0GVVy7gbKxA88S6YEeg4s58ZAZgZG/IXd51ZEXs4oBE3fDA6O2AEYAYk3xjkLL4DJ56Y0uXPU379x6h5+UqIogtK8WKoJafDlTOVN/YmhJARoKdhgHr9Pui12/hkCnb/SStU3/F5ZA9ceTNiAWXeLIjeoqSHTscfqMUPxbPCg3+g1pv2IJYRhl67HVr1JmjVm2G0HEl8LtkDpWghr74sOR1y5ngaPk4ISSvMMhFp3MerAas2AYKA4sv+gZNPTu/ye8bdeAJmuAHMoOCst5gZgV6/yxk+bjQfSrhfVLLhnXY58s96GC3bfkltqtIAMzVYWjPcY86CqGSkenEGXG/ytUE6LUEIIb3Uy+EHjDGYgSoeSjbu45WTjfvBIm0dn1pyw5U3Ha68mfyANm8mpMyxPQ4DNLVmyN5CAIUD8RO2WygZkq+HvmmeQpitJxAJ1UOr3ozWnY9CULKgFi+CWrwYaskSSBlj6WCUEDJsJTMMsGHdbYnfJEiQsydDyT/NCSjlrAn9OpmTyqGAvemdxnuYLYO7bBkAfsJZq95iB5i8ikarXA+tcj2APgwfp6GAZLSjv4FBYQZqEK7mAaVWvSWhB6XoKYDkLep2n1h05/DPZdJrguSyjx0W8eObYJ0dXn4ArXoTLL0F3omXoGXrL6hNFUk7va6wnDhxYrcHx0eOHOnyvuGKKiwJGTzJDD9whgDaw7ojdgWlpbd0fEJRgSt3GpS8GTygzJ/JK0w6OZBN9aQ3UkYZWnf9v04D05yl30PmnK8iXLkeWs0W6NVboNVuA4sEEp/DWwyleAnUksVQi5f0u38PIYQMFQYJav50VPx+XJcHqWNvOIrKv5wFyVcS6zuZOwOi7B76BR4K/QhLGLNgNB1EuHoztOpN0Ot2AlYk/snhypvhBJjxw8dpKCAZ7ehvYGAxIwytbgc0u4rS8B9NuF9wZTqtLNwlZ0ApXtD9PjEFZoOCWQYizYfgm/pZnPj9+K63xTceh1a9FaLLO/QLOQpRhWVMrwPLX/3qVwnXI5EItm/fjtdeew133nkn7rnnnt4vcZqjwJKQwdFtYLjwW2jZ+j8InVzHw8lwY8cnEGW4cqYkVE7K2ZN61dNmuAwDBOydisb90Gq2QKveAr1+d7uDUUDOnuRUXypFCyG6fEkuDFUUEEJ/B4PPDNZCq/mQVwNGWlF44ePdDgMce2MF/zymYYC9Fhs+vtkePn444f7o8HHvxEuRNe+raNn6cxoKSEalVJ/AHgkYYzD8R52AUqvbAZha7AGCCFfeaTygLD3D7psY21+n30HqCLIbojsPJ34/rsvHlF//MWpevByCIEItWwF36TLIOVNolNcgocAyZsB6WK5ZswYffvghnnzyyYF4urRCgSUhg6PbCsPTvwuleCFqX7qC3yBIkLMnQsmbaQeUM+HKmQxBUgZmYVIUVPQnMLWMMPS6ndDtADPS9DEQPz2QIPGm2tEAM392h/eLKgoIob+DwWRFAtBrttonWj5MqLIRPQUYe/1BnPjDxK57Cd90AnrDAQqQB4AZrHPCS616MyytCQBQdNn/Qq/ZmjAUMIoqm8ho0OOIl6H8G0iHE2dJLoOltfDP9qpNCFdvghWsTbhf9BbBXbKUz0xdvLjHlhSpLCIY1QQZSv50VDw2ttvRDieemJrQQ1ryFkMtWw532XIoxUtG7siHFKDAMmbAAssjR45g/vz58Pv9A/F0aYUCS0IGDrNMRJoPItL4EXJOX93tpDdjbziG5q0/hytzHOScqSN7QzgAO6h8x3GrU4Fptp1MfAlJhVK4wBk+7iqYA1fORDqbTUY1quoYWMyMQG/Yw/sq1mxBpGEfwMy4R8TNal28BN7Jl6J19+/TIygYRRizYDQfgla/B7lLv9v9tvjGCugN+yHAGvoFJWSQWZYBtXAuTvTUmuKv50AAILpzIbrzIKq5kNx59nV+m6TmQlCy+lR1lg4nznpaBmYZiDTsQ7h6E7SqDxBp/AhgcZ8Lkgq1cD7vmVu6jPcW7ksFXjqEtqNMMqG9VrMVWuUGhCs3QK/5ECy+glZUoBYvhLtsBdSyFZAzyoZw6UceCixjBmzSnX/84x/Iy8sbqKcjZGjRhnHQ8IOiw9Bqt/Eqm9rtYJFWuPJnI3P29Z3uHAK80TPTW5Ex9fLRMRSQGWBG/9Y9Uc2GZ9z58Iw7HwBgBKqgV3/IA8yaD2GFG6FVfwCt+gMAQPGnX0Dw4D+owTYZ1bqd9AVD/HeQ6m1RH16fMQaj5bBdtbcFet0OMCOU8BgpcyzU4iU8pCxamFBlY4Wbkb34OwDQZWBMBp4giLzfc+FcWLq/222xGaxG4zvfhKhkQi1dBrXkdOqXTIY1o+2UE7xYZhjFl/yl+7+BUB3ALOgNe3p+ckHiAabKg7/EgNP+2g43RXcuBElJixNn3bdpuh0N734HgYPPJUyWAwBy1kQ7oDwDauF8CANRXDAA+8Skd6xQY4/bYtlXCnnq5fDZx2Za7TaEKzdAq1wPM1BltwP4ANj6c8hZE/jQ8bLlUArn9apdFyHxer3mLFiwIOFMCWMM1dXVqKurw6OPPjqgC0fIYEuHs5kjDWMMRutxewjgVui12zrsBAouH+Ss8ZB8JTQj4CCSfaWQJ18G7+TL7FDhiFP1ZPgr4C4/G3WvXdPp9/p3rEHO6ffADNRSiE9GLkGG5M6Ff8eaTu/271iDnCV3I9J0CILshiCIg7MYKd4W9fb1jUA19JoPnZAyOrQ4SlRznQpKpWQxZF9pl6/dmxmyycBjpsFDlG62xZKnEJHmg7BC9QgdfwMA4MqdzgOK0mVQCmbTwShJa8yMQK/bwcOVqg0w/LETIcnMUC17S5C96Dswg5Wwwo388zHcBEtrSrjOIq0AM2GF6mGF6pHM3pPgykDRJX9B4OO/dX4CmTF4J38KrXv/CAiCvR0SAEG0/wkQwC8Rd1/i4wQAIj+Gj7vOH8e/9kz4BFq2/AzNmzs5eccYvJMvQ9u+P0JQsvgJqNKlcJcsheQr7tsvhaSV3m6LBdkNtz0cnLE7YPiPQatcj3Dleuh1u2D4j8HwH0Ng/58huDKgliyFu2w51LJlkNxJFLml+gQuSRu93rv4zGc+k3BdFEUUFhbi3HPPxYwZMwZquQgZdOlwNjO2MMP3Q5kxBrPtFLTarXYF5baE/iaA3di/YB6U4oVQixfDlTsNgijD0lqQNf+WTocfZM2/BWa4adi9H+lKEAS4cibDlTMZGTM+D4guWFpL9xUFgRoEDj0HObM8YTZZQoY7PjkA35mW3J0fpAL878AIVqNh3TcQafyIn0hRcyC67aGA9teiXSnDK2ZyIKp5EFy+pIbCpXpblMzrm6FaaDXbYu0mWis6PIdStMAJKeWcyb0Kd5kZhtlWCTNQC0GS+Ykq+uwfGsyAGW7qdltsaX7kLv8JtKqNfBho0wHnX9u+P0Jw+ewA4wy4S5dRgEHSghmsRbhqI7TKDdCqt4AZwdidggSlcK49fHU5LK21+/1RrRlK/gwgv/tjXWbqfP8p3MgDzXAjLK0pFnCGG2FpdsCpNQGWwYOfMStQ9+qXOn1O/85Hkb3kTgQO/r3D/vVAET0FyJxzPfw7uzh5t/NRjL3xOAovetqe3FIalOUgqdXXbbEgCHBlT4QreyIyZn4Jlt4KrXoTwqc2QKvaCEtrQvjEWwifeAuAAFf+TGfouCt3WsL+QqpP4KYNUYbgGnlDwfui14HlvffeOxjLQciQS4dhgGn1odyL0NQM1ECr3Qqt5kPoNdtgBqsTHyAqUArnQi1aCKV4EZS80zoNu5IZfkAGCWOQPPndV7h68tG6+zFYoXpnNlm15HSoJaf3vS8RISli6X5o1R/ytghVm2AGayB6CpA172s9VpeZwWpeNRNugBVuAFqSeEHRxb/fHhrIg8z4YJNXtbnHnpPSbVG320LGoJafhZp/XpLYpyw622vJEntCrwE6oUHDAFMimW2xWjQfatF8YN7NMEMNvLq2aiO0qk2w9BaET76D8Ml30ILoENEz+L+i+RAkNaU/H+mlYXoSnVkG9Ia99lDvjTCaP064X3TnQS3lFWFqyekJfeGs8MDsjwqSAslbBMlb1PPyMgYWaQWzzB5PIFvhJmRMuxIR/zGAMQAW/0xmDAz8kn9G80sW9zUYS7wO5jye2bfJ2ZNhhuq7b9Ok+aEUzhkdbZpGu35ui0UlE55xK+EZtxKMWbzvqT10PNJ0AJGGfYg07EPr7t9DdOfblZfL4S4/B650KSZKEScbUHNhao0QJAVWJADR5Uv1oqXMgE26M5LRpDsjT7INtqufuwQAi1XQOAefOXGVNTkQZG+vw5tUV9XEL0dPoakZarCHd/Nh3u0nc4EoQ8mfBaVoEdTiRXx4WJIHKDQjYOr01GDbO+VzaHr/uwmzyUaJ3iKoxafDXboUSskSSGrOEC01IclhlolI40fQqj5AuHoTIg17E0M3UYFatAD55/8awcMvdNto3mg5zg8ao5UyWrRahn9tak2wws3O7QmVPN1IZpbssTccQ/Vzn4SlNwP2sD9ejZA4BFBwhgd2NkQw/vtiQwIFJQeFKx/tYfIzPjOoaFfRKSWn8z6UI7AJ/GjW120xs0xEmg7wv7OqjR3+zgRJhVK8CO7SZVBLz+h5P3OYhmUDKkXvQdqcRO/NCfRwk903byPCVR+A6fGTvwpw5c9ywpD2lVwdXjZV+6NJzNA87qYT0BsODN76kA7LQEYFM1hnVz6v71D5XHTZ/0Kv2ZrQGiFqNEzC13U2cCuyl9w1oiafHZRJd0RR7DGQEQQBBp0ZJ2mI71B/bPfb2gzGTBRf+tceG2xbuh+RZBpsiwpEdw4kNccJNmPDBPltkt2TUVRzIbgyIKVJhWfXDba/hcYPfoTQ4Zdg+I+1+0aRz/JatIhXUBbOhSh7+rQMNBQwdZKpqsld/qPYbLLVmxGu2gS9biesYC1CR19G6OjLAAS4cqdBLVkKteR0KIVzIUhKan84MiqZwVpoVZsQrv6A7wgnHLyCN4EvPQNqyVIoRQsgym4IotLj34EguSB5CyF5C5FMHSEzwjDtqhgn3GwfdmrNkDxFMIN1PWyLau1t0b5+vjsdufJnwwzWdF/Zo7Wg6JK/QXR5B/z1Sfro81BAUYKSfxqU/NP4RHq6H1r1FoQrN0Kr/gBWqJ4Pya3cAACQMsrtoeNnQCla6KxXaROWpVAq34N0OImezM/PmMX35+0JcyINewHEam8EJQtuu7eqWnoGJHdu0q+fsv3RJNoyDHqLpHRYBjIqSN5C+CZ/Cr7JnwIzdae3rN74ETzjzkf9G1/p9PtGQ2/9rke8/AQAkL34jlFZaZl0heULL7zQ5X0bN27EI488AsuyEA6PvJ0KqrAcnoy2U86EAFrNhwkHrklVtdxYgba9f4QRqHKGY0QrbKJfm1ozYGq9XjbRV4Kx137Uw+sfR+N7q8GMgFM1IyQ02e6uqqbr67Gm2xK8ky5B4MDfEhpsR+Wc/l0oxQtR+9IV4IHUVLuCcjGUovmj8gNzJOpLRQEzwtDqdkKr3gStejOM5kMdnlMpms8DzNKlkLMmJleBTJU1qZXq978vM1SbGrTaHXxdrPoARsuRxKd0ZfBhy3ZIKftKOn/pNK6sGXtjBdo++hNYJBg31C82BJA5wwNjw/0YsxKGBzrfF/dYxiwILi9yz/g+Tvx+PFXVkAHHGIPRfAhhe+ZYvX4nYMWtR6ILSuE8+CZ/Glnzv46Wrb8Y1cMAUxkY9jTiYrBPovf087ft/yuCR17m/fDCDQnfK+dMg7tsGdSy5VDyZw3LCaBS/ftPl2Ugo5cguyGquTjxh/FdPmbs9YfQsu1XkLxFUIoXJTd5T5pjZgSRpgPQmz5G7tLvdjviZdxNJ0dMQUhv8rV+DQk/cOAA7rnnHrz00ku46qqrcN9992H8+K5XsuGKAsvhwdJaoNVsdaoozUDijpXg8kEtWmT33DodaukytO7u384ZYwzMCMUFmfal1mxX0jTHhZ38OjNCcOXPRvGn/hcnn5ze5XOXX/8xal74XHIVnn2Q3FDE42jduxZK3gyIavagLAdJE/0Iq5x+Zva/9gcToqcw9ndXvASSJz/xpamyhhulwwB78/qMMRitx6FVfgCt+gPotdvBEk4a8WbuaukyuEuWwpV/Wu8OXlPwO0h1UJDq1yejhxUJQK/ZageYG2EGqgDQMECgd3+HjFmAFQGzDDArApgRfmnxS2YZgKnHvo7ebsYeA8sAs3Qwy4Agqchd/l/dnrgYe+NxNG34EZgZ5p+pogxBsC9FmX92ivHXpYTr0cdClBK/z75Pzp2Ctt2/7/znTziBDgiyl+9TlC3nkzwl0S9yOEiHFknpsAxklErmBK7doiY6+ZScPYm3IiteDLVoAUQl/XMaywghUr8HWt0O6LU7EGnYA2ZqSWUD4246BclbOIRLO3gGZUh4vMrKStx777344x//iFWrVmHHjh2YPXt2nxaWpAsBgpIJCPKwqqzR63bzkKRmCyKN+xE/LASCBKVgjhOUuPJmJhy4DkSDbUEQILi8fEhTRllyy22EYUaCkHylPUz0UAy1bBmU/NM6aaBtV9U4lTbxjbc7a8Rtdmi6LWdPhNVTg23dD8/Yc6jB9mjQjwbbkicf3okXwzvxYh4otRyGVrWJVzfXbYcVqkPo6CsIHX0FACDnTIVawvtfqqVnjPoz+qN5GGByM1TX8dmpqzbZk+UkTvLFA/GlfH0qOb1/J1dSMOlLqicfS/Xrk9FDdPngLj8b7vKzwRiD2XoCWv0ueMZd0O0wwOwld0Gv3wfJnTO0CzxEGCRIag78O7qYoXnHGmQv/g4qX7zcmQBsILnyZyNr3te6b00RrEHo+BuDchI9egK9y59/56MYe8NRZMy5CWrBXCiF8wZmkq80kw4tktJhGcgolURbAsNfAc+4ldBqtsJoPgij5QiMliMIfPx3RNtTKcWLeYhZOC8tRgNaWgv0up08oKzbgUjjgQ6f4aKaA1f2JEi+ku4nQx2lxUO9CixbWlpw//3349e//jXmz5+Pt956C2edddZgLRsZIlYkAFHNgpI3E5InL40ra6J99LZAq94MvW5Hu8oae2bKktP5rKVFC7r9oGJmGEbLcWTO/SpyTr8n4UziYB6kC7IbsuyGpTV3+6Fs6S3Imt35DvwALUjPH4zuHL6zQkiSBEGAK2cKXDlTkDHzKvvEwi5o1ZsQrtoMo/ljvpPRfBCB/X9G0aeeQ/DQ8wmVNUPdyzWVhiowjK/IgV2Vw6wIlPxZ3fbSzTjtGkRajnRaMcMraqR+LVdPM1S7y89G9T8vSdy5E11QCufbfcqWQs6ePKxnrE/VtihdXp+MToIgQM4aB1feNFi6v8ewrPG978DSW6AWLYBSuABq0UJIvuKhXegBwkwNeuN+6HW7EKnfDWYZKLzoyR77qovuXJiBUx0fIEgQRBcgung1o6Q4X/NLFw/4ovc7j+WXoicPkrf7/UHJUwSlaD7krHGAZYKx6LbE6HidGXHbmuh1s9P7AQbJWwIzWNvDCfQ2ZM//+ug4gZ6CE2dpuQxk1EnmBGr2wtsBAKbWDL12G58UtmYrDP8xPgN50wEE9v8ZECS48k+DWrSQtzMrmAOhN5PW9HHEjRmshVa7A3rdduh1Ozu0KgIAyVsCpXAelKL5UArnQ86aAEEQYGkt3WQDt4JZkREzJLw3kh4S/vDDD+Ohhx5CSUkJ7r//fnz6058e7GXDAw88gOeeew779++Hx+PB8uXL8dBDD2H69FipbDgcxh133IG//OUv0DQNq1atwqOPPori4thOTEVFBW6++WasW7cOGRkZuOaaa/DAAw9AlpPLa0fykHDLCKNly0NpW1lj+I/HhprWfNhxpmJ3vhNQqsVL+l4mnYJhgKmubAJoKCAZema40TnpEGk+hDFf/KDbtgTjbjwBvXHk9s/r9m/w9O/CM2EVmrc8HBc2xg35iw4HdIYGGh0eFztA7FiRk1xbiMThNx0JnQwJjB/yJ3UyVJBfip58FH3ymeRmqJZ9UO2KXD5ZTt8m+Up7w7CPKCH9ktQwwGP251Bdwn2SrwxK0QIeYhYthJzkSJehZoYaoNfvtv/t4iOCrIhzfzKfxeNurEDwxHsQwADJDiGjgWQ3M18nK1X7g8wyAQFQC+ai4vc0QzUho11f2xKYoXoeXtZuhVazFWZbu5M7oouPvCy2J4zNm9VppXZv2xSZrRX28O6d0Ou2O61O4slZE6AUzndCStlX2uXPTrOEd5R0YCmKIjweD1auXAlJ6rqi4rnnnuvd0nbjoosuwuc//3ksWbIEhmHgu9/9Lvbs2YN9+/bB5+OVczfffDP+7//+D2vXrkV2djZuvfVWiKKI9evXAwBM08T8+fNRUlKCn/70p6iqqsKXv/xl3Hjjjbj//o69cjozUgNLKxLoUNkSlbP0e7yypuGjdn1mJN6DRpD6XdHS04G6WrYcNc9fmnC7IHv4zmnx6VBLT09+Mo80lepeMekQmpJRTFIhufO6bbBdfv1BNL7/PYhKJtTC+XAVzB72YZUZaoDesBdGyzHknXV/UoFd14FhHwkSlMK5KLrkrzj55LQuH1Z+/UHUvnwl9PpdiZNlDIBk+vWMveEY9KZDkJSMAX1tQkj6SCYsizQe4MPqardDr92OSFPHYXWStwRK0QInxJQyyod8H5ExC0bLUej1u6DX8YDSbDvZ4XGimgulcC6UgrlQCufCM/4TaO2qh2MaTHoz0if9IYSkmX6eQDXaKp0KTK3mww4nvATJzQPEYj6hrCt3GkRXRrefg5HmI/zEU91O6HYPyvbFVBBEPjS9cL4TUkru3OR/7Gg2oObC1JogufPArEhaDG8fSIMSWF577bVJbfSffPLJ5JayD+rq6lBUVIR3330XZ599NlpaWlBYWIhnnnkGV1zBGzHv378fM2fOxMaNG3HGGWfg1VdfxaWXXorKykqn6vJ3v/sd7r77btTV1UFROpbVapoGTYsNNfb7/Rg7duyICyyZqaPisfK+Hyi3b7gdF2gmVNd08jhJzUfhJ5/u+UD9yemQPEWxYd75s0dk35pUVrWkOjQlo1gfGmxDkODKmw6lIDqUYh4kNWdIF7s3mBlBpPlj6PV7EGnYC71+jzMhWFKB3VeOovWjP8EK1dvD9+TEoX9xQ/4g8fsEQbYrcOKGAzrfGzeUO4n3P76qhUX74VoGGIsb3mcZ7YYH8uuJQwJNZyggLP61ICrIWngrzVBNyCjXl7DMigSg1+3iB6S12xFp/KhjXzBPoV19yf/JmeN7Ppbp5f6YFQki0rCPB5T1u6DX7wGLtLV/UsjZk+yAcg6UgrmQMsYkLEuqA8PoMqRqfzAdfn5CyMjk9Eyu5eGlXrOtQ9AouHwo/vSLCFe81fkEcKd/F0rJYtS++LnEO0QFSv4sZ3i3UjB7QMJFxkwwI2xPJjTyTtoPyqQ7a9eu7e9y9VtLSwsAIC+PT2G/detWRCIRrFy50nnMjBkzMG7cOCew3LhxI+bMmZMwRHzVqlW4+eabsXfvXixYsKDD6zzwwAP40Y9+NMg/TepFZ7Du6j4zVA8poxxWqAEJk9k4DzLAYABmp/d2y5U/G2awptvXt7QWFH/q+QEZ6pL2Utgrhhpsk5RJosG2GaxB5qzr+ZnMup0wgzWINOxDpGEfAgeeBZD8UIvBxhiDFayF3rAHev0e6A17eHNtS2/3SAFy9kQetvbQR1byFsA74eLB+ZtM5v0PNzmvLQgCn5hNlDFQNUvd9+tJfH1CyMjUlz6qossHd9kyuMuWAeAzr+p1u3jfsNrt0Bv28gnfjr+B0PE3+Pe48xKHkMeN0kl2GKARqEYkWmFTvxuR5kMdglJB9sCVP4tXTxbM4QewSuaAvwcDLZX7g+nw8xNCRqZoz2Q5axx8Uz5rTxB6xA4vt0Kr3QZBdkMtXojaly7v9Dn8Ox/F2CVHIWWOg5wxhh93FM2HkjdzcPpKWkYnJ79Gpz7NEp4KlmXh9ttvx4oVK5wZyaurq6EoCnJychIeW1xcjOrqaucx8WFl9P7ofZ1ZvXo1vv3tbzvXoxWWIw2fbarrA2XZV4LCT/wh1iy7q4qZLqprOl6PPR6S0vOBuicfZrCeDlaHCjXYJimQTINt39TPwTeVn9E0AlXQa3c4wzEM/zHnX/Dw8wAAyVvMw0t7Z4I3s07ixEdvK2uMMCKN+xFxAsq9HYacAICoZMNVMJufgS2YDVfeac7Z0lQHdqmeITrVr08ISQ/9DctE2QN36VK4S5fy5zPC0Bv2QqvdBr12G/T6vbDCjQhXvIVwxVv8e9QcKIXz4Rm/ClnzbkLL1l90/Bxa9G34dz6G0Im3oNfvghWs7fDakreEB5OFc+EqmANXzhRezT7E78GASdH+YNr8/ISQEY1PEDoZrpzJwPQrwSwTZqgWVrip+2Iq3Y/iTz3fSSECGUzDJrC85ZZbsGfPHrz//vuD/lqqqkJV1UF/nVRjVgRZ829F86afdLivQ2WNKAGQIEgD976k+kCdEJJ6va2qkH2lkCeWwjvxYgD2LIF1O50QM9J0AGawJqGqRlCyoEYDzMJ5cOXNSDiYTKayhjEGs+2kE0xGGvYg0nSw42Q2gsRnSS+YDSV/NpSCWZAyxnY5DDHVgV2qq1pS/fqEkDQzQGEZr5ZZBLV4EX9aU4PesA967XZotdsQqd8NS2tG+OQ7yFpwG1o+/HnCMEBLa+b7p4xBKV6IpvWr7SeW4Mqd6vSeVArmQvIW9Xt5E4z2E8ij/ecnhAwpQZQgZ4yF5C3svpjKnQcz0LEwgQyuYRFY3nrrrXj55Zfx3nvvoby83Lm9pKQEuq6jubk5ocqypqYGJSUlzmM2b96c8Hw1NTXOfaOZ6PIhe8ldAAD/jt9QZQ0hJCX6U1UhqTnwlJ8DT/k5AKL9xPZAs0PMSMMeMN2P8Kl/I3zq3wB4QOkqmA2lcB485efCO/nSzvtmLfo2Wrb9CqGKtxCp3wNLb+nw+qI7H0rBbCgFc+DKnw1X3oxezeKXDoFdqqtaUv36hJCRT5BUqPZw8Excz/sLN34EveljeMZdgPo3vtLp9/l3PoqxNxxD1qI74MqeBFf+acN+4jdCCCHt9LJNEhk6SU+6kwqMMdx222345z//iXfeeQdTp05NuD866c6zzz6Lyy/n/QYOHDiAGTNmdJh0p6qqCkVF/AzoY489hjvvvBO1tbVJVVKO1FnCo6xIAIIoxyqLhniWaprwhRAyWJgZQaTpgDOEXKvbCab7nfuLLvtf6DVbu26wXbwQtS/xSd0guuDKmxEb2p0/G5K3eOBmoU3h5FuEEDIaCbIbojsPJ34/rsvHjLvxBMxwA5hB+6WEEDJSpdPkX8zUYGnNcI85a9RPupPWgeXXv/51PPPMM3jhhRcwfXpsFtXs7Gx4PPzs5s0334xXXnkFa9euRVZWFm677TYAwIYNGwAApmli/vz5KCsrw8MPP4zq6mpcffXVuOGGG3D//R0PUDsz0gNLADCDddDqd0NyF6TmQJkO1AkhQ4AxC4b/GK++bDmCwgt/jxN/mNjNLOXH0Pzhz+DKnghXztTBaaxNCCEkNQQZSv50VDw2tsvtwLibTkBvOED7p4QQMsKlSzEVBZYxaT0k/Le//S0A4Nxzz024/cknn8S1114LAPjlL38JURRx+eWXQ9M0rFq1Co8++qjzWEmS8PLLL+Pmm2/GsmXL4PP5cM011+C+++4bqh9jmGBgeiug5qTo5alfDSFk8AmCyIf1ZU+CILth6a3dNthmeisypl1BlTWEEDIS0TBAQgghNmpTlH7SOrBMpvjT7XZjzZo1WLNmTZePGT9+PF555ZWBXDRCyDDGmGXPYh9xZrNnVsSeQEUABAECREAQAEG0bxP5TNOCADj3SfZw4Nhjk5qNmqQFZhqQ3LndNtgW3Tl8Z4UQQsiIRD3VCSGEJKBiqrSR1oElIYT0Fg8jI2CW4YSSzLJbDURPgggCBNEFQZAByQVRzYQgeyBIHgDMeTyzTMD52gCYZf8zAWaBgYGB38YYs+9jALo72WKHoE64Gb1uB56iC4LkhiBKg/9mjXZUWUMIIaNeOkx+RgghhJCOKLAkhAwbPECMgDEzrjqSXwI8JhQEEYIoQxBdgOiCqGZBkH0QXV5+m6RAkBQeDIoKILmSroqMhZLRkNKM+9oCYCVeZ+2vm/xnYKYdqJpgzA5TTYP/XEaIV/sxC4AAQXbzAFN2QxDpI3ugUWUNIYQQGgZICCGEpB86+iWEpAXGLMDU+fBsZgBmJG6YNuyh2AIEiVdGCqILgpoBQfZCdHn4ZCiiyw4jlVg4OVAzOAP8uQQJAK9+HLhn5hhjYGYYLBLkwWUkACvcBBYJwAy1AlYE/D1Q7SBThSCpA7wUowtV1hBCCHHQMEBCCCEkbVBgSQgZMowxwNLBzAiYqYFZOq+OFAAexCkQBBcPJV0ZEFw+HkY61ZB2ZWQ0nBzAMDIdCIIAQfYAsifhdmbqsCJBMCPIQ0ytBUz3w9KawMwIf5DoilVjSuqIe28GE1XWEEIIIYQQQkh6ocCSjGrMMmPBmanzGwWJD70VJECUIAiS3VuQ/lySxcwImKWDmfx9ZSzCeztGe0eKCh+irZRAVHyxkE1SR2wY2R+CpECSFAA5zm3MMmKVmEYQVrgFlt4CFmmFFa7nQ8oFOa4Sk/pi9ogqawghhBBCCCEkLVACQ0YFZhlgpg5mavawY92u6hNjQZm3iIc8pmYPRTbAImG7X6KZMDSZMWYXBbYPN0V75mgJsG8fqcGbM7O2/b7y98wCADuUdEGQVYjufAiKD6LsiRvK7IYguVL8EwxvgihDULMANYsPUM/mw+qZEQKLBHmIqbeBhZv419G+mIIYCzCpLyYhhBBCCCGEkDRER6pkROk5mHRDdOfHZoWW3fbs0GrCxCt86LLdS9GKzhAdnSglet2AZWi8itCKXvLeixbskNMy0WHGaCFWtelUcCaEm/as0fzBvCoxyUlhBlqsr6Ruv686GDNjYa09gY3oKYCoZHYIJQe6hyTpniCIEFw+wOVDtJbS6YsZDTIjAVjhRrBIkPpiEkIIIYQQQghJSxRYkmGJB5NaLJy0IgAYHwIrKRDkroJJd1IBmiAIfPZoJF8FyGeQNp1w0wk27eDTCT0NHczSwAyNLzszeFVndNZpMP4fs/jX9vVo8Mmiy8figtD4qk/7uv1ARENPQIAQ97VzCfCAVBD4rNVWxH4/+fcLkgohOtu2KxOiyxcLtqKXKQpUSc8S+mK685zbe98XU6HfMyFkxGOMb3fp844QQgghJLUosCRxGJgRtoMsMS7YElNWJZdMMCm58yG6s+whrp5YwDLEy8xnkJZ7PcSWMSuuatMOKZnlHDRFryN6nTEwxF+37NuYfVvsPmZZPCRllv04OxRl/HZEQ1b7PsGlQlAyICqZsb6S0VCShg6PKL3vi6nZfUilxKH91BeTEJLGoicT+clDM260hMmvWwb4fkX0xJ99Qi+6HYW9O2SfI2RA3MlBEbH9JLHz2+L3qQTRfn4xNpIi/nsJIYQQQoiDEgjCCRJENRtWpNUJzfhOfnwA1q66z75M2HkH4nbWBQgJwWfcpbPTHh+Ool0waS+XpEKQVUiefF7ll+JgcqAJgsiHTktKqheFjHI99cVkRgim3goWbuJfa808CIiGmNHemNSflBAyiHhfacPpL53QtiV6Ui6eKEMQJQiQAEnmn1WqO3ZiTlL4STlRhiC67P2b6Ek+q93JxLgTgFb7AJS3i+H3Gc7jAAuw+Pey+BON0fvajZjg+1giBFGBIKsQRMVusULBJiGEEEJGDwosCQBA8uRDLT0jVsnnhJaxnfRYJV8nj3GCTStW1WeZAEznemwn3kzY+Y/uyAN21ZeX90N0hnA7PSaHdzBJyHAU3xcT4BsN3hdTAzOCdl/MICytEUwPwIo08LYCQFyIqQL0N0wI6Qbv+xzhld6MB4DxVZEA+NlRBnvCO8mZ+E6QXBCkjMQWFgkBpP0YQXbCyyH5mVj8/pNl7z/F7U85gWW7cNQyYBkh3qoj0gYr4gcL6YhWgjoBpsTDTKp0J4QQQshIRIElcYiyZ0hfj7ULR8EYTdJCyDDA+2K6AdndoS+mM5xcD8DS/WC6PazcjICB2eGCm/qfkrQRnawNVoRfMgsQJXuoLg/F+ARpIv/amSCNJMuZyM7ukcyiXzMjNlJDEO1Q0WVXe3shiG5eYSirPGxMCB1d9mXvW7EMFd4qRgLsadD6stYwywAzwvbkaWEeZOqtYHorWCQAy2wEDz3B+w5Hg0xq5UIIIYSQYY72ZEjK8IM/AKDKAEJGAmfWeDUb4AWZYJbJKzGNEK/E1FvsqqEArFADeMVQfF9MOsgmA4uHZToPzS09FpxFhw3b4ZcgKRDduRBEBcyy25Mwu+rPDINF+/1aJg/f41/E7knYdcBpB6AjtBIuoToyLpR0KiOBWMAoufgoCpeXT+ImKXEVg4r9OBeFwjZBlCEoGQAyEm7n7TpiQSYzw7D0VliaHzDCMHU//x0AEJy2HTzMpPeXEEIIIcMBHRUSQggZNIIoQVAyASXTOTXBGON9MaNBpt4GK9xo98VsiYUcohxXKaRQb0zSJScoM3X7a92eTAUABF65J/KwRnQX8LDMDshh90nurOLXCSjtIco8hDMSb2MGmGlPEGdFgOilZQBmBAy8FQpr11vR6QkN0Qk0edBp/6XE9YOOvxSi19vdN1jVyr2ujpRcENw5EGWffRJCSQwlRdeIDW6HEm/X4QVc3oTbGWOAqcMyQrGqzEgATPfzz1utEcyM9gm3+2RKCv87oD6ZhBBCCEkjFFgSQggZUoIgdH6gbWiwjGDsIFtvA9NaYpVD0d6YCZP8DO8Jq3gYZFejRS/bS6iEEjrcLnQ10LTT7+v4/R2/jwdlTjAWP5FaisKM2PsUiQsmI3ZfwOg6wUNtUc2E4MqE6PIk9FHtS2UZnxRNhIDeheVO78JoD8a4voyJ4adpTzZnV3SaOr8f9szW9kzVPBiMzlod7YuI2Nf8CpyprCEAAoumorFJXeJmu+40DLW/TqiOFITYMGzJBVHJgODyQpB9EOMnhImGkqJM1XspJAgCIKuQZLXDfcyM8JNF8cPLtRYwIwAWaYUV0tChT6YY/d3SIQMhhBBChhbtfRBCCEkLQicH2dFqIWbyg2unWkhrtg+42+KqhaTEEFNMbU/czsJIp/IuLlgSJBmC4ALsMCiWKrFY0OQEVoj7XiTOLoz2X7N29ycsXOff11Uw5kwOYj8+IQSLfh2fhrWr/oMYd90OPQXRvi8xFAWzeIBnV/RFX4P3KrTDEzWHDyeOthGI/5cG1XtO70JR6nXfQuaElLE+zwztbnNmrI67Pfr77uLxrN33Aiw2SZ4z2Qsf7i7K0QnvqDpyJOGTE7kAZCXczizTDjFDHftkGkFYWnNi5buo8L89qnwnhBBCyCCiwJIQQkjailYLCbLKe2PG4ZP88INsywzzGcu1ZnvYYzOfQAWIDXt0qsH6P2N5p5WR0UCy0zBSjqtM8yYEQYLoilWo9aGCkXUTPiZ9e9xtfCbj+BAsGozFZjd2QrFo0JUQiNkzHkfDMMsEYF9GZ3xmln09GoTGVRMKIg8jFR9EV0bHKskRPjmb0D7YRd8mayEkWYIoQRB9gMuXcDtjFm91ED/pT7vKd2bFnzCKD7j7/zlLCCEDgY96MGMn6Ky4r6P7JMzktyec/LW/H/HbYcE54cpHo7Rv39LFydiE0SuJJ3Hps5KQrlFgSQghZFhyKinVrISpu5gZ6VgtpDXziX4ifrCw7lQEOpNQxPVv6zGMFAR+MQRhZFLvQ5dDxvv4fP1amt7prJoQokTDTwlJA4IgQpA9gOzpcB8/YWR/xkZPGOkt/DLiBwvp6DC8PNqPmKp0CSG9FBsJYMS+ZnH9oRN6RbdvgyIkTIYnCBIgirEqcTH6+eSy9+3k2ElDZtmjTFjCyVb+WoZzcpb3de7iZGzcyAfmnORtNzrCXlQhoXULeCsb0RVbTlGmfSQyqtDaTgghZERxhj0qmQm3M8uIqxQKwYqE7APsNt6/LazFBZmdhJGSx56cpV0YScNk+6yzakJCSPqLnTDKTjxhlPA52254eSQAy2yE015CdDknjWh4OUk1Zpn8JKXddxgAb+0hiE7QxavnqCJuILBo+Bjt5xw9ORzt8wzGT6BG2844/ZRFACIP7QQRouiO9duVFTvgs0M9J5y0vxbl2OR2ojy4k9V1aO0Sd2I2YWRK/GgWK+77eHscKxLk+6lGCCzSBsvUwZgJp4u5pMRadUguu1c37VORkYMCS0IIIaOCIMoQlAwAGQm3x/q3hcEs3Q4gqWcfIYT0Vpefs87w8pATaFp6KyzND5hax+HldpjphJpUUUT6KDocONpDOnZpTy7mBGJS7GSlKIMHRwZgmrAQbXFiB0wC7Pvjhgs7YabU6dc8PIv/euSFnnyESvtJ5uLea2bFHmz3pobAw0VBckFQMnn/ZNlt73+1Dxgluz+0/XW0ajLNDEZrF76vqsUm6DM1WIZd3R5pBUwdlhm02yExO+OV7JPrrti+LU2MR4YZ2voTQggZ1brq30YIIWRgdDW8PH5itcTh5XzCH2bwoeZOxZtTURQNMqMVRSPnAJx12kfP/vmcnzOuo94I+tl7K1alFxdC2oEZY5bz3vDKvGgwpsZN3BZtUxA3YsJevwAWN8zY7PLraH9mZhlxE8bpfELA6ONNHQx8GLETeoJFk044E9o5PQ2lhL6H9g+BWM/E2PX2k9yBd09M7J8IOF/3NuCLBb78ve1QDWmHkHw4s5D4XosyBGeCPI9z8iE+RIN9nU5KdI/vq3oBl7fT+3k7JB5oMksHMzR7NFEALBIAjDAs1mqHx/bnS7QyU5TjTtLT74GkF1ojCSGEEEIIIUMufmK1DsPLnapMDbAPxC0jDCvSBhZp45WZkVYeDEXDnoShkelTJZ8w7DUh8OHDjxMm9YhW4QGxYIFfSbxMyDQ7CzhZwj1C3G1xL9buNZAwBJcxllgZlhCgifbEIp2EZu3vazcpiTPUN2HykWggJ8TeMzuEjFXqRUNA5iyrILZr4SJ57DYuihNq961aVwAkEQL63qrAmeylk4DT6b8Yf59p/4xmJC4MjPZujBtWHB02zF8E0T6ITp9Epy+iXQXq9HWMKwllLK46FABr3zwx7n2we0tHw0hRyYQguSG4PHEnDqLBox1GRoPLURyoDyWnHVK76naAr4fxlZnMsis09QCYEbCHmwdg2cE/f0LBqTZOODmUBp+nZHShwJIQQgghhBCSVrqd9CdamWkfeEf/WXogrt9bKyxTt/vHxYZHDsRQ84Sqs2jo2C6U5D9E9H8iH24MCZBiVX6C5I7rjSzHgh9BsvvgOa+YeNnZfT3cxto/R8L97W+LC8ASJhyxe+vFT3TiTC7Cg0RmGc7jY/344iccQULwxt9LBqe3qR2mxQ/RFkQZgpoBQfZAdHk7rYgczMnt+koQBCAa3A3Qc7K4349zGTepS/vbnffYud9CZyFn+9shCIkhpDNEe2RVNI8GgiBAkN2A7O70/thwcz12csjUwKKBpqnBioTsqmE7KBfE2HoR/Syl/plkEFBgSQghhBBCCBk2nMpMqAAyO9zPh+fGgkxneGRXQ82j1USS3ecNcPrwOZWQ0RCSf0Nc1ZlkV535AMkNUe5YdZYY/MijokopcRZkq9MANDHIbBeajeBh//0R64/Y7vaULA0ZCZIabp5wckjnLTwigbhq9zYeaArRKt74E0Qy9c8kfUaBJSGEEEIIIWTEcGYJ7qQ3MbNn30V8ZaYRBtMDzuQVPMCUIKheCGJ06GtipVmHQJIqixLw6sLEYJaiCkKGH2e4eaefpwywIolhpqnxQNM+QQQjDMtqtdscUP9M0ju0VhBCCCGEEEJGBT7UvPPhkdGDb6cfJlUDEUJIlwRB4IGjpKDTaveEE0SxHppO+w4z3EP/TJc9k7yLPpNHKQosCSGEEEIIIaNe9OCbEEJI/3V3ggjopH+mpTsV79H+mcwM8jYfVsSZJ0wQxNjETiMx1Gw/GdooRoElIYQQQgghhBBCCBkyPfbPtEwwS7cnWYvYVZr2v0iQh5qWznsTRyc/ExgPNSHEte6wJwUawlAzOjlb4kRlBu/Zy/hkZYyZvFcy2geUAkQ1i09+NcpRYEkIIYQQQgghhBBC0gYPND2A7OnyMbFQMzo5kB1uGtqAhJrMMu1w0bIDSNO+LS50jIaQ0WUCf24+m7rEJyESRHuytuhkRAoESbWvu5wJ3PilBEFUIHbSN3S0ocCSEEIIIYQQQgghhAwrAxJqmiHeT9MIgjEDzDTAwPhEYYIEQRT5sPNo6Ci5+MznksInD5IUCJJsD1OXnEs+VN0OLEXZvpS6XE7SEQWWhBBCCCGEEEIIIWTEST7UjNjDz3U+VLtD2Eih41CjwJIQQgghhBBCCCGEjEo81JS6nCCIpIaY6gUghBBCCCGEEEIIIYSQKAosCSGEEEIIIYQQQgghaYMCS0IIIYQQQgghhBBCSNqgwJIQQgghhBBCCCGEEJI2KLAkhBBCCCGEEEIIIYSkDQosCSGEEEIIIYQQQgghaYMCS0IIIYQQQgghhBBCSNqgwJIQQgghhBBCCCGEEJI2KLAkhBBCCCGEEEIIIYSkDQosCSGEEEIIIYQQQgghaUNO9QIMB4wxAIDf70/xkhBCCCGEEEIIIYQQMvxEc7VoztYdCiyT0NraCgAYO3ZsipeEEEIIIYQQQgghhJDhq7W1FdnZ2d0+RmDJxJqjnGVZqKysRGZmJgRBSPXiDAq/34+xY8fixIkTyMrKSvXikBSgdWB0o98/oXWA0DpAaB0gtA4QWgdGN/r9k8FeBxhjaG1tRVlZGUSx+y6VVGGZBFEUUV5enurFGBJZWVn0wTTK0TowutHvn9A6QGgdILQOEFoHCK0Doxv9/slgrgM9VVZG0aQ7hBBCCCGEEEIIIYSQtEGBJSGEEEIIIYQQQgghJG1QYEkAAKqq4t5774WqqqleFJIitA6MbvT7J7QOEFoHCK0DhNYBQuvA6Ea/f5JO6wBNukMIIYQQQgghhBBCCEkbVGFJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYprH33nsPl112GcrKyiAIAp5//vmE+2tqanDttdeirKwMXq8XF110EQ4ePJjwmHPPPReCICT8+9rXvpbwmC1btuCCCy5ATk4OcnNzsWrVKuzcubPH5XvnnXewcOFCqKqKKVOmYO3atb1aftKz4b4O/Nd//VeH154xY0af3ovRarivA62trbj99tsxfvx4eDweLF++HFu2bOnTezFaDdU68NZbb2H58uXIzMxESUkJ7r77bhiG0ePy0bZg8A33dYC2Bf033NcB2hb0z0D8/gFg48aNOP/88+Hz+ZCVlYWzzz4boVDIub+xsRFXXXUVsrKykJOTg6985Stoa2vrcfloOzD4hvs6QNuB/hvu6wBtB0hfUGCZxgKBAObNm4c1a9Z0uI8xhs985jM4cuQIXnjhBWzfvh3jx4/HypUrEQgEEh574403oqqqyvn38MMPO/e1tbXhoosuwrhx47Bp0ya8//77yMzMxKpVqxCJRLpctqNHj+KSSy7Beeedhx07duD222/HDTfcgNdffz2p5SfJGe7rAADMmjUr4bXff//9fr4ro8twXwduuOEGvPnmm3j66aexe/duXHjhhVi5ciVOnTo1AO/O6DAU68DOnTvxyU9+EhdddBG2b9+Ov/71r3jxxRdxzz33dLtstC0YGsN9HQBoW9Bfw30doG1B/wzE73/jxo246KKLcOGFF2Lz5s3YsmULbr31Vohi7HDwqquuwt69e/Hmm2/i5ZdfxnvvvYebbrqp22Wj7cDQGO7rAEDbgf4a7usAbQdInzAyLABg//znP53rBw4cYADYnj17nNtM02SFhYXs97//vXPbOeecw775zW92+bxbtmxhAFhFRYVz265duxgAdvDgwS6/76677mKzZs1KuO3KK69kq1atSmr5Se8Nx3Xg3nvvZfPmzUvipyPJGG7rQDAYZJIksZdffjnhMQsXLmTf+973uv1ZSecGax1YvXo1W7x4ccJtL774InO73czv93f5fbQtGHrDcR2gbcHAGm7rAG0LBlZff/9Lly5l3//+97t83n379jEAbMuWLc5tr776KhMEgZ06darL76PtwNAbjusAbQcG1nBbB2g7QPqKKiyHKU3TAABut9u5TRRFqKra4WzVn//8ZxQUFGD27NlYvXo1gsGgc9/06dORn5+Pxx9/HLquIxQK4fHHH8fMmTMxYcKELl9/48aNWLlyZcJtq1atwsaNGwfgpyPJGC7rwMGDB1FWVoZJkybhqquuQkVFRV9/ZNJOuq8DhmHANM2E5QMAj8dDZ9UHyECtA5qmdfp7CofD2Lp1a5evT9uC1Bsu6wBtCwZPuq8DtC0YXMn8/mtra7Fp0yYUFRVh+fLlKC4uxjnnnJPw/m/cuBE5OTlYvHixc9vKlSshiiI2bdrU5evTdiD1hss6QNuBwZPu6wBtB0hfUWA5TM2YMQPjxo3D6tWr0dTUBF3X8dBDD+HkyZOoqqpyHvfFL34Rf/rTn7Bu3TqsXr0aTz/9NL70pS8592dmZuKdd97Bn/70J3g8HmRkZOC1117Dq6++ClmWu3z96upqFBcXJ9xWXFwMv9+f0AODDJ7hsA4sXboUa9euxWuvvYbf/va3OHr0KM466yy0trYO8LsxOqX7OpCZmYlly5bhxz/+MSorK2GaJv70pz9h48aNCctH+m6g1oFVq1Zhw4YNePbZZ2GaJk6dOoX77rsPALr9XdG2IPWGwzpA24LBle7rAG0LBlcyv/8jR44A4H0Eb7zxRrz22mtYuHAhLrjgAqfHXXV1NYqKihKeW5Zl5OXlobq6usvXp+1A6g2HdYC2A4Mr3dcB2g6QvqLAcphyuVx47rnn8PHHHyMvLw9erxfr1q3DxRdfnNCD4qabbsKqVaswZ84cXHXVVXjqqafwz3/+E4cPHwYAhEIhfOUrX8GKFSvwwQcfYP369Zg9ezYuueQSZwOTkZHh/GvfnJ2kznBYBy6++GL8x3/8B+bOnYtVq1bhlVdeQXNzM/72t78N7JsxSg2HdeDpp58GYwxjxoyBqqp45JFH8IUvfCFh+UjfDdQ6cOGFF+KnP/0pvva1r0FVVUybNg2f/OQnAcB5HtoWpKfhsA7QtmBwDYd1gLYFgyeZ379lWQCAr371q7juuuuwYMEC/PKXv8T06dPxxBNPJP1atB1IT8NhHaDtwOAaDusAbQdIX3RdOkPS3qJFi7Bjxw60tLRA13UUFhZi6dKlCSXc7S1duhQAcOjQIUyePBnPPPMMjh07ho0bNzofFs888wxyc3Pxwgsv4POf/zx27NjhfH9WVhYAoKSkBDU1NQnPXVNTg6ysLHg8ngH+SUlXhts6kJOTg2nTpuHQoUP9+bFJnHRfByZPnox3330XgUAAfr8fpaWluPLKKzFp0qSBfBtGtYFYBwDg29/+Nr71rW+hqqoKubm5OHbsGFavXu38rmhbkL6G2zpA24KBl+7rAG0LBldPv//S0lIAwGmnnZbwfTNnznSG5ZaUlKC2tjbhfsMw0NjYiJKSEgC0HUhnw20doO3AwEv3dYC2A6QvKLAcAbKzswHwviAffvghfvzjH3f52OgHTPQDKxgMQhRFCILgPCZ6PXoWZsqUKR2eZ9myZXjllVcSbnvzzTexbNmyfv0spG+GyzrQ1taGw4cP4+qrr07uByNJS/d1wOfzwefzoampCa+//nrCzLRkYPRnHYgSBAFlZWUAgGeffRZjx47FwoULAdC2YDgYLusAbQsGT7qvA7QtGFxd/f4nTJiAsrIyHDhwIOHxH3/8MS6++GIA/PfY3NyMrVu3YtGiRQCAt99+G5ZlOeE2bQfS33BZB2g7MHjSfR2g7QDplRRP+kO60drayrZv3862b9/OALBf/OIXbPv27ez48eOMMcb+9re/sXXr1rHDhw+z559/no0fP5597nOfc77/0KFD7L777mMffvghO3r0KHvhhRfYpEmT2Nlnn+085qOPPmKqqrKbb76Z7du3j+3Zs4d96UtfYtnZ2ayysrLLZTty5Ajzer3szjvvZB999BFbs2YNkySJvfbaa0kvP+nZcF8H7rjjDvbOO++wo0ePsvXr17OVK1eygoICVltbOwjv1sg03NeB1157jb366qvsyJEj7I033mDz5s1jS5cuZbquD8K7NTINxTrAGGMPP/ww27VrF9uzZw+77777mMvl6nEmV9oWDI3hvg7QtqD/hvs6QNuC/unv758xxn75y1+yrKws9ve//50dPHiQff/732dut5sdOnTIecxFF13EFixYwDZt2sTef/99NnXqVPaFL3yh22Wj7cDQGO7rAG0H+m+4rwO0HSB9QYFlGlu3bh0D0OHfNddcwxhj7Fe/+hUrLy9nLpeLjRs3jn3/+99nmqY5319RUcHOPvtslpeXx1RVZVOmTGF33nkna2lpSXidN954g61YsYJlZ2ez3Nxcdv7557ONGzcmtXzz589niqKwSZMmsSeffLJXy096NtzXgSuvvJKVlpYyRVHYmDFj2JVXXpmwQSQ9G+7rwF//+lc2adIkpigKKykpYbfccgtrbm7u9/symgzVOnDeeeex7Oxs5na72dKlS9krr7yS9PLRtmBwDfd1gLYF/Tfc1wHaFvRPf3//UQ888AArLy9nXq+XLVu2jP373/9OuL+hoYF94QtfYBkZGSwrK4tdd911rLW1Nanlo+3A4Bru6wBtB/pvuK8DtB0gfSEwxljf6zMJIYQQQgghhBBCCCFk4NCUTIQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJGxRYEkIIIYQQQgghhBBC0gYFloQQQgghhBBCCCGEkLRBgSUhhBBCCCGEEEIIISRtUGBJCCGEEEIIIYQQQghJG/8fMlPlP2iSP8wAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAFhCAYAAACLab/IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e85Z0omvUAaLaFLEwQLRRGFFWyrYsG2rPqqa2Otq64NsOu6a+8ouuraewdElCJFROk1NE0hZVKnnXOe948JESRAEpJMEu7Pdc0FTDlzz5BMMr+5n+fWlFIKIYQQQgghhBBCCCGEaGJ6pAsQQgghhBBCCCGEEEIcHCSMFEIIIYQQQgghhBBCNAsJI4UQQgghhBBCCCGEEM1CwkghhBBCCCGEEEIIIUSzkDBSCCGEEEIIIYQQQgjRLCSMFEIIIYQQQgghhBBCNAsJI4UQQgghhBBCCCGEEM1CwkghhBBCCCGEEEIIIUSzkDBSCCGEEEIIIYQQQgjRLByRLqAlsG2b3377jbi4ODRNi3Q5QgghhBBCCCGEEEK0KkopysvLyczMRNf30f+oIsg0TXX77berrKwsFRUVpbp27aqmTp2qbNuuuY5t2+qOO+5Q6enpKioqSh1//PFq3bp1ux2nqKhInXfeeSouLk4lJCSoiy++WJWXl9e5jm3btilATnKSk5zkJCc5yUlOcpKTnOQkJznJSU5yktMBnLZt27bPHC6inZEPPvggzzzzDK+88gp9+/ZlyZIlXHTRRSQkJDBp0iQAHnroIR5//HFeeeUVsrOzueOOOzjhhBNYtWoVUVFRAJx//vnk5uYyY8YMQqEQF110EZdddhlvvPFGneqIi4sDYNu2bcTHxzfNgxVCCCGEEEIIIYQQoo0qKyujU6dONTnb3mhKKdVMNe3h5JNPJi0tjWnTptWcN378eDweD6+99hpKKTIzM7nhhhu48cYbASgtLSUtLY3p06czYcIEVq9eTZ8+fVi8eDFDhgwB4Msvv+TEE09k+/btZGZm7reOsrIyEhISKC0tlTBSCCGEEEIIIYQQQoh6qmu+FtEBNsOGDWPWrFmsW7cOgJ9//pm5c+cybtw4AHJycsjLy2P06NE1t0lISODII49kwYIFACxYsIDExMSaIBJg9OjR6LrOwoULa73fQCBAWVnZbichhBBCCCGEEEIIIUTTiugy7VtuuYWysjJ69+6NYRhYlsW9997L+eefD0BeXh4AaWlpu90uLS2t5rK8vDxSU1N3u9zhcJCcnFxznT+6//77mTJlSmM/HCGEEEIIIYQQQgghxD5EtDPy7bff5vXXX+eNN95g6dKlvPLKK/zrX//ilVdeadL7vfXWWyktLa05bdu2rUnvTwghhBBCCCGEEEIIEeHOyJtuuolbbrmFCRMmANC/f3+2bNnC/fffz8SJE0lPTwcgPz+fjIyMmtvl5+czcOBAANLT0ykoKNjtuKZpUlxcXHP7P3K73bjd7iZ4REIIIYQQQgghhGiJLMsiFApFugwhWi2n04lhGAd8nIiGkVVVVej67s2ZhmFg2zYA2dnZpKenM2vWrJrwsaysjIULF3LFFVcAMHToULxeLz/++CODBw8G4JtvvsG2bY488sjmezBCCCGEEEIIIYRocZRS5OXl4fV6I12KEK1eYmIi6enpaJrW4GNENIw85ZRTuPfee+ncuTN9+/blp59+4t///jcXX3wxAJqmce2113LPPffQo0cPsrOzueOOO8jMzOS0004D4JBDDmHs2LFceumlPPvss4RCIa6++momTJhQp0naQgghhBBCCCGEaLt2BpGpqalER0cfUIgixMFKKUVVVVXN6uRdVzDXV0TDyCeeeII77riDK6+8koKCAjIzM7n88su58847a67zj3/8g8rKSi677DK8Xi8jRozgyy+/JCoqquY6r7/+OldffTXHH388uq4zfvx4Hn/88Ug8JCGEEEIIIYQQQrQQlmXVBJEpKSmRLkeIVs3j8QBQUFBAampqg5dsa0op1ZiFtUZlZWUkJCRQWlpKfHx8pMsRQgghhBBCCCFEI/D7/eTk5JCVlVUTpAghGs7n87F582ays7N3axSEuudrEZ2mLYQQQgghhBBCCNHUZGm2EI2jMb6XJIwUQgghhBBCCCGEEEI0CwkjhRBCCCGEEEIIIUSd/fWvf60ZLCxEfUkYKYQQQgghhBBCCNEIlFIoZaNsC2WbKCuIbQawTT92qBLbDNBcozsmT57MwIEDm+W+hKiPiE7TFkIIIYQQQgghhGgNKoMmTl3H6w+RGOUkZFlEO1R1uGiDbYf/VAqFgj+GjpoGKgTKBocbTZP+MHFwkq98IYQQQgghhBBCCHbtbDRRVqi6szGIP2Tx0OyNpE/5mvTJX5M+5Wse/nYTAVtHWQGUGUApMxxMahqaZqAZzt1PugNNd6AsP8r0oZS933q+/PJLRowYQWJiIikpKZx88sls3Lix5vLt27dz7rnnkpycTExMDEOGDGHhwoVMnz6dKVOm8PPPP6NpGpqmMX36dDZv3oymaSxbtqzmGF6vF03T+PbbbwGwLItLLrmE7OxsPB4PvXr14rHHHttnne+++y79+/fH4/GQkpLC6NGjqaysbND/gWj7pDNSCCGEEEIIIYQQBwWlFMq2qAqZ1Z2L1Z2Nyg6fsKs7HRVUNzYqRzT//n4Td89YX3Mcry/E1BnrALjumC7odnDXe6Hmxn8Q7dTRdCfKCobv3+FB04291ltZWcn111/PgAEDqKio4M477+T0009n2bJlVFVVMXLkSDp06MDHH39Meno6S5cuxbZtzjnnHFasWMGXX37JzJkzAUhISCA/P3+/z5Ft23Ts2JF33nmHlJQU5s+fz2WXXUZGRgZnn332HtfPzc3l3HPP5aGHHuL000+nvLyc77//vtmWo4vWR8JIIYQQQgghhBBCtGlK2dihKrBNKoImiVPm1el27WJc5Nx2PE/M3Vzr5Y/PzeGmUd3IfmAOhZXBWq+zq9IpI4lxGWiGC2WFwKwEw4NmOGu9/vjx43f790svvUT79u1ZtWoV8+fPZ8eOHSxevJjk5GQAunfvXnPd2NhYHA4H6enpdXqsOzmdTqZMmVLz7+zsbBYsWMDbb7+91zDSNE3OOOMMunTpAkD//v3rdZ/i4CLLtIUQQgghhBBCCNF2KYUy/SgrULOEuq7S49wUVATx+kK1Xu71hdhRESQ9zl3vsjTDiVIK26xCWcFaOwnXr1/PueeeS9euXYmPjycrKwuArVu3smzZMgYNGlQTRDamp556isGDB9O+fXtiY2N5/vnn2bp1a63XPfTQQzn++OPp378/Z511Fi+88AIlJSWNXpNoO6QzUgghhBBCCCGEEG2SsoIoO4SyQ2h6LGgQ7dIonTKyTrfX0HC53SR6nLUGkokeJ5nxbuZfMTg8tGY/op2794RpugNlW9ihKjRHFBhuNE2rufyUU06hS5cuvPDCC2RmZmLbNv369SMYDOLxeOr0GHal6+H73zX4DIV2f1xvvvkmN954I4888ghDhw4lLi6Ohx9+mIULF9Z6TMMwmDFjBvPnz+frr7/miSee4LbbbmPhwoVkZ2fXu0bR9klnpBBCCCGEEEIIIdocZQUJFa9H2Saa5oTqjE/TNGJcRp1O0S6dkGkyaUTtodqkEdmETJNol16n4+0aNO6k6QaaboS7N3cZbFNUVMTatWu5/fbbOf744znkkEN26zgcMGAAy5Yto7i4uNbaXC4XlmXtdl779u2B8NLqnXYdZgMwb948hg0bxpVXXsmgQYPo3r37bkNzaqNpGsOHD2fKlCn89NNPuFwuPvjgg33eRhy8JIwUQgghhBBCCCFEm6KsIMEdKzCrfgsPiNkzA6wzj2Fxy3HduXNMTxI94b0dEz1O7hzTk1uO647HsPZzhDrQ9OpJ24FwIGlbJCUlkZKSwvPPP8+GDRv45ptvuP7662tucu6555Kens5pp53GvHnz2LRpE++99x4LFiwAICsri5ycHJYtW0ZhYSGBQACPx8NRRx3FAw88wOrVq5kzZw633377bqX06NGDJUuW8NVXX7Fu3TruuOMOFi9evNfSFy5cyH333ceSJUvYunUr77//Pjt27OCQQw458OdFtEkSRgohhBBCCCGEEKLNUFaQYNFKzIotGJ5UDiiJDB8RFwFuGplF3l1/In/yn8i760/cODILFwH2Njm73jQNTXeFl5abVWjYvPnmm/z444/069eP6667jocffrjm6i6Xi6+//prU1FROPPFE+vfvzwMPPIBhhPfEHD9+PGPHjmXUqFG0b9+e//3vf0B4CI5pmgwePJhrr72We+65Z7cyLr/8cs444wzOOeccjjzySIqKirjyyiv3WnZ8fDzfffcdJ554Ij179uT222/nkUceYdy4cY3zvIg2R1Mya52ysjISEhIoLS0lPj4+0uUIIYQQQgghhBCiAWqCyNIcjJgOBG0H270Osrp0Iiqq/kNmaqfRaAHkXig7hIaO5tj7pG0hIsHv95OTk0N2djZRUVG7XVbXfE06I4UQQgghhBBCCNHqKStUHURuxojp0IQhXtP3dGm6E0V40rZtBWqdtC1EayVhpBBCCCGEEEIIIVq1cBC5ojqIzGgT3YSa7kBDQ4V84b0kJZAUbYQj0gUIIYQQQgghhBBCNFQ4iFy1SxDpinRJjUc30JSGMn2gbHBEoWnSVyZaN/kKFkIIIYQQQgghRKv0exC5qe0FkTtpenjZthVAhapQdiNM7xYigiSMFEIIIYQQQgghRKtTE0SWteEgcqedk7ZtE2VWoWwz0hUJ0WASRgohhBBCCCGEEKJV2S2IjG7jQeROGmiGE2Vb4Q5JKxjpioRoEAkjhRBCCCGEEEII0Woo2yRYvLo6iEw/OILIXWiGEwXYpg/blME2ovWRMFIIIYQQQgghhBCtgrJNgkWrMUs3VgeR7kiXFBGabqBpOsr0oSy/BJKiVZFp2kIIIYQQQgghhGjxJIj8A01H0zWU6QelZNK2aDXkq1QIIYQQQgghhBAtWk0Q6d2AEZ12UASRSikuv+Jq2qV1wnDFsmzZL3teSdNk0rZodSSMFEIIIYQQQgghRIsV3iNyTQsKIrVmuZcvv5rBK6++zscfvsOvWzfSr1+fvZTzx0nboWapr66ysrJ49NFHI12GaEFkmbYQQgghhBBCCCFaJGVb4SCyZH04iHRERagSDaUsdMONHfCiuxOxLT+a5gCaZr/GTZs2kZGRzrChR9WlvOpJ2yYqVIXu8KA0B7Zt43BI9CNaFumMFEIIIYQQQgghRIsTDiJ3WZodwSASTaPsx3+z9fmONaeyHx8FTaMpOiUvuuRyJl17I1u3bsNwxdK1Rx8CgQB/v+5G0jtkER2XwjHHjmHxkh9rbvPtnO9wRCXyxVczGXL4EURFRfH9999j2zb3338/2dnZeDweDj30UN59993d7m/lypWcfPLJxMfHExcXx9FHH83GjRsBWLx4MWPGjKFdu3YkJCQwcuRIli5dWnNbpRSTJ0+mc+fOuN1uMjMzmTRpEgDHHnssW7Zs4brrrkPTNDStebpKRcsm8bgQQgghhBBCCCFalHAQuTYcRHpSGzWIVEqhzKo6X1/TnZT99DjehffWnGcHvHgX3gNA/KBr6rw0WnNE1ymQe/TfD9GtazYvTHuZhfO/wzB0br71dt7/4CNenvY8XTp34uFHHmXcSaexbvXPJCcn19z2ttsn89AD95Cd1YnklDTuu+8+Xn/9dZ599ll69OjBd999xwUXXED79u0ZOXIkv/76K8cccwzHHnss33zzDfHx8cybNw/TNAEoLy9n4sSJPPHEEyileOSRRzjxxBNZv349cXFxvPfee/znP//hzTffpG/fvuTl5fHzzz8D8P7773PooYdy2WWXcemll9b5ORdtm4SRQgghhBBCCCGEaDF2BpEh71oMT+N3RCqzim3Pd6zTdXVPOzpdvJ6yZU/VennZsidJGHID21/pi+0r3O/xOl22Hc0Zs9/rJSQkEBcXh2EYpKenUVlZybPPvchLLz7HuLF/AuD5Z5+ka48+vPTyq9x4w7U1t5181+2MGTMalMLvq+D+++9nxtdfMWz4CAC6du3K3Llzee655xg5ciRPPfUUCQkJvPnmmzidTgB69uxZc7zjjjtut9qef/55EhMTmTNnDieffDJbt24lPT2d0aNH43Q66dy5M0cccQQAycnJGIZBXFwc6enp+33c4uAgy7SFEEIIIYQQQgjRIvweRK7D8KShR2xpdpgRnY5VVYAd8NZ6uR3wYvl2YEQ3bdC2cWMOoVCI4cN+3z/S6XRy+JDBrF6zdrfrDhl8WPgvmsbGnG1UVVXxpxPGEhsbW3N69dVXa5ZhL1u2jKOPPromiPyj/Px8Lr30Unr06EFCQgLx8fFUVFSwdetWAM466yx8Ph9du3bl0ksv5YMPPqjpqhSiNhHtjMzKymLLli17nH/llVfy1FNP4ff7ueGGG3jzzTcJBAKccMIJPP3006SlpdVcd+vWrVxxxRXMnj2b2NhYJk6cyP333y8btAohhBBCCCGEEK3I7kFkapMFkZojmk6Xba/rtTHc8eGBNbUEkro7EUdMBunjv6Iug2w0R3S9am2ImJjf76OishKAjz94i44dMtGMKDQjHDq63eGp5B6PZ5/HmzhxIkVFRTz22GN06dIFt9vN0KFDCQaDAHTq1Im1a9cyc+ZMZsyYwZVXXsnDDz/MnDlz9hpwioNbRDsjFy9eTG5ubs1pxowZQDhVB7juuuv45JNPeOedd5gzZw6//fYbZ5xxRs3tLcvipJNOIhgMMn/+fF555RWmT5/OnXfeGZHHI4QQQgghhBBCiPpTtkWoZF11ENm+STsiNU1Dd8bU8RSNbQWJH3h1rceKH3g1thVAd0bX6XgNHeDSrVs2LpeLefN/qDkvFAqx5Mel9Dmk915v1+eQ3rjdbrZtz6Vbt650zcqkW3ZnunfvTqdOnQAYMGAA33//PaFQ7ftezps3j0mTJnHiiSfSt29f3G43hYW7L0n3eDyccsopPP7443z77bcsWLCA5cuXA+ByubAsq0GPW7RNEW0fbN++/W7/fuCBB+jWrRsjR46ktLSUadOm8cYbb9TsT/Dyyy9zyCGH8MMPP3DUUUfx9ddfs2rVKmbOnElaWhoDBw7k7rvv5uabb2by5Mm4XK5IPCwhhBBCCCGEEELUkVI2oZJ1BEvWVgeR++7Ua26aZpBw+E1AeI9IO+BFdycSP/Dq8PlKUZeuyAMRExPD3y7/P26+9TaSk5Po3KkjDz/yKFVVPi6+6C97vV1cXBw3XDeJG266Gdu2GT70CErLSlmwcCkJiclMnDiRq6++mieeeIIJEyZw6623kpCQwA8//MARRxxBr1696NGjB//9738ZMmQIZWVl3HTTTbt1U06fPh3LsjjyyCOJjo7mtddew+Px0KVLFyC8Kva7775jwoQJuN1u2rVr16TPlWj5WsyekcFgkNdee42LL74YTdP48ccfCYVCjB49uuY6vXv3pnPnzixYsACABQsW0L9//92WbZ9wwgmUlZWxcuXKvd5XIBCgrKxst5MQQgghhBBCCCGa1+9B5LoWGUSGKVCK+MHX0vmy7XS+7Fc6X7ad+MHXNksQudP9907ljNP/zMSL/o8hR45g48ZNfPHZhyQlJe3zdlOn3Mnt/7yZBx/6F/0GHsFJp57JZ599RpfOHVBKkZKSwjfffENFRQUjR45k8ODBvPDCCzVLrKdNm0ZJSQmHHXYYF154IZMmTSI1NbXm+ImJibzwwgsMHz6cAQMGMHPmTD755BNSUlLC9z91Kps3b6Zbt257NKWJg5OmlGqe75r9ePvttznvvPPYunUrmZmZvPHGG1x00UUEAoHdrnfEEUcwatQoHnzwQS677DK2bNnCV199VXN5VVUVMTExfP7554wbN67W+5o8eTJTpkzZ4/zS0lLi4+Mb94EJIYQQQgghhBBiD+Egcj3BotUY0U0TRAZCiu1eB1ldOhEV5W6ko2o0VwDZZJSNsi00RxSa4W7w8nFx8PH7/eTk5JCdnU1U1O7bKZSVlZGQkLDffK3FdEZOmzaNcePGkZmZ2eT3deutt1JaWlpz2rZtW5PfpxBCCCGEEEIIIcJ2CyI97VpoR+TetPIgEkDT0XQDZfpRVoAW0qcmDhItYuT0li1bmDlzJu+//37Neenp6QSDQbxeL4mJiTXn5+fnk56eXnOdRYsW7Xas/Pz8msv2xu1210yNEkIIIYQQQgghRPPZGUSGiteEg0hn00+YFrXQdDQdlOkPLzd3REmHpGgWLaIz8uWXXyY1NZWTTjqp5rzBgwfjdDqZNWtWzXlr165l69atDB06FIChQ4eyfPlyCgoKaq4zY8YM4uPj6dOnT/M9ACGEEEIIIYQQQuxXOIjcQKh4DXpUigSRkabpaLoDZflRpg+l7EhXJA4CEe+MtG2bl19+mYkTJ+Jw/F5OQkICl1xyCddffz3JycnEx8dzzTXXMHToUI466igA/vSnP9GnTx8uvPBCHnroIfLy8rj99tu56qqrpPNRCCGEEEIIIYRoQX4PIlejRyVLENlSaBqa7kRZ1TM7HFFoWovoXRNtVMTDyJkzZ7J161YuvvjiPS77z3/+g67rjB8/nkAgwAknnMDTTz9dc7lhGHz66adcccUVDB06lJiYGCZOnMjUqVOb8yEIIYQQQgghhBBiH5RSu3REJqM7YyJdktjVboGkAodHAknRZFrMNO1Iquu0HyGEEEIIIYQQQtRfsDSHUOFydHdSswaRTTNNuw1ToOwgmu5Ec3jQdCPSFYkWpk1N0xZCCCGEEEIIIUTbY1bmYhavRnfGSUdkS6eBprtQdii8h6RtRboi0QYdcBhpWRbLli2jpKSkMeoRQgghhBBCCCFEG2H5iwkVrgTNge5OiHQ5oi400AwXyjZRZhXKNiNdkWhj6h1GXnvttUybNg0IB5EjR47ksMMOo1OnTnz77beNXZ8QQgghhBBCCCFaITtYQbBwBbbpx/C0i3Q5op40w4myreoOSQkkReOpdxj57rvvcuihhwLwySefkJOTw5o1a7juuuu47bbbGr1AIYQQQgghhBBCtC7KDBAsWontL8GIyYh0ObVSVhA7VNVsJ2UFI/2Q600znChloUJVKDvUbPd77LHHcu2119b8Oysri0cfffSAjtkYx9if6dOnk5iY2KT30dQ2b96MpmksW7asye6j3tO0CwsLSU9PB+Dzzz/nrLPOomfPnlx88cU89thjjV6gEEIIIYQQQgghWg9lmwSL12BV/IYR2wFN0yJd0h6UFSSQ/yN2qLLZ7lN3xuBOG4xmuOp0/fLycu6cfDcffvQJBQU7GDTwUP7z74c4fMjgmusopZg85R5efGk6Xm8pw4cdxVNPPEqPHt0BCAQCXHr5VXz8yWekp6Xx5BP/YfTxo2pu/69HHmXrtm08/ugje61D053hzsiQDxzhgLK5LV68mJiYuu03On36dK699lq8Xm+Dj9FQ55xzDieeeGK9bnPssccycODAJg9KW5J6h5FpaWmsWrWKjIwMvvzyS5555hkAqqqqMAyZsiSEEEIIIYQQQhyslFKEvBsxy3IwYjLQ9HrHDs1C2SZ2qBLNcKHpdQsHD+z+gtihSpRt1jmMvPTyq1i5chWvvPwCmRkZvP7Gm/xp7Cms+HkJHTpkAvDwv/7DE089y8vTniM7K4s7J9/NuJNPY8XPS4iKiuKFF19i6dKfmPfdLL78agYX/OUicrfnoGkaOTmbeXHadBb98N1+a9F0R80ekjqeOj2GYDCIy9U4z2379u1bxDH2x+Px4PF4mvx+atOYz3dTq/cy7Ysuuoizzz6bfv36oWkao0ePBmDhwoX07t270QsUQgghhBBCCCFE6xAq20yoZC16VLs6h26RpOkuNEdU05/qGXj6fD7e/+AjHrj/Ho45egTdu3fjrjtvo3u3rjz73AtAOPh97ImnuO3Wf/DnU09mwIB+vPLy8/z2Wy4ffvQJAKvXrOWUk0+ib98+XHnFZezYUUhhYSEAV15zLfffN5X4+Pj91nPRJZdzxlkXMPWeB0lNzyQ+Pp6//e1vBIO/Lz0/9thjufrqq7n22mtp164dJ5xwAgArVqxg3LhxxMbGkpaWxoUXXlhTA0BlZSV/+ctfiI2NJSMjg0ce2bNL849LrL1eL5dffjlpaWlERUXRr18/Pv30U7799lsuuugiSktL0TQNTdOYPHlyrcfYunUrf/7zn4mNjSU+Pp6zzz6b/Pz8mssnT57MwIED+e9//0tWVhYJCQlMmDCB8vLyvT5Pf1ymvb9j/PWvf2XOnDk89thjNfVu3ry5Ts9bbc/3eeedxznnnLNbTaFQiHbt2vHqq68C8OWXXzJixAgSExNJSUnh5JNPZuPGjXt9TE2h3mHk5MmTmTZtGpdddhnz5s3D7XYDYBgGt9xyS6MXKIQQQgghhBBCiJbPrMzFLF6N7oxDd0ZHupxWzTRNLMsiKsq92/kej4d58xcAkJOzmby8fI4/7vdl1wkJCRx5xBB+WLgIgAED+jNv/gJ8Ph9ffT2TjIx02rVrx+tvvEWUO4rTTzu1zjV9M/tb1qxdx6yvP+O1V17g/fffrwn6dnrllVdwuVzMmzePZ599Fq/Xy3HHHcegQYNYsmQJX375Jfn5+Zx99tk1t7npppuYM2cOH330EV9//TXffvstS5cu3Wsdtm0zbtw45s2bx2uvvcaqVat44IEHMAyDYcOG8eijjxIfH09ubi65ubnceOONtR7jz3/+M8XFxcyZM4cZM2awadOmPYK8jRs38uGHH/Lpp5/y6aefMmfOHB544IE6P2f7O8Zjjz3G0KFDufTSS2vq7dSpU52et9qe7/PPP59PPvmEioqKmut89dVXVFVVcfrppwPh8Pf6669nyZIlzJo1C13XOf3007Ftu16P60DUq186FAoxduxYnn32WcaPH7/bZRMnTmzUwoQQQgghhBBCCNE6WP5iQoUrQXOguxMiXU6rFxcXx9CjjuTe+x7kkN69SUtL5X9vvsOCHxbSvVs3APKqu/jS0lJ3u21qaip5eeHLLv7rX1i+fAX9Dh1Cu5QU3nzjVUpKSpg89R6+mfEFd9w5hbfeeY+uXbOZ9vwzNcu/a+NyuZj2wjNER0fTr28fJt/xKzf/8y7uvvvumm37evTowUMPPVRzm3vuuYdBgwZx33331Zz30ksv0alTJ9atW0dmZibTpk3jtdde4/jjjwfCAVvHjh33WsfMmTNZtGgRq1evpmfPngB07dq15vKEhAQ0TauZd1KbWbNmsXz5cnJycujUqRMAr776Kn379mXx4sUcfvjhQDi0nD59OnFxcQBceOGFzJo1i3vvvXevx/6jnceIjY1FWQEuuOD8mmMkJCTgcrmIjo7erd4nn3xyn8/bzsf9x+e7W7duxMTE8MEHH3DhhRcC8MYbb3DqqafWPIY/5nkvvfQS7du3Z9WqVfTr16/Oj+tA1Ksz0ul08ssvvzRVLUIIIYQQQgghhGhl7GAFwcIV2FYAw9Mu0uW0Ga+8/AJKKTpl9cATm8yTTz3DhHPOQtfrPhDI6XTy5OP/YeO6lSxc8B0jhg/jxn/8k2uu+hs/LfuZjz7+lJ+WLOCoIw7n79ft2UG4q0MH9CM6urrjVdMZOvQoKioq2Lp5A0opAAYPHrzbbX7++Wdmz55NbGxszWnnFn8bN25k48aNBINBjjzyyJrbJCcn06tXr73WsWzZMjp27FgTyDXE6tWr6dSpU00QCdCnTx8SExNZvXp1zXlZWVk1IR5ARkYGBQUF9bqvncdQVgBlBchIT9vvMfb3vO30x+fb4XBw9tln8/rrrwPhLsiPPvqI888/v+Y669ev59xzz6Vr167Ex8eTlZUFhJetN5d67yR7wQUXMG3atHq3pQohhBBCCCGEEKJtUWaAYNFKbH8xRmyn/d9A1Fm3bl2ZPesrKisrKSsrJyMjnQnn/YXsrtkApKelAZCfX0BGxu9ddQUFBRx66IBajzn72zmsWrWaF557in/cchvjxp5ATEwMZ515Bk8983w9Kwz3tykzgDL9AHtMq66oqOCUU07hwQcf3OPWGRkZbNiwoZ73SbMOiHE6d58crmlavZczO51OlBVEWX5Qqk7H2N/ztlNt08HPP/98Ro4cSUFBATNmzMDj8TB27Niay0855RS6dOnCCy+8QGZmJrZt069fv932/2xq9Q4jTdPkpZdeYubMmQwePHiPB/7vf/+70YoTQgghhBBCCCFEy6Rsk2DxGqyKXzFiO6Jpde/YE3UXExNDTEwMJSUlfD1jFg/cfzcA2dlZpKen8c3sbxk4MBw+lpWVsXDREi6/7P/2OI7f7+eaSdfz31dewjAMLMuq6WgMhcJ7VO7Lz7+swOfz1YSBPyxaRGxsLJ27ZFUHbXbN8XY67LDDeO+998jKysLh2DOC6tatG06nk4ULF9K5c2cASkpKWLduHSNHjqy1jgEDBrB9+/bdlivvyuVy7fexHHLIIWzbto1t27bVdEeuWrUKr9dLnz599nnb+lPVYa0O7BlC1lbv/p63fRk2bBidOnXirbfe4osvvuCss86qCVWLiopYu3YtL7zwAkcffTQAc+fObdCjOhD1HmCzYsUKDjvsMOLi4li3bh0//fRTzWnZsmVNUKIQQgghhBBCCCFaEqUUIe9GzLIcjJhMNL3evU5iP776eiZffjWDnJzNzJj5DcePOZHevXpy0cTwXoCapvH3a67i3vsf4uNPPmP58hVMvOgyMjMzOO3Pp+xxvHvufYBx405g0KBDARg29Cg++PBjfvllBU898xzDhh21z3qCwSD/d9mVrFq1ms+/+IopU+/lqisuRzcMNN2JUjYoM/xntauuuori4mLOPfdcFi9ezMaNG/nqq6+46KKLsCyL2NhYLrnkEm666Sa++eYbVqxYwV//+ld0fe9x1ciRIznmmGMYP348M2bMICcnhy+++IIvv/wSCC+LrqioYNasWRQWFlJVVbXHMUaPHk3//v05//zzWbp0KYsWLeIvf/kLI0eOZMiQIfv/z6mj8HOiUNhoulHrdbKysli4cCGbN2+msLAQ27b3+7ztz3nnncezzz7LjBkzdluinZSUREpKCs8//zwbNmzgm2++4frrr2+0x1tX9X61mD17dlPUIYQQQgghhBBCiFbCLNtCqGQtelQ7NMMV6XIaTNlBMJvpfuqptLSU2+6YzPbtv5KcnMQZp/+Ze6betdvS4ZtuvI7Kykr+duU1eL2ljBg+lM8/+YCoqKjdjrVixUreee8Dli6eX3PemeNPZ8533zPyuD/Rq2cPXnv1pX3Wc9yoY+nRvRvHHn8CgUCQCeecyV13/jN8oaaFO2NtC2X6wOFB03QyMzOZN28eN998M3/6058IBAJ06dKFsWPH1gSODz/8cM2y5Li4OG644QZKS0v3Wct7773HjTfeyLnnnktlZSXdu3ev2U5w2LBh/O1vf+Occ86hqKiIu+66a4+p35qm8dFHH3HNNddwzDHHoOs6Y8eO5Yknntjn/daHUjbYJqDQdOder3fjjTcyceJE+vTpg8/nIycnh6ysrP0+b/ty/vnnc++999KlSxeGDx9ec76u67z55ptMmjSJfv360atXLx5//HGOPfbYRnjEdaepP/bQ1tGGDRvYuHEjxxxzDB6PB1W97r01KisrIyEhgdLSUuLj4yNdjhBCCCGEEEII0WKZlbkEC35CMzwtfnJ2IKTY7nWQ1aUTUVHumvOVFSSQ/yN2qLLZatGdMbjTBrfK8PaiSy7H6y3lg/fe3PcVVTh41XQnmsOz127Atk6p8NJsZfnRdBdUx2XKCqE7o1vl18BOfr+fnJwcsrOz9wi965qv1bszsqioiLPPPpvZs2ejaRrr16+na9euXHLJJSQlJfHII4/U/5EIIYQQQgghhBCixbP8xYQKV4HmaPFB5L5ohgt32mCU3QxtkTvvU3e06hCqTjTQdNfvHacHaSC5c3K2pjtrgkjxu3rvGXndddfhdDrZunXr7yPdgXPOOadmfb4QQgghhBBCCCHaFjtYQbBwBbblx/C0i3Q5B0wzXOjO6GY7tfkgcict/Nwq20SZVc0a+LYEOydna7oBrXQFcVOrd2fk119/zVdffUXHjh13O79Hjx5s2bKl0QoTQgghhBBCCCFEy6DMAMHiVdj+EozYjvu/gWhTXp72XL1voxlOlBWCnXtIHgRDjsIBbPXkbK3e/X8HjXo/M5WVlbt1RO5UXFyM2+2u5RZCCCGEEEIIIYRorZRtESxeg1XxK0ZMRqudFyGan2Y4UbaFClWFg8k2TFUP79nX5GwRVu8w8uijj+bVV1+t+bemadi2zUMPPcSoUaMatTghhBBCCCGEEEJEjlKKkHcDZlkORnRGq+1ua+DsXtEINMOJQoWDujYaSCployw/yrb2OTm7LWiM76V6v4o89NBDHH/88SxZsoRgMMg//vEPVq5cSXFxMfPmzTvggoQQQgghhBBCCNEymGVbCJWsRY9q1yr3PHQYgLKp8gfwREeDUoAEk81N0x01e0jqRIHuajMdtuHJ2QGUFQxPzm7jqqqqAHA6Gx661juM7NevH+vWrePJJ58kLi6OiooKzjjjDK666ioyMjIaXIgQQgghhBBCCCFaDrMyj1DxKnRnHLpzz+3aWgOH00N0XBQ7CktRmpOYmBhQCs02ATvS5R10lLLBH0Az3GhG2wgkbbN6crZmgBbY53WVbaJbOprR+r72lFJUVVVRUFBAYmIihtHwpeiakl5lysrKSEhIoLS0lPj4+EiXI4QQQgghhBBCRJTlLyGYvxRlmxjR7SNdToNoRhRWfA8emL2Boh07GNPZQ5TDID7KQUKUA2wT6ZKMAGWjlI2mO8JLmltxIKlsC2UH0dDqNLBG2WY4iG3Fe0omJiaSnp5ea5Bc13yt3p2Rv/zyS63na5pGVFQUnTt3lkE2QgghhBBCCCFEK2UHKwgWLse2/DhiWu8KyIA7g3/N3sjdMzYAMH1FGe08OhoaVw3vwkWD0nD6tke4yoOTskNYVb9hRKfiTOyO7oqJdEn1ZgW8hApXoVAY7kTq0mlrVuXjatcPR3Rqk9fXFJxO5wF1RO5U7zBy4MCBNennzqbKXdNQp9PJOeecw3PPPUdUVNQBFyiEEEIIIYQQQojmocwAweJV2P4SjNiOkS6n4TQHbk88T8xdWHNWlanYWm4BcN+crVw1sifzNm+hb4pOsqfe833FAXGhnOlYlb+hlQZwtuuD4WkX6aLqzA5VEihfj1Pz1SuwNwwTt9uJ4yDPy+r93fbBBx/Qo0cPnn/+eX7++Wd+/vlnnn/+eXr16sUbb7zBtGnT+Oabb7j99tubol4hhBBCCCGEEEI0AWVbBIvXYFX8ihGT0ar389MMB15fEK+v9unNXl+I/PIg18+uosOTuRzyfB7nf1zMvxaWM3uLnxJ/69vTr7XRdAMjtiN2qIJA/lLM8u2tYuq5soIEi1Zj+YowotMiXU6rVO/OyHvvvZfHHnuME044oea8/v3707FjR+644w4WLVpETEwMN9xwA//6178atVghhBBCCCGEEEI0PqUUIe8GQmWbcESno+n1jgtaFGWZJHpcJHqctQaSiR4nqbEuonQTgM2lFptLfby/1ldzna6JBoeluzgszclh6S4GpjlJcDewg1JzoBkOlGWCMht2jDZI0zQcMelY/mICBctwmn6ciV3R6rD/YiQoZRMsWYdVvg1HbIcWW2dLV+9Xl+XLl9OlS5c9zu/SpQvLly8Hwku5c3NzD7w6IYQQQgghhBBCNDmzbAuhkrUYUe3RjNY/B8KyQizbWsTVw7O4Z+b6PS6fNCILK1DO9+cnU+K3WZYfZGleiKX5IZbmBdlcarHJa7HJ6+PdNb8HlN2T9gwo41x7D6Q0I4qAOwO3Jx6vL0iix0XAV4Y7kIuy/E3y2FsjIyo5vFdp0UqU6cOV3AvNcEW6rD2ESnMwvRsxotNafWAfSfV+5nr37s0DDzzA888/j8sV/sIIhUI88MAD9O7dG4Bff/2VtDRpVRVCCCGEEEIIIVo6szKPUPFqdGccujM60uUcMKUU1870Mje3jDlXDkPT4Im5m/H6QiR6nEwakcXNo7phlK1HAUlROqO6RDGqy+/7+BX5LJblh6oDynBQubXMYkOJxYYSH2+vDgeUGtAz2cGg6nByULqTgalOYl16zTTvf83eyBNzF/7h/nuE718CyRq6KxZNd2B6N6CsAK6UQ9CdLWewjVnxG6HiNejuRDTHwb3n44HSVD0X5M+fP59TTz0VXdcZMGAAEO6WtCyLTz/9lKOOOor//ve/5OXlcdNNN+33eL/++is333wzX3zxBVVVVXTv3p2XX36ZIUOGAOEXkbvuuosXXngBr9fL8OHDeeaZZ+jRo0fNMYqLi7nmmmv45JNP0HWd8ePH89hjjxEbG1unx1TX0eNCCCGEEEIIIURbYvlLCOYvRdkmRnT7SJfTKKbOLeP+BeVowCfndODo3tm4PfGU+oIkeFwEfKW4A3n1DgILqyx++kNAub16IM6uNKB3ioOXJgzm83XF3D1jz87MO8f04IZhabiqchr4KNsuZZtYlbkYUSk42/XFiEqKdElY/uLw94lSGJ6UBh/HrNiOO/3wVj2lfl/qmq/VO4wEKC8v5/XXX2fdunUA9OrVi/POO4+4uLh6HaekpIRBgwYxatQorrjiCtq3b8/69evp1q0b3bp1A+DBBx/k/vvv55VXXiE7O5s77riD5cuXs2rVqppp3ePGjSM3N5fnnnuOUCjERRddxOGHH84bb7xRpzokjBRCCCGEEEIIcbCxQ5UE8pdiB8vaTDjyzNIKrp9VCsATYxL5v4HVnXVNtGdjQeXOgDJYs8T7twqbdjEucm47nk53z9zrnpV5d41BFa+UPSRroZSNVZWPbrhxtusb0a/Pxvw+kTAyrEFhZGO55ZZbmDdvHt9//32tlyulyMzM5IYbbuDGG28EoLS0lLS0NKZPn86ECRNYvXo1ffr0YfHixTXdlF9++SUnnngi27dvJzMzc791SBgphBBCCCGEEOJgoswAgcKfsSpyMdrIII531lQx8ZMSFHDn8DhuHRaZ9/e5FRYbyx30yupF53tm7fV6+XeNJiGYgzJlqfbeWL5CsE0cyb1xJmQ1+9epsoIEdvyCWb4dR1zHA75/CSPDGrTb5vr165k9ezYFBQXY9u7j7u+88846H+fjjz/mhBNO4KyzzmLOnDl06NCBK6+8kksvvRSAnJwc8vLyGD16dM1tEhISOPLII1mwYAETJkxgwYIFJCYm1gSRAKNHj0bXdRYuXMjpp5/ekIcohBBCCCGEEEK0Scq2CBavwar4FSOmbQSRszb7ueSzcBB5+aAYbhlav5WbjSkj1iAjzkCLde9zmneCx4XySVfkvhiedtjBMkKFK1CmH1dSDzTD2Sz3LZOzm069w8gXXniBK664gnbt2pGeno6maTWXaZpWrzBy06ZNPPPMM1x//fX885//ZPHixUyaNAmXy8XEiRPJy8sD2GMYTlpaWs1leXl5pKam7v6gHA6Sk5NrrvNHgUCAQCBQ8++ysrI61yyEEEIIIYQQQrRWSilC3g2EyjbhiE5vExOBl+QGOefDYkI2nNnbw7+PT9gtq4gIZRLwlTFpRBZTa9kz8urhWQR8pbhkifZ+6a540J2Y3rVg+nG2OwTd4Wny+5XJ2U2n3s/mPffcw7333svNN998wHdu2zZDhgzhvvvuA2DQoEGsWLGCZ599lokTJx7w8ffm/vvvZ8qUKU12fCGEEEIIIYQQoiUyy7cSKlmLEdUOzXBHupwDtq44xOnvFVEZUhzXxc2L45LQIx1EVnMHcrl5VHj47uO7TPO+engW14zI5q0lv3DhIUaEq2wddIcHLTqTUMVWlOXH1a4vujuhye5PJmc3rXr3mJaUlHDWWWc1yp1nZGTQp0+f3c475JBD2Lp1KwDp6ekA5Ofn73ad/Pz8msvS09MpKCjY7XLTNCkuLq65zh/deuutlJaW1py2bdvWKI9HCCGEEEIIIUTLZFUVECrbglWZj+X3Ypt+IjhCISLMyjxCRavQnXHozphIl3PAfi23OPmdIgp9NoelO3nztGTcjpYRRAIoy49Rtp4bhqWRd9cY8u8aTd5dY5jQP4WRT8/nb5/lMWuz7BdZV5rhxBHbEctfRCD/R6zK/P3fqAEsfzGholVougvdFbnl/m1ZvTsjzzrrLL7++mv+9re/HfCdDx8+nLVr1+523rp16+jSpQsA2dnZpKenM2vWLAYOHAiEl1QvXLiQK664AoChQ4fi9Xr58ccfGTx4MADffPMNtm1z5JFH1nq/brcbt7v1fwIkhBBCCCGEEGL/rMp8AjuWoUwfSoVDDV13gcON5oxFd8WFO68MN5ojCs2IarZ96RqbUjbKCoAVRFlBlBVA2UHsYCV2ZR6gN2lHWXMp9tmc+m4h28oseiQ5+HB8CnGulrenn7L8uKpyUD4HCYYD5TPpaoQ4PNVmTQFc+Ekxcy9IpWuSLAOuC03TccR2wKoqILDjJ5zWITjiOjfasnw7VEmwcCW2FWizQ2Zagnp/tXfv3p077riDH374gf79++N07v4CPWnSpDof67rrrmPYsGHcd999nH322SxatIjnn3+e559/HgjvQXnttddyzz330KNHD7Kzs7njjjvIzMzktNNOA8KdlGPHjuXSSy/l2WefJRQKcfXVVzNhwoQ6TdIWQgghhBBCCNF2Wf5igoUrQCkccZ0BULZZHdKFUFUFWBXbQdmg6Wi6E013hUNJVzy6KyYcTjqiwmGlEYWmR25pbThsDIIV+EPYWIUyK1CmP3y5baLsXQan6A40IwrDkxKx2htLVchm/PtFrCo0yYjV+eSsFNpHt/DlzspEmeH9ITVN4/ExiawuCrEkN8RZHxbx7fntW2SY2lIZ0anYgVKCO35GmX6cid0P+PtSWUGCRauxfEU44jo2UqWiNpqqZ196dnb23g+maWzatKleBXz66afceuutrF+/nuzsbK6//vqaadoQ3lz3rrvu4vnnn8fr9TJixAiefvppevbsWXOd4uJirr76aj755BN0XWf8+PE8/vjjxMbG1qmGuo4eF0IIIYQQQgjRetjBcgL5P2EHy3DE7r9ZRSkFdhBlhWpCPmwTNAAdzXCFT44YdFccmjMa3YiCmo5K9wF3aO0RNtrhwNEO+VCh8n2HjboTTXdCzZ+OyA9yaWQhS3HOh0V8sSlAoltj5rnt6du+dXax/lZhMfzVAvIqbU7tEcX//pzcYva7bC3sUCW2vwhHfDau5N5ojoatglXKJli0CrNkPUZshyYbWGNWbMedfnib7bqsa75W7zCyLZIwUgghhBBCNAal7HBAoKzqoMAKd8PY4W4Yw9NOJnIK0Uxs00ewYBlWVQFGbMcDDwltKxz+1YSEIVBW+ELdUedl37+Hjb93Nf4eNlaEl5LvDBuVCTvfsh8kYeO+KKW47Asvr62sIsoBn53VjmEdW/cWbD/8GuCEtwoJWnDH8Dj+OUwyifpSVhCrMhcjJiM82KYB+zwGvRsJFa7A8LRv0oE1EkaGNfg3oWAwSE5ODt26dcPhkF+ohBBCCCFE26Fs6/cgwLb2/NM2wyGjFUKZAZQdDidQJth2OIxUJsq2QVkoQEPDiM3EldQT3S1vNoVoSsoKEixciVmVjyOmQ6MEdppuhJeB1hJU1Cz7toKo0N6XfaM7UKYPrFB4ifiuYaNmhLsudSeaI/qgDBv357Y5Zby2sgpDg9dPTW71QSTAUR3cPD4mkb996eXueeX0a+/k1B6eSJfVqmiGCyO2I1blbwTyA7ja9cXwtKvz7WVydvOrd4pYVVXFNddcwyuvvAKEB8507dqVa665hg4dOnDLLbc0epFCCCGEEEIcCKVsVLA8HCLu2rmorOrlmOGlkOz80zZBVYeKtlUdLtqgab8HBxAODzQDdKP67zoYLjRND5+v6dXnaygrhFXxK4GAF2dST4y4juHrCyEalbLN8L5v5VtxxHZslv0dNd0R7nr+w4TqXZd926EqQIVDRocHXY+XsLEe/rOonP8srgDg2bGJnNit7QR2E/vHsCw/xLM/VXLJZyXMucBBn3atc+l5pGi6EQ4kq/IJ5C/FldInvNx6P99fMjk7MuodRt566638/PPPfPvtt4wdO7bm/NGjRzN58mQJI4UQQgghRItimz5CxeuwKn79vQtpt1BRA706VKwOFjVNDy+D3CVsPNDgUDOcOOI6YflLCBQsw+EvwpnUE/0P4YUQouGUsgmVrMcsy8GIyYj4tgiapoX3kzTcQN1mGog9vbaikn/OKQPg3pHxXNCv7b1uPjQqgVWFIb7bFuSsD4r4/oJUkj3ygVV9aJqGIyYdy19MoOAnnKYPZ0LXvX4gIZOzI6fer8wffvghb731FkcdddRuCXPfvn3ZuHFjoxYnhBBCCCHEgbCqdhAsXoPlL8ThSQuHAhHuQjKiklDOaEKlW7ADXpxJvcKhiXRHCXFAlFKESnMIlaxH97SvDgBFa/f5Rh9/+9ILwLWHx3L9EW2ze81paLx+ajLD/7uDTV6LiZ8W88H4FBy6/GyoLyMqGTtYQbBoFcr040ruhWa4druOTM6OrHrH7Dt27CA1NXWP8ysrK+UXKCGEEEII0SIo2yLo3Uig4EfsYDmO2E7hIRIt5PdVzXDjiOuEskIE8n8kWLQS2/RFuiwhWjWrYjuholXo7gR0R9tZwnswm789wAUfl2ApOL+vh3tHtu39dttFG7x9WjIeh8bMzQHu+K4s0iW1WrorFoenPaZ3A4EdP2OHKmsuU8omWLIOq3wbjthM2TIlAur9jA8ZMoTPPvus5t87f6F78cUXGTp0aONVJoQQQgghRAPYoSqChb8QLFyBZkThiEmP/BsNzRHeFF/7fWGSpmkYnnboUSmYJesJ5C3GqsyPYJFCtF5mZR7BopVojmjZ962NWLkjxPj3i/CZinFd3TxzQhJ6C/lAqSkdmubi+XGJADy6uIL/raqKbEGtmOaIwojtgFXxG4H8pVj+YgBCpTmY3o0Y0WkR38rhYFXvZ/2+++5j3LhxrFq1CtM0eeyxx1i1ahXz589nzpw5TVGjEEIIIYQQdWJVFRAsWoMVKMYRnb7HsqzmphlRBNwZuD3xeH1BEj0uAr4y3IFclOUHQHdEocV1wvYV4s9fgjOxO86E7IjXLkRrYfmLCRWuAKVheJIiXY5oBFtKTU55txBvQHFUpovXTk3GabT9IHKnM3tH80tBiIcXVnDlVyX0SnZwWLr8TGgITXeEA8mqfIL5SzHiOhHybpDJ2RFW74+IR4wYwbJlyzBNk/79+/P111+TmprKggULGDx4cFPUKIQQQgghxD4p2yJYsoFA/hJUqDK8LLsFBJFWfA/+NT+f9CkzSJ8yk/QpM3hkfj5WfA804/c3QZqmY0SnorviCRWtIpD/I5avKILVC9E62IEygjuWY5t+jOj2kS5HNIIdVRanvFNEboVNn3YO3jsjhWjnwbeM9q4R8Yzt6sZvwtkfFpNfaUW6pFZL03QcMRnh5dlFK2VydgugKVUzRvCgVVZWRkJCAqWlpcTHt+09KIQQQggh2ho7VEmoaC2hiq0Y7qQW8wYjGJ3Nv+bnc/eM9XtcdueYHtwwLA1XVc4elynbwqrKRzMcOBK640zIkmVkQtTCDlURLFiG5S/EiOnQYvaEFQ1XHrQZ+1YhS/NCdIo3+Oa89nSMq30S8sGgNGBzzGs7WFdsMqyDiy/OaYfrIOoQbQrKNiP6M9Ws2I47/fA2O727rvlavT9eWLp0KcuXL6/590cffcRpp53GP//5T4LBYMOqFUIIIYQQogGsynwCeUsIlW/FEZ3RIoJI01ZsKwdnVDxPzN1c63Uen7sZtyd+tz0kd9J0I7yhvuEhVLicQMFSLL+3aYsWopUJT8JdhVmVjxGTKUFkGxC0FBM+LGZpXogUj84nZ6Yc1EEkQIJb553Tk4l3acz/NcgNs7yRLqnVkw/3WoZ6h5GXX34569atA2DTpk2cc845REdH88477/CPf/yj0QsUQgghhBDij5RtEixZTyD/R5TpwxHXCc1w7v0GtQyQORB+U7GmKMRnG3w8saSCa2d6+fO7hfR7IY+k//zGGR+WkVsewOsL1Xp7ry9EqS+IZuy9Ht0VF97nqjKfQN4iQqWbUbYs0xNC2SbBotVYFdtwxHaI/IAqccBspbjk8xK+2RIgxqnxwfgUeqXs4zX9INIz2cn0k5PRgBd/ruLFZZX7vY0QLV29fxtbt24dAwcOBOCdd95h5MiRvPHGG8ybN48JEybw6KOPNnKJQgghhBBC/M4OVhAqXotZsQ3dnYzuit3rdesyQGZvygI2m7wmm7wWG70mOV6TjSXhf/9abrGvvY5KqgKkxrpI9DhrDSQTPU4SPC6Uz9xnDZruwBHbATtQSmDHz9i+YpzJPVpEB6gQkaCUTbB4HWbpJoyYDOlyagOUUtwwq5R31/hw6vDmn5M5PEOGtexqXLcophwdz53fl3HdLC+92zkY0dEd6bKEaLB6v3IrpbBtG4CZM2dy8sknA9CpUycKCwsbtzohhBBCCCF2YVbmESpegx3whpdm7iOIqBkgM3sjT8xdiNcXItHjZNKILG4e1QO9dB07KqrY5LXYVGKyyWuysTp83OQ12VFl77OWOJdG10QHXRMNuiY66JbkqPl3hzgDM1DOpBFZTK1lz8hrRmQR8JXhUvsOI3fS3QlojmjMim3YQS/OpJ4YsZnSESYOKkopQt5NmN716NGpER9SJRrHgz+U8+xPlWjACycmMTpbJhzX5sYjY/m5IMR7a32c/1Excy9sT6d4CeNF61Tvr9whQ4Zwzz33MHr0aObMmcMzzzwDQE5ODmlpaY1eoBBCCCGEEMoKESrNIeRdj6Y5MGI77XePuIA7g3/N3rjbABmvL8TUGeuxFRzRKYVTX960z2O08+i1ho1dEx20j9b3WYM7kMvNo3oA4T0id4ahVw/P4poR2VSWrMNVj1WImuHEEdcJy1dEoGApDl8RzqQe6M7ouh9EiFbMKt9GqHgNujsJ3eGJdDmiEby4rJIpc8sB+NfxCZxziLye7Y2maTw3NpH1xSa/7AhxzofFzDq3PR6n7JcqWp96h5GPPvoo559/Ph9++CG33XYb3bt3B+Ddd99l2LBhjV6gEEIIIYQ4uNnBcoLFa7EqtqNHpaA7Y/Z/I82B2xPPE3MX1nrxk/M2s+2O0bSLceHWLbomGnRLrA4bk34PHBPcDe88VJYfo2w9NwzL4J/H96DUFyTe4+Lb9Ts45qn5pLiCfH52/SejGp4UlOknVJaDHfDiTO6JEZ0uAzxEm2ZW5hEsWonmjN7n1gyi9fhgrY+/z/QCcMvQOK48TP5f9yfGpfP26ckM/+8OfsoPceVXJbx0UpK8/otWR1NK7Wu7mzrz+/0YhoHT2fo2ma3r6HEhhBBCCNF8lFJYlbnhZdnB8nrtD6c5ovC6skmfMnOv18m9czSeqk24tUBjlbyvgtAMB8oyWVvo45jXdlAWVPy1fzRPn5DYoDeSSilsXyHKDuJI6IYzsSu6Q5Y3irbH8hURzF+KQmF42kW6HNFQu7wOztlSyanvFhK04JIB0Tzxp4a9Dh6svtsa4MS3C7EU3DcynuuOkH2EWwuzYjvu9MNxxGREupQmUdd8rd4f9W7bto3t27fX/HvRokVce+21vPrqq60yiBRCCCGEEC2PskKEStYRyF+Ksk2M2I71GlRhmyHiopwkemr//TTR4yQpOtwV2SyUiTL9oEx6pTh59ZRkdA2mL6/iqaUNm4yqaRpGdHv0qGRM71qC+T9iVe1o5MKFiCw7UEawcAW2HZQgspXSjCiC0dloyX3xurIhqS/B6Gy6psTy5x5RPDZGgsj6Oqazm4eOSwDg9u/KmJGz74FsQrQ09Q4jzzvvPGbPng1AXl4eY8aMYdGiRdx2221MnTq10QsUQgghhBAHFztQRmDHT4SKV6G7EzA87er1RtVWimu+KuTrtYVcPTyr1utMqh4gQx0HyDS2E7pGcd/IcMfAzbNLmXkAbyR1hwcjthNWoJRA/mKCxetQ1p4TvIVobexQFcHC5djBUozo9EiXIxqgZpDY/HzSp8wgfcpMMqbOYNE2L3OvHsarp2Vi6BJENsQVg2KY2D8aW8FfPilmY0lkfp4J0RD1DiNXrFjBEUccAcDbb79Nv379mD9/Pq+//jrTp09v7PqEEEIIIcRBQimFWfErgbzFWJV5GDEd6rY/5C5MW/F/n5cw7Zcq/vn5am46tit3julR0yGZ6HFy55ge3DyqG+5AblM8jDqbNCSWv/QLv5G84JNi1hU3PEDUNB1HTDqaM45Q8UoC+T9i+YsbsVohmpcyAwSLVmBW7cCIyZTOuVYq4M7ggepBYl5f+DXO6wtxz8z1PP59DkRnRrjC1kvTNB4bncgRGU68AcVZHxRRHrQjXZYQdVLvMDIUCuF2uwGYOXMmp556KgC9e/cmNzeyv9AJIYQQQojWSVlBQsVrwsuylY2jnsuyAYKW4sJPivnfKh+GBjcf4cRdsYEbhqWRd9cY8u8aTd5dY7hhWCpG2XqUFdllbZqm8fiYRIZ2cFEaUJz5fjEl/gN7I6k7YzBiOmD5iwjkLSbo3YiypVtGtC7KNgkWr8Iq344jNhNNa/ggKRFBNYPENtd68eNzN+P2xINW77m6oprbofG/01JIj9FZXWRy8Wcl2I0zFkSIJlXvV/W+ffvy7LPP8v333zNjxgzGjh0LwG+//UZKSkqjFyiEEEIIIdo2O1BKoOAnQsVr0KOSMTz1/53SbyomfFjEh+v8uAz435+TOeeQaJTlx1WVgypeSUIw/KeranPEg8id3A6NN/+cTKd4g/UlJhd+XIxpH9gbSU134IjJQDPcBAt/IVCwDDtQ2kgVC9G0lLIJFq/DLN0c7ois54cSouXQDAdeX7CmI/KPvL4Qpb4gmiH/xwciM9bgrdNScBnw6QY/980vj3RJQuxXvcPIBx98kOeee45jjz2Wc889l0MPPRSAjz/+uGb5thBCCCGEEPujlMIs3x5ell1VgBHbAd3hqfdxKoI2p79XxBebAkQ54N3TUzilxx+Os8sAmZYmNcbg3dNTiHZqzNoS4ObZjRMc6q54HDEdsKqXvptlW1FKlvCJlkspRci7kVDJOvToNDTDFemSxAGoyyCxBI8LZbW81+XW5ohMF0+MSQTg3vnlfLTOF9mChNiPeoeRxx57LIWFhRQWFvLSSy/VnH/ZZZfx7LPPNmpxQgghhBCibQrvB7eaQMFSFOCI7dCgDqjSgM0p7xTx7dYAsU6Nj89sx5jsqMYvuIkNSHXy0olJADy9tJKXfm7YhO0/0nQHjrhOKDQCBT8R3LEc25Q3qaJlMsu3Eipeg+FJQXe0vu9j8bvyoM25Hxa06EFibc1f+sdw5WHhfZYv+byElTtkkJlouRq0+YZhGCQlJe12XlZWFqmpqY1SlBBCCCGEaLssfwmBgp8wvWvRo9phRCU36DhFPosT3yrkh9+CJLo1Pj27HUd3cjdytc3nzz093DUiDoC/z/Ty/bZAox3biErCiE4lVLaJYN6PWL7CRju2EI3BrMwlVLQS3Rlb78FVomVZVxzimNd28NF6P3d+tZobW/AgsbbmgWMTGNnZRWUoPNCm2Cfd8KJl0pSq/+6m7777Lm+//TZbt24lGAzudtnSpUsbrbjmUlZWRkJCAqWlpcTHx0e6HCGEEEKINkkpG6t8O6Hitdh2AMOThqYbDTpWXoXFye8UsrLQpJ1H59OzUjg0rfUv6VRKMfHTEt5Z4yPFozP3gvZkJTbefmpK2VhV+Wi6gSOxJ874Lg3+PxCisVi+QoL5P6GgQXvGipbj0w0+LvmshLKgIjNW540/p3BUp3gC7gzcnnhKfUESPC4CvlLcgbwWs39vW1JYZTHitR1sKbU4voubD89MwaHLNPqWwqzYjjv9cBwxGZEupUnUNV+rd2fk448/zkUXXURaWho//fQTRxxxBCkpKWzatIlx48YdUNFCCCGEEKJtCi/LXkVgxzKUpuOIyWxwCLa93OJPb4aDyPQYna8ntGsTQSSEJ2w/OzaRw9KcFPlszvygiPJg43W2aJoeHm6juwnu+IVg4XLsUFWjHV+I+rIDpQQLV2DbIQkiWzFbKe6eW8ZZHxRTFlQM7+hi/l9SOTLT1eIHibU17aIN3jnt932Ib5tTFumShNhDvcPIp59+mueff54nnngCl8vFP/7xD2bMmMGkSZMoLZUpfUIIIYQQYnd2sKJ6Wfb66mXZSfu/0V7keE1G/28H60tMOsUbzDy3PYe0q304QmsV7dR5+/QU0mN0VhaaXPxZCXb9FzPtk+5OwBGTTqhsM4H8JVhVOxr1+ELUhR2qDAeRwXKM6LRIlyMayOu3OfP9Iu5bEJ7ifMVhMXxxdjvSYv7wgVMLHiTW1vRPdfL8uPDP2seXVPDGyuoPnTQHmiMKNJlgLiKr3mHk1q1bGTZsGAAej4fy8vALzoUXXsj//ve/xq1OCCGEEEK0apa/mEDBUqyqfIyYjgc0lGJtUYjR/wsvPeuWaDDz3HZ0S2qbb6g6xBm8fXoKbgM+3eBn8veN39miGS4csR3DYXH+EoLejSjbavT7EaI24W7plVi+QoyYDDRNlpG2Rit3hBjx3wK+2BQgygEvjkvi38cn4jTk/zPSxvfycPNR4X2IH/spRJGjC1pyX7yubLTkvgSjs9EMGRQlIqPeYWR6ejrFxcUAdO7cmR9++AGAnJwcGrD9pBBCtGmVQZOgaVNQESBo2lQG5ZNgIcTBw6zMI5j/U7jrKbbjAe1NuLwgxJg3C/mtwuaQFAczzm1P5/i2GUTudHiGi2fHhjtbHl5Ywf9WNf5y6vCy7XQ0h4dg4XKChb9ghxpnkrcQe6OsEMHiVVjlv1YHkQ2aqyoi7L21Pka+voONXotO8QbfnNee8/tFR7ossYs7R8Rx2eAUZlw+jGcX7yB9ygzSp8wkfcoMHpmfjxXfQwJJERH1/g3uuOOO4+OPP2bQoEFcdNFFXHfddbz77rssWbKEM844oylqFEKIVskfsnho9kaemJuD1xci0eNk0ohsbjmuO1FOGRYghGi7lFKY5VsJFa0C9APepH1JbpBT3y2kxK84NNXJJ2el0D764HgdndAnmlWFIR5eWMEVX5bQLdHBEZmNvz+m7opHM6IIlW7BDpTjSumNEZ3a6PcjhFI2wZJ1mGWbMWIy0fS2/aFCW2Tairu+L+PfiyoAGNXZzaunJNHuIHldbk10TeP+k3rzn7k53DNzfc35Xl+IqTPC/75hWAauqpxIlSgOUvX+COr555/ntttuA+Cqq67ipZde4pBDDmHq1Kk888wz9TrW5MmT0TRtt1Pv3r1rLvf7/Vx11VWkpKQQGxvL+PHjyc/P3+0YW7du5aSTTiI6OprU1FRuuukmTFM6j4QQkVUZNLn/mw3cPWMdXl8I2PlDfx0PfLNBOiSFEG2Wsi1CJesJ7vgFzYjCiG5/QMebtz3AiW+Hg8gjMpx8eU67gyaI3Gny0fGc3D2KgAXnfFjE9vKmWUqtGS4ccZ1QZlV42XbJBpQtP69E41FKEfJuJFSyHt2Thma0rf1eDwZFPos/v1tUE0Red3gsH5+VIkFkS6U5iIlO4Ml5m2u9+PG5m3F74mUPSdHs6v0Vp+s6uv57hjlhwgQmTJjQ4AL69u3LzJkzfy/I8XtJ1113HZ999hnvvPMOCQkJXH311ZxxxhnMmzcPAMuyOOmkk0hPT2f+/Pnk5ubyl7/8BafTyX333dfgmoQQ4kDYtsKh6zwxt/ZPGB+fm8M/j+/RzFUJIUTTCy+9XEOodCNGVAq6M+aAjvfNZj9nfVhMVUhxTCcX756RQpzr4FvOqWsaL52UxKjXd7Cy0OScD4qYcW47op2N/1xomoYRnYodLCdYtBwVKMOZ0uuA/y/FwUEpBcoC20IpC5QVDrSrz7ND5YSKV2N4Ug5o/1gRGcvyg0z4qJgtpRbRTo1nxyZyVm9Zlt2SaYYDry9Y0xzxR15fiFJfkATDgZKmLtGMGhR/l5SUMG3aNFavXg1Anz59uOiii0hOTq5/AQ4H6enpe5xfWlrKtGnTeOONNzjuuOMAePnllznkkEP44YcfOOqoo/j6669ZtWoVM2fOJC0tjYEDB3L33Xdz8803M3nyZFyuxl/CIoQQuyqsDLA8t5zluWX8klvOitwyFPDmhYP3/UPfH6J9rLt5ixVCiCZkmz5Chaswy7fiiE4LT+s8AJ9v9HHeR8UELBiT5ebN05KbJHxrLeJcOu+ensLRr+1gaX6Iy7/08urJSU029EN3xYWXbZdvxQ6V40rujREj047bup1h4q4B4s5QMfx3s+Y8ZZtgh1BWCGUFwn/f9XbY1ceyQdmgAcpGdyVIuN0K/W9lFVd+XYLfhK6JBm+dlkK/9tLZ2tIpyyTR4yLR46z1vUmix0lclAu7KoSMHBLNqd5h5Hfffcepp55KfHw8Q4YMAeDxxx9n6tSpfPLJJxxzzDH1Ot769evJzMwkKiqKoUOHcv/999O5c2d+/PFHQqEQo0ePrrlu79696dy5MwsWLOCoo45iwYIF9O/fn7S0338xOuGEE7jiiitYuXIlgwYNqvU+A4EAgUCg5t9lZY0/nVAI0bb4Qhar88tZnlvOL7llrMgrY3luOXnlgT2u2y7GRWrsvn/oJ0TJL29CiLbDDpQRLFqJWZWPI7bDAe8B995aH3/9tBjThlO6R/HfU5JxO+RtUlaig//9OZlxbxfy7hoffds5uGVofJPdn2Y4ccR1wvbtIJD/I46kHjgTsmWPv1ZImQFsswpl+sA2w2GiFULZIbBCKDsIVjAcNir7D2GiBcpGwR/CCg00HU0zQNPDf9cdoBngcKJpRngwjaaDZsi07FYqZClu+baUp5eGB1uN7ermpZOSSYo6eD8calWUScBXxqQRWTV7RO7q6uFZfLl2B/+ZlccjxyXSP1Xeo4jmUe/fJK666irOPvtsnnnmGQwjvC+EZVlceeWVXHXVVSxfvrzOxzryyCOZPn06vXr1Ijc3lylTpnD00UezYsUK8vLycLlcJCYm7nabtLQ08vLyAMjLy9stiNx5+c7L9ub+++9nypQpda5TCNF6VQZNnLqO1x8iMcpJyLaJce39pc+2FTnFVfySGw4bw6FjGesLK7FV7bfpmhJN//Q4+mXE0z89nv4ZcSgFk0ZkM3XGuj2uf82ILEK2jav+2/YKIUSLY/kKCRauxA6W4ojteMBTcV9fUcVlX5ZgKzj7EA8vjkvCaUiIsdOITm4eH5PIlV95mTK3nN4pTk7r6Wmy+/t92XYFoaKV4WXbyb3QXbFNdp/iwPwePFZhByuw/cWoUCW26Qdl8nukqO0SIOq7BIvhMFHf+XdNR9NlP8CDUX6lxQUfFzN3exCAW4fGcfvwOHQJllsVdyCXm0eFt4h6fO7mXQZrZnHdMV0Z9fR8luUGOerVAi4fFMOdw+NJlLBZNLF6h5EbNmzg3XffrQkiAQzD4Prrr+fVV1+t17HGjRtX8/cBAwZw5JFH0qVLF95++208nqb7perWW2/l+uuvr/l3WVkZnTp1arL7E0JExv6mWe+oqF5iXd3luCK3jJX55VQGax8MkBLtpH9GfHXoGEf/jHj6psURF1X7S+ktx3UHwntE7rz/q4dncfXwbGas3cFp/Q9suqwQQkSaWfEbwcIVKNvEiOlwwJ1PLyyrZNIMLwB/7R/Nk39KxNDlTe8fXTQghpWFIZ76sZJLPi8hO8Hg0LSm3Z5Id8WiOaIwK7Zhh8pwJvc+4Cnp4sApK4gdqqwOHiuxA8WoYEV18GiFg0TDjebwYLjipatV1Nni3CATPizitwqbOJfGiycmcWqPpnuPLpqOsvwYZeu5YVgG/zy+R3iPSI+LgK8Ud+UG3jwlmlu+DfHhOj/PLK3k3TU+7j4mngv7RUvwLJpMvX8aHXbYYaxevZpevXrtdv7q1as59NBDD6iYxMREevbsyYYNGxgzZgzBYBCv17tbd2R+fn7NHpPp6eksWrRot2PsnLZd2z6UO7ndbtxu2atNiLasMmjy0OyN3L1LZ+LOada2UgztksRJ0xbVelu3Q6dPWiz908PB44CMcPCYHueu1xvtKKfBTaO6hX/o+0MkRDlZU1DByKfns7m4innXjGBQh4QDfqxCCNHclFKESnMwi9eA7sQRs/ffu+rqscXl3PJteOucKw6L4V/HJciboH144NgE1hSazNoS4MwPipl7YXvSYpq2e03THRixnbB9hQTyl2InVi/blonIzSIcPO7S8RgoRgUrsS0/2KHwUmjDXT3FXoJH0XAv/1LJtTO9BC3olezgrdOS6ZUi3+etmbL8uKpyUD5HeFiNz8SlTBTQJcHB//6cwjeb/Vw/q5S1xSZ/+9LLiz9X8p/jExmSIbM4ROOr90+oSZMm8fe//50NGzZw1FFHAfDDDz/w1FNP8cADD/DLL7/UXHfAgAH1OnZFRQUbN27kwgsvZPDgwTidTmbNmsX48eMBWLt2LVu3bmXo0KEADB06lHvvvZeCggJSU1MBmDFjBvHx8fTp06e+D00I0YY49zHN+sl5m7n5uO60i3ERH+Wo6XIMn+LonhKDw2icpQk7l4TvHFbTLz2ObinRrCmoYPz0xSy+9hhSYuQHvBCi9VC2Sci7gVDJOnRXPLrrwPYsVErxwIJyps4rB+DGI2OZenS87C+3Hw5d47+nJjPytR2sLzGZ8GExX57Trsn31gwv226PHaokVLwKO1iGK7kXuiuuSe/3YKOs0O8dj6HK8FLrYEU4eKxeaq0ZUeHg0RUnwaNoFAFTccMsL9N+qQLg1B5RvDAuiXi3LNltM5S516nZx2VFseivbp5eWsF988tZkhvimNd2MLF/NFOPiad9tGzXIBqPppTayy5otdP1fb8QaZqGUgpN07Cs2pc67nTjjTdyyimn0KVLF3777Tfuuusuli1bxqpVq2jfvj1XXHEFn3/+OdOnTyc+Pp5rrrkGgPnz5wPhvSoHDhxIZmYmDz30EHl5eVx44YX83//9H/fdd1+dH1NZWRkJCQmUlpYSH990m4ALIZpPQUWA9Mlf7/Xy3+76E/Fug+h97B/ZVEqqghz+2PdsKqrihF7t+fSSI2UZohCiVVBmgGDxGsyyHPSodujO6AM7nlLc8V0ZjyyqAOCuEXHcfFScBJH1sL44/GbRG1D8pV80z45NbLbnT9kmVmUuuisOZ3JvjJgM+b9rAGWFfg8dQ5XY/hJUqALb9FV3POpouhvNEYXm8EjwKJrEr+UW531UxKLc8FTlyUfHc+ORsdKhfpDKrbC4fU4pb6zyAZDo1rhzRDyXDozBIe9bDohZsR13+uFtdquTuuZr9f5JlpNTe6dRQ2zfvp1zzz2XoqIi2rdvz4gRI/jhhx9o3749AP/5z3/QdZ3x48cTCAQ44YQTePrpp2tubxgGn376KVdccQVDhw4lJiaGiRMnMnXq1EarUQjR+uSX+4lzO/c5zTrZ48TliMynvEnRLt6feDhDn/ier9buYPLXa7l7bO+I1CKEEHVlhyoJFq3EqvgVIzoDzTiwrm5bKW78ppRnqie0PnBsPH8/XLrr6qtHspP/npLMn98r4tUVVfRp52i25zG8bLsjtr+IQP5SnEk9cCZ0lWXb+6Bss3qYzM49HktQwXKU6Q9PtoZwx6MjCiOqnTyXolnM2x7g/I+Kya+ySXRrTD85mRO6RkW6LBFBGbEG005K5pJDA1w/q5SfC0JcP6uUl36u5D+jExnRSba9Ewem3p2RbZF0RgrRdny0Io9L3/mZF846lB+3e7ln5vo9rnPnmJ7cNKrbPqdqN4fXl27nwjd+AuDDiw7n1L4HvueaEEI0BcvvJVS4AtNXiCM284A7syxbcfXXXqYvDy8FfHxMIpcOjGmMUg9aT/1YwY3flKJr8P4ZKc0eJIQ7+goxYjvgSuqN7pbfqXellMKq2E7IuwEV8u0SPIaHy4SXXEvwKJqXUopnf6rkH7NLMW3o187BW6el0DVJum/F7yxbMe3nSibPLaPEH46PzjnEw70jE+gQJ0u360s6I8Nk8wchRJtQGTC57J2fOX36Ygorg7yyZBu3HNedO8f0JNET/uU+0ePkzjE9ueW47hEPIgHOP6wjV4/IBuAv//uJdTsqIlyREELsyaoqIFiwFCvoxRHXseFBpOZAc0QRUgYXf17C9OVV6Bq8OC5JgshGcOVhMVw8IBpbwV8+KWZN0Z4rA5qS7ozBiOmAVZFLIH8JZsWvSM9DmLItQiXrCRQsQ1kmelQKjrhOOOI6YUSnorviJIgUzaP6dRjNgS+kuPSLEq6fFQ4iz+rt4dvz20sQKfZg6BqXDYrll0vS+L9Do9GAt1b7OHRaPo8sLCdoyWu9qD/pjEQ6I4Vo7RZtLeHCN35ifWElmgY3jOzG3WN74XYYVAZNnLpeM806ZNstIojcKWjajH5uAXNziumbFseCSSOIdbec+oQQB6+dnVzBolWgFEZ0aoOOoxlRBNwZuD3xeH1BYt1Ovl5XyJ1fruaWI1yM7+Vp5MoPXkFLcdLbhczdHqRrosF3F7QnxdP8XSuWrwhlBXAmdsOZ2O2Al/S3Zjv3WQ2V5WBEpaA7JXgXze+Pr8MJHhdzNxVyzYerWLejgvtGxjNpSKzs+SrqZGlekOtmelmUG/7Qq0eSg0eOT2BMtiztrwvpjAyTMBIJI4VorUzL5oHZG5jy9TosW9ExIYpXzh3EqO7tIl1aveSW+Rn8n+/IKw9wzsBM3jj/MPllUAgRUUrZhLybCBWvRnNEY0QlNeg4mhGFFd+DB2Zv5Im5m/H6QiR6nFw9PIt/HNsVV8UGlOVv5OoPbjuqLI5+bQdbSi2O7ezm4zNTcBrN/zPFDlVh+3ZgxGbiSu6N7k5o9hoizQ5WhPdZrfwNIzodzZA91kTz29fr8KQR2azZtJrD0+xIlylaGVsp3lhZxW1zyiioCn/9nNI9iodGJZCVKI0V+yJhZJgs0xZCtEo5RVWMemY+d365FstWnDMwk59vGNnqgkiAjPgo3vnLEBy6xlvLfuPR7zdFuiQhxEFMWSGCRWsIFa1EdyU0OIgECLgzeGD2Ru6esb5moJjXF+Kemev515xNBNxt8xfxSGofbfDu6SnEOjW+3Rrgptml4Qt2WZ7ZHHRnNEZsB6yqfAJ5SzDLtx9Uy7YtX3ioj1WZhxHTQYJIETH7eh1+cl4Oh2Z3iXCFojXSNY0L+sXwy/+lcc3gGAwNPtngZ9DL+dwzrwxf6OB5vRcN06Aw0uv18uKLL3LrrbdSXFwMwNKlS/n1118btTghhPgjpRSvLtnGwH/PYd7mEuLcDl45dyBvnH8YSdGtdxnY8OxkHjm1LwD/+HQ1czYWRrgiIcTByDb9BAuXY3rXonvao7tiG34wzYHbE88TczfXevHjczfj9sQ3Wzh2MOnX3snLJyehAXN+1cixO6Ml98XrykZL7kswOhvNaPrldJruwBHbEaVsAgU/ESxajTIDTX6/kWZW/Eog/0fsUDlG7AHssyranib6UCBkKTaUmHyd4+eZpRXc9I2X8e8Xcdz/StDdcfI6LJpMglvnoeMSWfTXVEZ2duE34d755Qx6OZ+P1vn2/BCqmT8YEy1Xvb8CfvnlF0aPHk1CQgKbN2/m0ksvJTk5mffff5+tW7fy6quvNkWdQghBcVWQK99bzts//wbAiOxkXj13EFnJ0RGurHFcPTyLRVtLeH3pr5zz3x/58bpj6JAge6kJIZqHHSwnWLgSqyoPIzrzgAdqlIZ0AuWBmk6cP/L6QpT6giQYDpRpHtB9iT2d3N3Dkyemc+YRA3hibg5PzltSszxz0ogsbh7VA6NsfbMskzc8KdimD7NkLSrgxZnUAyO6fZPfb3P7fXuDNWiGu80uwRP198c9GxM9LgK+MtyB3Dp/D1aFbHK8Fhu9Jpu8JptKLDZ5TTZ6TbaVWdQ2Q6RfehwFFUF5HRZNrk87J1+c3Y731/m5eXYpW0otJnxUzOgsN/86LoHeqXEH/D0g2pZ6h5HXX389f/3rX3nooYeIi4urOf/EE0/kvPPOa9TihBBip2/WFzLxzZ/4tdSPQ9eYfEIvbh7VHUPf/z5YyrawfDvACobPqPN+jHW8Xh2Ppztj97lnlqZpPHfmAJbnlvNLbhlnvfojs68YitvR/MMHhBAHF8tfTHDHCuxASXhJqX5grzsfrPVx9/wiFl3fm0SPs9Y3wokeJwkeF8onb4CbygWHd+fhuTncM3N9zXleX4ipM8L/vmFYBq6qnGapRXd40GI7YvkKsPMX40johjM+C83RNpYvKytIsGQdoZINGFHJB9ZVLNqUnXs2/mv2Rp6Yu3CfHwp4/XatYeMmr0luxb73dfQ4NLomGnRNdNA10UG3JAe927nJjHfL67BoFpqmMb6Xh7HZbh5eWMF/Fpczc3OACz6v4rurBvGf7zbt93tAHDzqHUYuXryY5557bo/zO3ToQF5eXqMUJYQQOwVMi9u+WMO/54T3UezZPob/nnsYh3dO3O9tlVLYvh2ESnOwKvOBfe1dsjNQ3M/+JjuDx/3ue/XH4yk0hwdHQleccZ33+uYr2uXgvYlDOPyx7/lhSwnXfbSSp8cP2M99CSFEw5mVuYQKV2Kb/vCS0gMYoJVfaXHdTC8frAu/qViQU8Q1I7K4e8b6Pa47aUQWAV8ZLiVvgptE9TL5J+ctrPXix+du5p/H90D5HNBM/weabuCIycAOVRIqWoXtK8SZ1LPVd0naoUqCRauxyrfhiE4LL0EUolrAncG/qvds3GnnhwIKGNuzHX9/fymbSkyK/fv+/TLRrdE1qTpsTHSEw8fqf2fE6LW+fgd9ZUwakVXzIcSu5HVYNIUYl87ko+O5sF80N33j5bJjDuHfcza1iA/GRMtR7zDS7XZTVla2x/nr1q2jffvW/YuEEKJlWZlXzvmvL+WX3PBrzqVHdebfp/Qlxr3/ly7LX4xZtgWzfDtoOkZMesT3bLKD5YQKV2BV5uJM7B6uSdtz695u7WJ47bxBnPLSIp5dsIUjOycx8fBOEahYCNGWKaUwy7cSKloJmgNHbOYBHevNVT5u/MZLsV9haHDTUXEclVjI8FE90QiHX7t3Q3QLd0M03kMSu9AMB15fy1yeqTtjwt1ivh3YeYtxJLbeLknLX0KocCWmrxBHbIeI/64hWpiavXNr/1Dgibmb+ceo7mwu02qCyPQYnexawsZuiQ6SPfUf+eAO5HLzqB6AvA6L5tUtycH7Z6ajktpz0VvLar1OJD4YEy1DvX9annrqqUydOpW3334bCLfibt26lZtvvpnx48c3eoFCiIOPUoon5uZw82erCZg27WJcvHj2oZzaN32/t7WD5YTKtmGVb0HZIQxP+xYzwVJ3xaE5Y7B9hQTyl+CI64QzoWutS7dPPCSNO8f0ZMrX67jivV8YkBnPoA57X+IthBD1oWyLkHcjoZI16M64fW4hsT/byy0mfV3CF5vCg0kOTXXy7NhEBqa5gABa2XpuGJbBP4/vEQ6/PC4CvlJZltXElGWS6HHtc3lmfASXZ4a7JNP/0CXZAyM6NSL1NES4q3gVtuXHEdex1g8YxcEtqAzKKva/d+6rp6bSzhUkO9Eg1tW4X0fK8mPI67CIEM1wUOpvmR+Miciq9yvdI488QkVFBampqfh8PkaOHEn37t2Ji4vj3nvvbYoahRAHkdwyPye+uJBrP1pJwLQZ1zuVX24Yud8g0jZ9BEvWE/jtB0Il69CcsThiO7aYIHInTdMxolMxPO0xy7biz11IsGRDrdNF7xjdk5MOScVv2oyfvpiiymAEKhZCtDXKChIsWkWweBW6O6nBQaRSipd/qWTwS/l8sSmAy4DJI+L5/oL21UHkzvvz46rKQRWvJCEY/tNVtVneADc1ZRKoXp5Zm6uHZzF7/Q7mbKls3rr+QHfGYMR1wgqUEshbQrB4TYufuK2UTdC7iWD+Tyhl4YjJkCBS7Ma0FdN/qWTEq7kkRoc/FKhNosdJuxg3ozoZ9E91NnoQuZO8DotI2fWDsdrU7FtqSRB5sKl3Z2RCQgIzZsxg7ty5/PLLL1RUVHDYYYcxevTopqhPCHEQ+XBFLpe+/TNFVSGiHDoPn9KHK4dl7XP/MmWFMCt/wyzdhB3woruTcHo6N2PVDaMZbhxxnbCDZYQKl2NX5uFI6oYRnVbzhkbXNV49dxCHP/Y9m4qquOCNpXx6yZF1GtojhNidWZlHyLsRTXeGu5QdUWiGe5eTC81w7f9ArZwdqiJYtOqA97bb7DW58isvs7eGQ6PDM5w8NzaJQ9rtYwK3MqXroZntbXnmNSOymDQim6Ofms/aggquPTyWu0bE43ZE5ueLpum/d0kWr8b2FbXYLkllhQiWrMf0bkB3x6O74iNdkmhBlFJ8sM7PlLllrCsOv959v6mw5eydK6/Dornt8sFYbfuWXj08iwKvl/ayRPugoym13ykMbV5ZWRkJCQmUlpYSHy+/UAjR3CoCJtd9vJJpC7cCMDAzntfOO4w+6XF7vY2yLayqfMzSHCzfDjRnLLo76YAGL0SKUja2rxBlB6uXbndDd//+WvTLb2UMfeJ7fCGb20b34O6xvSNYrRCti1IKs2wLoeLV4XlSmo6yQ6Cs6jlTGpruRNNdYLjQnXFozmj06rCSmqDSfcATpiNB2SbKNsE2UZafUPE6TF8BjpjMBu1tZyvFsz9Vcsd3ZVSFFFGOcDfk1YNj5YOSFkozogi4M3B74ndbnmlV/MaNM/J56ZcqILy8/uWT9hMoNwOlbOyqHYDCkZCNM6Fri9lL0jZ9hApXY1ZsQfekojs8kS5JtBBKKb7ZEuDO78pYmh9ejpri0bnpyFiuOLwdjqSePDh74973bJQORdGG7Zwo/8fvgauHZ3HNiGxOeG4Bdwx1cmK3g+M11azYjjv9cBwxGZEupUnUNV9rUBg5a9YsZs2aRUFBAbZt73bZSy+9VP9qI0zCSCEiZ+GWEi78309sKKxE0+DGkd2YOrYXbkftb/rDE7ILCZXlYFXkohlu9KiUVhkS/JGyAlhVBb9P3Y7vXNOp9frS7Vz4xk8AfHjR4XXaP1OIg52yTULeDYRK1u11X0SlbLBDKCuEsoPVoV0Qdm7nrxnVYaQTzeFBc8Sgu2Kqw0lXTWclhqvJPwxRthWuT1WHiztDRrVr4BhEmQGU7Q8/DtsE20JhVS+BUhgNXFK6vjjE5V96WfBreMuIozu5eOaEJLolycCOVkFzoBmO8NfBLh0on6z3ceVXXgp9NlEOuHdkAlcMion4h3t2qBLbX4gR1R5ncs+Id0nagVKChSvDYX50BpoR2dBWtByLfgty5/elzNkafm2MdWpMGhLL3w+PJd4dfq3d24cC7kCeBJHioFDb90BVVSn/+HQ1Ly4tRtfgyT8lctGAmEiX2uQkjAyrdxg5ZcoUpk6dypAhQ8jIyNjjF5UPPvigYRVHkISRQjQ/07K5b9YG7p65DstWdEyI4pVzBzGqe7u93sbye6snZG8DqB5O0/beDNiBUuygF8OTiiNx59JtjUkfruDJuTnERzlY9Pej6dk+NtKlCtFi2aafUPFqzNLN6J726M7oBh0n3FkYAitY/ffqgA9A09B0R7irUneiOWN2WQLu2n0Z+B+6EJVSfwgWQ3sGjFYIZfnD4aIVCAdItoVSVvWfJvzx1zjNCN+XZoBuoGlG9XnG75fVk2krHltcwd3zyghY4Tfa946M5/8GxqC3wm50sae8CovLvyzh65zwsvs/Zbt5bmwS6bGR/aBvZ5ekwsaZ0BVHQjZ6A7cWOBBWZT7BopXYocoGh/mi7VlVGGLy92V8siEcJroMuHRgDP84Mo7UmL187+zlQwEhDhp/+B4IWYqrvvby3xXhLv07hsdx69C4iH8g1pQkjAyrdxiZkZHBQw89xIUXXnjARbYUEkYK0bw2FVXyl//9xPzNJQBMGJjJU2f0Jym69v3a7GAFZvk2zPItKDMQDiEj8GakOSnbwvYXoewQjrjOOBOyMY1Yjn92PvM2l9A3LY4Fk0YQ65aOJCH+yA6WEyxciVWZGw4OmmgvyHCgGEJVn8KBZQil7OoV4Ho4lNSd4UDSERMOEK1AdfhYHSwqM9z1qOzw0vGdv5lpejhA3DVYrA4aw4Gj3uShyIodIS7/soSleeFlh6Oz3Dz5p0S6JMhrT1ujqpfg/3NOKX4T2nl0nj4hkVN6RH7ZnB2qwvbvCHdJJvVAj05tljeqSinM8q012zxEujtTtAxbSk3umVfOG6uqsBXoGlzQN5p/DouT10YhGkApxZS55Tz4QzkAlwyI5tExiTja6PYvEkaG1TuMTElJYdGiRXTr1u2Ai2wpJIwUoulUBk2cuo7XHyIxysmWkirOe30pP24vJT7KwZOn9+f8wzrU+qZCmQFCFduxSnOwQuUYUe3QnW2/dX9XyvRj+QrQHTEYiV0pVKkMeXwBeeUBzhmYyRvnH9amPzkUor4sXyHBwpXYAS9GTGZEt3AIL6uuDit3LpnWtH13L7YQQUvx8A/hNwYhGxLdGg+OSuDCftHymtPGrSoMcdGnJfyyIxxAXzwgmodGJRDTRFN+66q5uyTD2zxsJFSydq/bPIiDS0GlxYM/lPPiz5UErfB5f+4RxV0j4iO+16oQbcFzP1Vw3cxSFHBy9yheOTmJaGcb60TXHFiBIlzJfXDEpEW6mibRZGHkzTffTGxsLHfccccBF9lSSBgpRNPwhyzu/2YDT8zN2WOj4us/XsndY3uTlbzn0kllm1gVvxEqzcH2F6O7Ew/6NwHhpdulGJ72LCpLY/TLazBtxSOn9uG6Y9rOh0NCNJRSCqviV4JFq1C2WbO9gai/pXlBLv+ihBWF4SWEJ3eP4rExiWRGeMmuaD4BUzFlbhmPLq5AAd2TDF46KZnDMyI/cb45uiRrtnko24Ie1a7B2zyItqE0YPPY4goeX1JBZSj81nlUZzdTjolvEd8TQrQlH63zMfHTYgIWHJnp4r0zkknxtP7fP3bdM9Nb5ScxOoqQrYhxtb1u6iYLI//+97/z6quvMmDAAAYMGIDTufunQP/+978bVnEESRgpROOrDJo8NHsjd89Yt8dld4zpwU3Hdt9jibFSdvWE7M2YVfnojhj0qCTZm6masq3w1G1l8vy6JG6YVYKha8y8/ChGdtv7XptCtHXKtgiVbiJUvAbN4cGISo50Sa2S31TcMy8cQFkqvEz336MTOLOXR4Ldg9ScrQEu+byEX8stDA1uHx7HTUfGRXxyulJ29c9DC0d8Ns7Ero3WJdlc2zyIls9vKp79qYJ/LaygyBce2npYupO7j47nuKy2vV2QEJE0b3uAM98vwhtQ9Ex28PGZKa16C4Sd08QfmL2RJ3aZJj5pRDa3HNedKGfrD1t31WRh5KhRo/Z+ME3jm2++qc/hWgQJI4VofEHTJn3K13h9oT0uS/Q4ybvrT7gc4ZBRKYXtLyJUuhmr8jc03YUeldygQQsHA2X6Mat2cOm3Tt5aa5Ea6+LH646hQ0Lk9/USorkpK0iweC2h0k0YUckH3VYOjWXBrwH+9qWXdcXhbsizent45PgE2ke3rV+QRf2V+G0mzfDy7hofAEM7uHjpxCSyEiP/MzrcJVmIHpWMK6nXAXdJtqRtHkTkmLbivyuquHd+Ob+Wh9dj90p2cNeIeE7rGSUfzgjRDFYXhjj13SK2l1ukx+h8dGY7BqS2zu0QgtHZ/Gt+PnfPWL/HZXeO6clNo7q1qQ7JJgsj2yIJI4VofAUVAdInf73Xy/Mn/4n2sW7sQCmhsi1Y5dtRKIyoFOlCqKOKCi+j3qpgRbHGkR1jmX3V0UQ5284PMiH2xw5VEixajVW+Lbwsu40PtmoKlUGbu+aW8fSPlSggPUbnsTGJnNoChpaIlkMpxZurfFw700tZUBHn0vjP8Ymc1zfyXbM1XZK2iSOha4O6JGWbBwFgK8UH6/xMnVtW88FMxziD24fHcX7f6DY7TEOIlmp7ucVp7xaystAk3qXx1mkpHNvFHemy6kdzoCX3JX3KjDo16bQFdc3X2s4jFkK0GLatiHM7SPTU/ulVosdJQpSTYMkG/Lk/YJbmoLkTcMhyqHqJjU3kzdPbk+iGhdsruPbtudjBikiXJUSzsPwlBPN/wizfjhHbQYLI/dEc4edI+/0Di2+3BBgyvYCnqoPIv/SLZunFaRJEij1omsa5faNZ9NdUhnVwUR5U/N8XJVz4SQnF1ctXI1ebjhGdiu5OxCxZSyBvEWZlHnXtt1C2Rci7gUDBMtAMHDHpEkS2VbW8DkI4jJ6Z4+fo/+7ggo+LWVds0s6j89CoBJb/XxoT+8dIEClEBHSMM5h5bntGdHRRFlSc+m4hb6+uinRZ9aMbFFYGag0iAby+EKX+2i9r6+rUGXnGGWcwffp04uPjOeOMM/Z53ffff7/Rimsu0hkpROMJmjaXvL2MMwdk8uN2L/fMrK0dvQc3HJWMXjAPPSoF3RUbgUrbji82+jnj/SIAnhvtZOLQXjhjO6IZrXMpgxD7Y1bmEipchW35qzuY5LPVvdltw3RfkESPi8rKUv797Vru/b4QCP+y//QJiYzJlkBX7J9lKx5ZVMHd88owbciM1Zl2YnKL6Fapb5dkeJuHNdXbPKS0/W0eNAea4UBZJigz0tU0m9peBwO+MtyBXBZuK+PO70uZszUIQKxT49rDY7lmSCzxbvnZIkRL4DcVF39WzAfr/AA8OCqBSUNa/vvHbzb7+fcSHx9eOpJOd8+Uzsg/qNN6voSEhJpPCBMSDu6JtkKIvasImJz16hK+WruDn38rY941I9A1jcd3maY9aUQWNx+bDUU/ocV1lu6DRjCuWxS3D4vjnvnl/H12iL6JP3NY5/zwmzBPe3mORZuhlCJUmoNZsgY0B46YjEiX1KLt3DD9X7M38sTchTWvw1cPz2LS8Yfx3tr5HJOpuPuYeHnTLerM0DX+cVQcx3Vxc/FnJawvMRn3diF/HxLLlKPjcTsi9zNnZ5ekbfowS9Zi+wtxJvWsddl1eJuHlVgVv+KITkczIh+mNpV9hXHK8ke6vCa1t9fBa0Zkce3R3bl8xjzWFARxGXD5wBhuOipO9soVooWJcmj895RkbppdyjNLK7l5dim/lVvcd2w8egt8n7M4N8id35Xx7dYAALM3FHLNiKxa94ycNCKbkG3jOggXLcuekUhnpBCNobAywMkvLmLRNi/RToN3/jKYcYekURk0ceoapb4gCR4n/soi3MEdYAcjXXKbYivFme8X8cWmAF3ideacqUiJ0nDEd8GZkN32uz1Em6dsk1DJekLe9ejOOHS3fDi6P/vaMP320T24dEh7Uq0tEahMtBWVQZtbvi3lxZ/Dy+YGtHfy8slJ9GkX+c7837skQ7t0SYa3ILD8xQQLV2D7S8ITs9vwwLy9T3HN4uZR3TDK1rfpQHJ/r4ODOyby4Y8r+eewODrHt92vAyHaAqUU/15Uwe3flQFw9iEeXhiXhMtoGYHk6sIQk+eW8fH68Guqy4BLB8bwzxHtSUzrzYOzN/K4TNOuIWEkEkYKcaC2FFcx9oUfWLujkuRoJ59eciRHdUlCWUFCZVswy7aC7kR3xdIyflS0TSV+m+GvFpBTajEmy817f46GQCGGMw5HUnccsR3a9Bsu0XbZpp9Q8WrM0s3o0ak1gYLYOxsDPbkfGVP3tWH6GFTxyoNquaZoGp9u8HHFl14KfTZRDrh3ZAJXDIppEZ35tunDripAj0rBmdwTlE2ocCW2FQgHkS2gxqa07ymuPbhhWBquqpwIVNYM6jA4IvfOMVAir4NCtCZvrKzi8i9LMG0Y1dnNm6clR3SFx5ZSk3vnl/P6yipsBboG5/eN5rZhcXRJCL/32r1DPUCix03IVm1qivZOjRpGDho0qM4/qJcuXVr3KlsICSOFaLgVuWWMfWEhv5X56ZQYxVeXHUXv1DgsXyGhkg1YVbnobtkXsrksLwgx8vUd+EzFLUPjuHN4HHbAix0qxxGTgTOxO4YnJdJlClFndqCMYNEqzKpcHNGZDd8L9SDYK60qZDN7S4DPN/rZVO5k2rlD6HbfrL1eP/+u0SQEc1Bm2+2KEs0nr8Liiq9K+HJTeFnamCw3z41LIiO2uuMjgt+Du3ZJoulouqvN/iy0bMXWMot1xSbbKjQuHnk4Hfa5V1nb/FDCVoqfixx0yOxBl3vldVCItmZmjp8JHxVTGVIcmurkg/Epv/+8aSYFlRYPLSznhWWVBK3weaf2iGLyiHgO2dsKAc2BFSjCldwHR0xa8xXbjBp1z8jTTjutseoSQrQhc3OKOPWlxXh9IfqmxfHFpUfSIc4gWLwOs3QjStkYMR3R9LbVet6S9U918tQJiVz8WQkPLChncLqTk7snoUclYQcrCBQswxHXEWd8Fpqj7e6PJdoGq2oHwaKV2MEyHA18LWnre6XlVlh8sdHP5xv9fLMlgM8Mf8bcLsZFaqyLRI9zryFEgseF8rWtAEJETnqswftnpPDcT5XcOqeUGZsDHD69gP+elsHwntkR/R78fS9JPygrcluXNGIgW+QLB47ri03Wl5g1f9/oNWveFPdLj+PEwcF9TnHNrwjwY47JsAybhFa+d6xSil8KQry12sfba3wEbIOc2/rK66AQbdDo7Ci+ntCO098r4ueCEKPe2MHHZ6bQM7nptwkpC9g8triCx5dUUBEK/951bGc3U46O54hM175vrExUsBywm7zOlq5OYeRdd90FgGVZzJs3jwEDBpCYmNiUdQkhWriPV+Yx4b8/4jdthmcl8fHFRxCvlRHIX49VmYfuaYch+xRGxLl9olmcG+SZpZU8uCjEiD6HkBSXQFn1m0B/RT6qcAVGXIdaN/UXItKUUlgV2wkWrQLbxojp0KCv070NLgjvldajVe6VppRi+Q6Tzzf6+HSDnx/zdn+D3Sne4KRuUZzULQozUM6kEVlMrXXD9CwCvjJcbawbSkSWpmn87bBYRnZ2c9FnJQRwM7hXXx6em8OT8yL/PbivydpNqaEfigRMxUZvddBYEg4b1xWbbCgxKfLt/Y2s24DuSQ4GtYf0uH1/KJEc7eKyz3dQ5g9yfBc3p/fycFI3D8me1hNMbvaavLXax1urq1hd9PtrWoLbZtVvxfsYHCGvg0K0Zoelu5h9XntOfbeQjV6L494o5L0zUjhyf4FgA/lNxXM/VfDwwoqa1+DD0pzcfUw8x2VF5udLa1bvPSOjoqJYvXo12dnZjVrIAw88wK233srf//53Hn30UQD8fj833HADb775JoFAgBNOOIGnn36atLTf21m3bt3KFVdcwezZs4mNjWXixIncf//9OBx1X3svy7SFqJ8XF27hb+/+gq3glD5pvHFuf5y+bZilG1BKYXhSpRsywoKW4vIZPh4bfzhPzM3hyXl/3LQ+G5U3H8PTLrypvwTHooVQtkWodBOh4rVoDg9GVFKDj9VW9koLmIrvtgX4rLoDctv/s3ff4XGUV8OHfzOzfdVdJBfJljsGg7FpxnQMNr0mkJckhASS8AIJgRAgoQRCqElIQiD5QgopLwmQYHozYIrBGGNsTHFvsi3LstVW2r4zz/fHrFZaW5Ilq+xKOvd16dLuzOzuaHe0M3PmPOcEzLT5h41wJgOQXg4a5kgFbpuDsXsXTB8cjStEZsVMxQazjKc/r+Gu1/v3/2B37KuBjN6wlm0NIdbXJlhbG2dtMui4rjbBloCJ1cGZ2uhcg4mFDiYVOZhYlPxd6KA0z8DQ7e+BmK+cX76/s82LEreeMpHzpw7h4n98xJraloCcQ7frsJ032cuZEzxZ2V26Omjy3zVhnlgVZkllS1NEtwGnjfdw8QE+5o7z4HV75XtQiAGuOmhy/tM1LKuK43Vo/PPsQk4f33P1xROW4p+fhbjr/Ua2N9rHYJOKHPz0mDzOneTp8gXzRNM23CWH4/CP6LF1zCa91sDmsMMO47777uPkk0/u9ko2W7p0KV/+8pfJy8vjxBNPTAUjr7zySl588UUee+wx8vPzufrqq9F1nffeew+wMzWnT59OSUkJDzzwADt27ODrX/86V1xxBXfffXenX1+CkUJ0jlKKe95czy0vrwbgsiNKeeS0kajAeszQTnTvUAlqZZEm91h+80F1+yeBs4aiVS/CcOXhLJyIkTMKTes/mRBi4FFmjFjtGuINGzA8Q7r3fdKZxgW3n4Kq+QwNs40n6GFdHJ65O2Ty6sYoL2wI8/qmaGoYEIDXoXHyWDenj/cwb5ynwxpJrTOyGsIx8r0uouEG3NEqOQEXvasT/4MDtV5ha/vq5nx4aQHn/HVpu4/Pc2lMTAYZm4OOEwsdTCh04Hfte5/d2YsSq3bHmb82zPw1YT7b3fJ56BocV+rmvEkezp7opaSPa7K11hizeH5dhCdWhXhjcxRTtazjCWVuLp7q5eyJ3r2Gm8v3oBADX1PM4qvP1fLqpii6Br87tYDLDu7eealSivlrI9yxKMDa5AWbUbkGt87O5ZIDfTj0/RtdJsFIW5eDka+88go333wzP/vZz5g5cyZ+f/oH3NVgXlNTEzNmzOCRRx7hrrvuYvr06fz617+moaGBYcOG8fjjj3PhhRcCsHr1ag444AAWL17MUUcdxcsvv8yZZ55JZWVlKlvyD3/4AzfeeCO7du3C5epceq4EI4XYN8tSXPvc5/xukZ3BcNMJ5dw+y4EZ2IhSYHiHSTZkNunkSaBV8xlWuBqVCOPIGY2zcDy6Oz8DKywGOyseJFbzOWbTdgxfCZrRvZqmmsNDvauckjteb3eZjT8+ma/8YynBcIixBQ7K8gzG5DsYk2cwNt++XeDpXoC+s8MzlVKsqU3w4no7+/GDylhaRlSJX+f08R7OmODhhDI3PmcX12sQNPAR2aUz/4NVt8+hYCA3D+nEvnjrrXOYcPcb5DmtNoOOxX692+VUuhqMW1cb55m1EeavDbN8Z8t6a8Ds0S7Om+zlnIleRuX2/nFfzFS8tinCE6vCvLg+kqqLCzCzxMnFU31cMNnbucYV8j0oxIAWNxVXvVbPPz4LAXDL0bn8+OjcLn+HKqV4c0uU294J8HHyO3CIV+dHR+Xy7el+PI7ufSdLMNLW5T7ip59+OgBnn3122oeqlELTNEyza9kFV111FWeccQZz5szhrrvuSk1ftmwZ8XicOXPmpKZNmTKFsrKyVDBy8eLFTJs2LW3Y9ty5c7nyyiv5/PPPOfTQQ7v65wkh2hBNmHzj3yt4YkUlAL86fQzfndxAorZaakNmKc1wUB/uuGh9QzhGvsOJ5h2CMmMkmrZiRnbjKJiAM7d0/7sWC9FFZqSW2O7PsCJ1dn1IvcuHJ3tRZoJ8T8e10obluNhQG2F3MJGWCdRavltjbH5zoNIOUI7NNxiT52BMvkFeBw0f9lWz0qpfy/tbArywPsxLGyJsqE8/hjpkuDMVgDy02InenYCESqAScvIt+o4yExR4O/4f9LudLFjVyMlljgFZv3h3VMdqina4L26KxNnwv6MxVLTX1kOZEVyhTaiwg3zDgQoncKkE7WWkTCxycsNRTm44KpdN9Qk7Y3JtmI92xFm0LcaibTGuf6OBI0e6OG+Sh3MneRmT34nv7U4GAy2leG9bjCe+CPH02jB1kZY1nVjo4OKpXr58gI8JhV3cV8j3oBADmtPQ+H/zChiZY3DfB43c9X4jlU0mvzmloNNZjB9Wxrjt3QberrDLP+Q4Nb5/eA7fOyynw2M+0XVdPtpfuHBhj734v//9bz7++GOWLt17aEJVVRUul2uvRjnFxcVUVVWllmkdiGye3zyvPdFolGi0ZYcfCAT2908QYsBrjCS44G9LeX3dbpyGxp/PLOb8Udswo2DkSKfsbNWZk8BcT0sHSc1w4cgtxYo2EN+9EitUjbNwAoZ3aF+vuhhkEsEdxHd/jmVG7e+UHgpI/N+nAYaV7OLq2WPbLFXwvWPGkogEeP2iArYETLY0mGxpSLC5wWRLIEFFg0l1yKIhqvikOs4n1W0HEwo9rYOVdoCyOVg5rmwsDy7ckDY8sz4c584F67AUHFE2hLOf2Jia5zLg+FI3Z0zwcNp4D2V53Q/KCpExKkE0HGi3idLVs8eyYO1uzn+ympPGuLnvxHwOGjYwLoIFoha/XtrE/62K8fmPpnS4Ly70uVCRPigVAfsVjCsvcHDdEblcd0QuWxoSPLsuwjNrwyzeHmNJpf1z01sBZpY4OW+Sl/MmeRm3R5CwMxnizZ2w/70qzFOrw6m6bGBnhn/5AB8XHeDl0GLngAxcCyF6hqZp/PTYPEbm6Fz7egN/WRmiOmTxtzML7VEl7VwU+WJ3nJ++G+D59fZ3ksuAb0/386OjcrOybu5A0OWj3OOPP75HXnjr1q18//vfZ8GCBXg8fdt56J577uGOO+7o09cUoj+qboxyxp+XsGxbA36Xzr/P9HPC8G1oLsmGzHqdOAl8Zc0u/rpoJ/eckM/45ImD7s5Hc/oxw7uwqmpx5I/HmTcWzdG9IbNC7Ekpi3jDZhK1q0F39NhQlYSluOmtBh5eFmTK8FW8d/VsdI12a6VNHuJk8pC2AyDBmEVFwEwGKxNsaTDZ3GA3lahoMNkdtqiLKOoi8bShjABD/S42/SSPhxZ92OZz/+69zWw9aQ6Th3g4vETnjAkeTh7rJrcTNeCE6C/c0R3ceOJEoK3/wXH87o3luAx4c0uUI/9WzWXTfNx2TB7D/f3zxC9mKv70SZB7FzeyK2R3Wl26pWbAdHMek+/ge4fZGULbG02eW2dnTC7aGmNZVZxlVXFueSfA9OFOzpvs5dxJHiYPy+0wQ3zH9lX845NanlgVZnVaJ2yN8yZ5uegAH8eWulINeYQQojO+fWgOxX6DS1+o5YX1Ea58PcIj500lx5+fdlGkpmYrty3cxeNfhLCUXYP2qwf6+PHRuZ3L+Bb7rVM1I1euXMlBBx2EruusXLmyw2UPPvjgTr3wM888w3nnnYdhtBxsmKaJpmnous6rr77KnDlzqKurS8uOHDNmDNdeey0/+MEPuO2223juuedYsWJFav6mTZsYN24cH3/8cbvDtNvKjCwtLZWakUK0srEmyLxHl7B+d5ChXp3/nqGYOdxA9w2TJif9REdF6689bhzH/u49Pt/ZhFOHK2fkcPOs3LT6eFY8iBXZje4ZgrNwEoavWLIRRI9QZpxY3ToS9evR3Xnorp7Z9+4OmXzt+TreqrD38T85OpefHDuMuGdkrzQuaIpZdkZloDlQaQctKwImPo+Xv19yOOPvfqPdx1feNof86EZ0q/eGZwqRafuqV7i5PsFP3gnw9JowALkujRuPyuXqmTm4u1mXq69YSvHfNWF++m6AjclyCxMLHdx5XB7nTinAyp80oLs5VzWZPL8+wvw1Yd7Z2tJYBmDBt4/g7Y11bWao3zJnIjNGF3D+Y/YoObcBp4/3cFGyE3Z367IJIcR726L8+N0oz18+i4cWbeJ377V8D18zeyxXH1PO8Y+8z+rqJs6Z6OH2Y/I4YGjvZulLzUhbp4KRuq5TVVXF8OHD0XW7iHJbD+tKzcjGxka2bNmSNu2yyy5jypQp3HjjjZSWljJs2DD+9a9/ccEFFwCwZs0apkyZslcDmx07djB8+HAA/vjHP3LDDTdQXV2N2925TB5pYCNEuhXbGzj9T0uoaowyJk9n/ukxJpdIp+z+qKOTwC92NnLTWw28tskOhAzx6tw6O5dvHeJP1VVRysIK70ZZCRx5Y3AWjJPtQHSLlQgT372KRNMWdO9wdIe3R553ZXWcLz9Tw5YGkxynxp9OL+ScSa2eu68bF2gOKDqQEYO8k7AQKfv4H3xvW5QfLWzg4yr7/2VsvsHPj8/nvEmerL4Q9taWKD95uyHV5KDYp/OT2Xl8Y5oPp2Gv92Dq5rw7ZPLCerv5zcrdinU3n0zpz17vsIHPpX97l3njHG12whZCiO6qc47lkQ+r270oMmdCIXrTJg4f0bkGyN0lwUhbp4KRW7ZsoaysDE3T9gog7mnMmDFdX9ukE044IdVNG+DKK6/kpZde4rHHHiMvL49rrrkGgPfffx+wMymnT5/OyJEjuf/++6mqquJrX/sal19+OXfffXenX1eCkUK0eGv9bs7961IC0QQHDYH5ZxqMGjZcsiH7uw5OAl/bFOHGhQ2p4VEHDHFw74n5nFreUkLDSkQww9UYrjychRMx/COlXqjoMivaQKzmCxKhKhy+kT3WJOmp1SG+83I94YRifIHBk+cNYWovX9XujJivnF++v7PNUgm3nTKR648uxhXalIE1EyI7WUrxr8/D3PpuAzua7GHOs0e7uP/EfGaU9M1JYmetrI5z6zstF/RynBrXHZHDNYflkNNeuYVB1s250XQT85cz+mftZ4gP+I7qQojM0hxoRQdSkkUXhyUYaevUIPjWAcbuBBu76sEHH0TXdS644AKi0Shz587lkUceSc03DIMXXniBK6+8klmzZuH3+7n00ku58847+2wdhRhI/vNJJV99/GNipmL2CMWT5xRQlJuT6dUSPaGDovWnlns4aYybP38S5GfvNbKqJsE5/6nh1HI3956QzwFDnegOD1pOKVaklujOj3Hk7MJZOB7dnd/Hf4joTUpZoBQoC5SFouU2yduqrfutl1MqOS152zJBmSgrgRXehRVvwuHvmeZXpqW4/d0Av/ywCYBTxrr521lFFHqy4+JJx/XyksMzM7yOQmQTXdO45CAf507y8ODSJn71YRPvbYsx+x+7uORAL3ccm8+o3MxeCNvSkODORQH+9UUYBTh0uGK6n5uOyt13rctB1s0512Gi+d0dNvAp8LY00xNCiJ6mGQ7qw7E2v4PAbizYEI6RbzgG1fdzNuhUZmRbvvjiCyoqKojFYmnTzz777B5Zsb4kmZFCwO8XrePqZ1ajgLPHaTx2djFep2S+DTb1EYt7Fjfy+4+biFtgaHD5IX5umZ3L0GQnOWXGMUNVaA4vjoLxOHPLeizDTfQcZcZQZtT+SUSSt2MoKwGWicKEZKDQvm+1CjySHmhMBR6VHaxMBhpBQ6HQNEBpyWX3oOmABpqGprvQPUU9MuSyLmLxjRdqU1lJ1x2Rw53H5mVdk4PBNDxTiJ62rdHktnca+NcXdj1Jn1Pj+iNyuPbwHLsrah+qCZvc/0ETf1jeRCxZlerCKV7uOCZvr+7RooVkiAshMkoyI/tcjw7Tbm3jxo2cd955fPrpp2m1I5tPLDpbMzKbSDBSDGaWZXHHS8v52VuVAHzzIBe/nTs0607oRd9aX5fgx2818Px6O1iS79a4eVYuV87IwZWsgWVFG7Ci9Rj+ETgLJ2B4h2ZylQcdpRS0DjiaUaxEBBVrwoo32vOsqB18bN7VawZoOloyONg6UJg2HT35Ozm91e1UYDGDpRtW7Y7zpfk1bKg38To0/jCvgC8f4MvY+nTKIBueKURPWrojxo/ebOCDSjsJYlSuwc+OzeOiqV70Xq4nGY4rHv64iV8saaQhan+XnlDm5q7j85iZZUPHs1FHzfQGSgMfIUR2y7aLIhKMtHU5GHnWWWdhGAZ/+tOfKC8v58MPP6Smpobrr7+eX/ziFxx77LHdXvm+JsHIgU1ZCRKN21BmzB5q6vCgGc2/B/dBZDwW4uqnlvLo8gAAN8/K4dbZeVldKF70rbcroty4sIFPqu0rieMLDO4+IZ+zJtgNBZSVwAxVo+k6jvzxOPLGoDs8+3hW0VnpAcdIq4BjECseSAYcYy0BR01D05xgONF0l/0dpzsH1P/0c+vCfOvFOpriitI8gyfPLWJ68eD+LhdiMFDJjtU/eTtARcBOfphZ4uSBk/KZNapzTSu7wrQU//w8xJ2LAlQm61dOG+bgruPzOWWse0B9r/Y2yRAXQmRStl0UkWCkrcvByKFDh/Lmm29y8MEHk5+fz4cffsjkyZN58803uf7661m+fHm3V76vSTBy4DIj9cTr12I2VQI6YAEamuFE0912QNKVg+7KbRWg9KAZ7gHdnEMpRbBhB1/79yc8uz6BBjw4J5/vHCr1IcXeTEvxj89C/PTdADtD9gnZ8WUu7jshn0OSQSArHsSK7Eb3DLEb3PhK5EStk5RSKDMKrTMc42GseBMq3pQMRsZQVnJoSXK4M7oTzXCh6c4BF3Bsi6UUd7/fyM/fbwTguFIX/zy7iGG+gftdLYTYWySheGhZE/cvbqQpbp/GXDjFy13H5TEmv/vDpZVSvLQhwm3vBvhit53FXJpn8NNj8ri4DzIxBzTJEBdCZEg2XRSRYKSty8HIwsJCPv74Y8rLyxk/fjx/+tOfOPHEE9mwYQPTpk0jFAp1e+X7mgQjBx5lJYgHKkjUr0eZUQxfMZpuH6AqpcCKt9RTs2JgJUAD0O2Te8OF5vCju/PRHd5kkNKNZnjAcPXrk34rEWZ31Tq+9OQW3q0ElwF/PaOI8yd7M71qIss1xix+saSR3yxtImra/zKXTvNx+zF5lOQYKGVhhXejrDiOvDE4C8ajO/2ZXu2socw4KhFK1W+0EhGseCMqlgw4WnE7wxG7FmMqq9FwJYOPjn793dMdgajFt16q44Vk2YD/neHn3hPycRqD8/0QQkBVk8md7wV4bGUIBbgN+N5hOdxwVC657XWz3ocllTF+8nYD722zh4MXejR+dFQu3z00B49Dvm+EEKLfy4KLIhKMtHU5GHnsscdy/fXXc+655/I///M/1NXVccstt/DHP/6RZcuW8dlnn3V75fuaBCMHFjsbch2Jpm0YrgJ0z5BOf+Eoy7SDk6lMpFiqmYOWDApguNHdeejOnD2GfHuyOptSKYUZqqZi6yrOmx/g0xqNXJfGk+cO4YQxPT+8SQxcWxoS3PpOgKdW2w0FcpwaNxyVyzUzc/A6NVQiQiJUjeHOw1kwASNnVFb/b/Q2pRRmcAfx+vVYsUb74geQCjgmsxvtYdXSCGhP6+sSfGl+DatrErgNeOjUAr52kAS5hRC2ldVxblzYwFsVdjOrYp/O7cfm8fWDfHvXv27nJHRtbZzb3w3wzFr7gofHAVfNyOH6I3Mp9GSuPq4QQoiBR4KRti4HI1999VWCwSDnn38+69ev58wzz2Tt2rUMGTKEJ554gpNOOqnbK9/XJBg5MKRnQ0Zw5I0l5inF7c2jPhyjwOsiGg7gju7Yr1RsZcbt2mzJjrS0HjJpuJPZlF50Vz6a04eeDFJiuO357WQ02f+CKtnFtvm2QtFyO/231fKYNucnH6ss0AwiWg4ul4f6cIx8j5O3NuzmB8+toq4pxDMXDpFaa2K/Ld4e5UcLG/hoh/2/UJpncNdxeXxpip1la0XrUPEgRs4onAUTMTz5mVzdjLBiTcTrN5BorEh2ki5MZWn3uSy4EtxVr22K8PXna2mIKkbk6Dxx7hAOHyHfWUKIdEopXtwQ4ea3GlhfZ9eTPHiYk/tOzOeEMe604XmtjwkDddu48+1d/GVlEFOBrsFXD/Rxy+xcSvOkQ7YQQoieJ8FIW5eDkW2pra2lsLCw3w4fk2Bk/2dFG4jVNWdD5mP4ijHzJnLvwg081MtFapWy7OCkGbWHWZoxUPaBsJ3t5ARHcog3yYCjZaJoFXxMBRNJTVPJjMy9g44kg417TG+1tAZorhy04mO4961Nae/B1bPH8r1jy2nYuYbR/v4RkBDZy1KKJ1aFufWdANsb7e3+yJEu7j8xnyNGukAziLqG48kZltwG3cQtC79rYJ/kKcvEbNpOvH49ZjSAwzfcvjiRAe2dhO/vhZm+oJTilx82cds7ART2NvWvc4oYkTN4M2yFEPsWMxV/WB7knvcD1Cc7X3/3sCH84rzDuO+tjWnHQ9ccM5arZ5dz/CPvs7q6idPHe7jz2DwOHCYZ6kIIIXqPBCNtPRKM7O8kGNl/Kcsk3lhBos4OLhq+EjTdQcxXzi/e38nPFqzb6zG3nTKR648uxhXa1Pvrl8qmbA5QJgP2mmbf1jS0tGl68jep+TQvkXqMvvf8Ni4EZMt7IAaHUNziN0ub+MWHTYSSDQWuO2oId5619wng944Zy00nTcTjHJiBJbtUxHoSjdvQXTno7sxdrGvuHtgXF2Z6SjBm8d1X6/lPsgzANw/28auTC3BLvTYhRCftDpn8/P1GHl0R5D+XHs6ybfXc9frex0O3zJnIieMKsQIbOaZUStYIIYTofRKMtEkwEglG9ld7ZkPq7uQQUM2BVnQgJXcsoD4c3+txBV4nO24/BWo/7zdDFTsrmlB8URNnTS18+ejDGPWz19t9D6puPwU1AN8DkVmVTSY/fTfAPz4LMf8b7Z8A3nbKRH54XBl+j7ffZtXvSZlx++JI/Qb74oi3OOM1IPvbRYktDQm+PL+WlbviOHT41ckFXDFd6kMKIfbPunrFuPJDGC3HQ0IIIbKEBCNtA3ucnBiQlGWSaNxKom4dViKEwzci7YRfMxzUh2NtHnQC1Ifj7AhEuezJegwV4cChDqYNd3LgUCcHDHHidfaPwEhdxOLT6jgrquOsrI6xsjrOqpoECQsOKsnluIM7fg8awjHyDQcqIQffoueMzDH442mFXH1YPgdOGsplT6xoc7nfLtrMj0+eQGz35zhyR2N4Cvp0PXuaGd5NvG49ZqgK3V2A4R2a6VUCzYHLm8dDi5a0Odv+DCaiwo6sOAl/a0uUrz5fS03YYrhP5//OKeKY0ZKpJITYf5OGeqmPxuV4SAghhMgyEowU/YoVDRCrW0uiaTu6KxdHbuley6zYEeKgSU4KvM52r4IPy3Hx+a4wu4Mx3twSTc3TNRhf4ODAYQ6mDbMDlAcNc1JeYKB3J3urG40jlFJsbTRZWR3nk51xPqmOs3JXnC0NZpvLF3k0JuQrSnJdHb4H+V4XKiwH3qJ3HDLC14kTwDj+cDVmcDuOvLE4ckvRnb4+XtPusRIREoHNJBo2opTC8Ge2c3g0oVi0LcrLGyNsanTy0IXRji/MNEb5/XtBRnnjHDXKzYFDHXt3n+1lSike/jjITQsbMBXMKHby73OLpHmEEKLblJmgwCvHQ0IIIUS26dSR/owZM3jjjTcoLCzkzjvv5Ic//CE+X/86YRT9m7JMEk3bSNSuTWZDluw1/HFLQ4Lb3w3wxKow878xmqtnj21zeOj3jhlLPBLgv+fm8/nuOJ/tivP57jif70qwO2yxri7BuroEz6xtqaPmc2ocMCQZoBzm5KChTg4c5mCYr+OgQ1cbRyQsxZqaBCtTGY921mNtpO1qCmPyDQ4Z7uSQ4U4OTv4enWugaRqxSCPfO2Ysd7YxPPN7x4wlGg7gyoJsKDEwdf4EcChWtJ54zReYTdsx8sbizB2NZmR3x2SlFGaoinjdOqxIDbpnKIYzM8OJKwIJXtsY5dVNEd7cEk3V7BzqdzE8p+PPYKjfxV9WBNgdjAGQ49Q4YqSLo0a6OGqUiyNGush363s9tqdEEoprXqvnn5+HAPifqV5+d2phv8lQF0JkOZUgGg7I8ZAQQgiRZToVjFy1ahXBYJDCwkLuuOMOvvvd70owUvQZKxogXreeeNPWNrMh6yMWDyxp5OFlTUSTyYLvr93I7Wcchq7ZQxHbatpwxEj7RLuZUoqdQYvPdsX5LBmc/Hx3nFU1cUJxxbKqOMuq0k/oi326HZwc5uSgYY60od7NjSN+sXADDy1assc6TCRas4YVOxrtjMfkz+e74qm/oTWHDgcMcXDIcFcq6HjwcCcFnvaDBO7oDm48cSLQ/nsw6AvGit6zjxPAq2ePZeH6XcTqmzi1PAfN6ceKNRDf9QlWUyWOgvJkQ6rsa3JjxYPE6zeQCGxB050YOaVoWu8F7PYUNxVLKmO8sjHCKxsjfL47/SS6xK8zb5yHeeM8xCIdn4TvbqjnO4e4+WC7xoc7YjTGFG9uiaYyxjVg6lBHKjh51Cg34wuM/avzuUeG+LZGk4ufqWFZVRxDg3tOyOfqmf4BU0NUCJEd5HhICCGEyD6damAza9YscnJyOOaYY7jjjjv44Q9/SE5OTpvL3nbbbT2+kr1NGthkp1Q2ZN06rHjQDky0yoaMmYo/fRLk7vcbqQlbABxf5uKeE/I5tNiVlpXYEI6R73URDTfgjlZ1qXusaSk21Cf4dFeCz3e1ZFJuqjfbPHhtHur92P/M5OU1te12b5wxuoDzH1u617xcl8a0YU4OKW4JOk4d4tyvTrI99R4IsT+aA/L3LdyQdgJ4zTFjueaYco57+H1WVzdx/mQvD5yUz8gcA2WZWJFalBnFyCnBmVeO7h2aFQEqZZmYwUrideswowEcvuFoDk+fvPbOoMlrmyK8sjHKG5sjNERbvn10DY4c6WLeOA9zy90cPNyZer/a+wza6qZtWoovdif4oDLGB9ujfFAZY2P93ldHhvl0jmyVPTmj2NVhJmNbGeI76+u55PHPWFQRoMij8c+zizhxTN+8l0KIwUeOh4QQQmQLaWBj61Qwcs2aNdx+++1s2LCBjz/+mKlTp+Jw7J1UqWkaH3/8cffWPAMGcjAyGEvg1HXqI3EKPE7iloXflf11uKxYI/HadcQbK9BduRiewtQ8pRTPrYtwyzsNrK+zT5SnDHFw9/H5zBvn3jto0Y16jR0Jxiy+qEnYmZR7DPUe6nex6ScnU9pB98att87hqF8vpDRHpWU8drs+ZVt66T0QYl/aOwFMNFVyx9u7eHhZE6ayg/C3H5PHdw/1Y+gayoxjhneBpuHIGY0zfyy6Oz9jf4cVbSBet4FE01Y0px/dXdi1AGkX/wdNy87GfnVjhFc2Rfh4j6zsoV6dU8rdzB3nYc5YN0O87WeQduckfGfQZElljA+2x/igMsbHVbG9sredOkwvdiaDk26OGuViZI6Rem0zbyL3LtzAQ62CoVfPtgPSV/x7Cfcd62FsQfbvl4QQA4AcDwkhhMgwCUbaOhWMbE3Xdaqqqhg+fHi3VzJbDNRgZCRucs+b63lo0aZW2TDl3HTSBDzO7Bv6CKCUhdm4jXjd2mQ2ZHFa7bgPK2Pc/FYD72+365sN9+ncOjuPbxzsw9HHTRfa0jzUuyLoZFzZJErveqPdZatun0NBbBMqIVfkxSDQzgngJztjXLOgnqU77GDbocVOHjq1gJkl9v+9lYhghXehObw48sb0eZMbZcaJN1aQqN+AMiMY3uK96tV2pCt1Y2vDFq9vjvDqxgivbYqyO5nx3WxGsdPOfhznYWaJs+uNZnrgJDyaUKyojvPB9iiLt8dYUhmjKmjttVxZnsFRo1zcftp0/v3pbn7WxjDxW+ZM5Lqjh+MNb96vdRFCCCGEEKK/kWCkrcvByIFoIAYjg7EE9y/cwM8WrN1r3m2nTOKGE8dnXYZkczaknXmUk5YNubk+wW3vBnhqdRgAr0Pj+4fncN0ROeS6+q5WW6dpDrSiAym5Y0G7mZFVt5+Cqv1crsyLQc9Sij9/EuLWdxpoiCo04DuH+vnpsXmp5ilWrMluFOPOx5E/DkfOqC4FBfeHGd5NvG49ZnAHurugy5mZ7WUFNg+R1hvW8smORl7dFOWVjRGWVMawWu2R81wac8o9zBvn5pSxHkpysu8iklKKLQ0miytjLElmT366K46l6FSGuHwPCiGEEEKIwUSCkbb9ikZt2LCBX//616xatQqAqVOn8v3vf5/x48fv39qKHufUdR5atKnNeb9dtIkfnzyxj9eofUpZmE3bideuxYo3pWVD1kUs7lvcyO+XNxEz7WYKXz3Ix23H5DE6N/tOzFOke6MQnaZrGldM93P2RA83LWzg36vC/GF5kGfWhrn/pHwunOxFdyWb3ETriVUvx2zchqNgHIa/pMebx6hElHhgM4mGDSjLwsgZhaZ3fXcZdY/gFws3pGUF1ofj3LlgHZaCWWOGcMbfN6Y95sChDuYmm88cNdKF08h8xndHNE1jbIGDsQUOvjLVzlhtjFl8tCPGxkYnNcFYm4FIsN+LhnCMfMOBSsh3oRBCCCGEEINFl8+uXn31Vc4++2ymT5/O7NmzAXjvvfc48MADef755znllFN6fCVF19VH4h2eAFY3RVm2rYEjygoYkZe5pgFWrIl4/ToSgQo0pz/VKTtmKv7f8iD3LA5QF7FThU4sc3PPCXkcUuzq6CmzhnRvFKJriv0Gfz2ziK9Pi/D9BQ2sq0vw9efr+PunIX49p4DxhQ4MTyHKlYcVqSG68yMM/0i7nqRnSLeb3CilMEM77TIRkRp0z1AMp3//nkxz4Pbm8dCiJW3O/t17m7nxpDmUFbiZNkRj3jgPp45zU5aXXRnr+yPXpXPiGA8nag60XDcFXme7mZH5XhcqLIFIIYQQQgghBpMuD9M+9NBDmTt3Lvfee2/a9JtuuonXXntNGthkiVjCouSO1zpsnlL+8zfYHYxx8Ig8Tp08jLmTh3FMeRFuR+9nHLaXDamUYv7aCLe+05Dq4jp1qN2c5tTyNprTZDnp3ijE/okmFL/8sJH7P2gkaoLbgBuPyuW6I3JTneWVGceM7EZDw8gtxZk3Bt29f9/hVjxIvH4jicAWNN2R7OC9/xmX9XEXiZxxHdaNrbxtDv7wRlxE9/t1sl3MV84v39/ZZob4badM5Pqji3GF2s7iF0IIIYToUZluYpXp1xdZQYZp27ocjPR4PHz66adMnJg+zHft2rUcfPDBRCL9L8AyEIORwViCBxZu4M42akbeesokzp9WwhVPfsKy7Q203gK8Tp0Txg9NBScnD8vp8QBgSzbkVjSnD8NTBMAH26Pc9FaAJZV2c5pin85tx+Tx9WnZ0ZymW2THI8R+WV+X4NoF9byxxQ7YTSpy8Js5BZwwxp1axkqEscK7k01uxuLIK0V3eDv1/KkLI3XrMGMBDO9wdMf+ZYvXRSyeWxfmP6vDfLpbsf7HUi+xuW7mfQs3tJ8hLhdmhBBCCNGLNMOD7i3C8BRiRupSv61wbZ8ch2T69UV2kWCkrcvjwYYNG8aKFSv2CkauWLFiQHXY7u/8Lgc3nTQBsGtEttVN+8Nrj2NXU5TX1+3mtTXVvLpmF1WNUV5eXc3Lq6sBKCvwpgKTJ08cRoF3/xtGtD7pt2KNGL7haIabjXUJbn03wNNr7OY0PqfGtYfl8IMjcsjJxuY0+0MlpCaaEPthQqGD5780hKdWh/nRmw2srU1w2pO7+cpUL/eekM9wv4Hu8KLnliabYH2O2bQNR8F4HP6RHTa5saINxOs2kGjaZgcyc0q7fPElELV4cX2Ep1aHeH1zlHirxtJLttRwzTFj2+wkPVjqxiozghFYx/VHj+DHJ09MyxCXQKQQQggheptmeHDkj6Hho18QWPEwVrQe3V1A3vSryD/shyQatvTq8UimX1+IbNXlzMg777yTBx98kJtuuomjjz4asGtG3nfffVx33XXceuutvbKivWkgZkY2C8YSOHWdhkiMfI+TWDyKRwXRVKsz5uTJt1Lw6c4QCzY08Nq6BhZtCRAzWzYPQ4cjRudy6oRCTplYyGGjcjF0rdXJu7bXczZPU8oiEdhComETmsOL7imiLqK4d3GAPywPErfsJS+d5uPWY/IYmYVdY4UQmVUfsfjpogB/XB5EAQVujbuOz+eyg33oqe8xhRWtQ8WbMLzD7CY3vuK0IdfKShAPVJCoX49KhNOaZnVGMGbx0sYI/1kd5tWNEaJmy7yDhjq4cIqPC6Z4mTg0R7ICW5MMcSGEEEL0MSNnJI0r/x/1S36+17yCI3+Cf+KXCFcsAN2FZjjRdBea7gTD/q0ZLkj+1nSnfbsLF6/39fq5B38Hs6myW3+j6F8kM9LW5WCkUopf//rX/PKXv6Sy0v6nGTlyJDfccAPf+973+l1NPxjYwUiwhzDGdq0kEa5Bs+KAhkq2Tmn5tDRA2UHE5CYRjGssqoQ3tsHrW2FdffpnW+iGE0fDyWUaJ5fC6Byd1k+qOXNI5E7G7R9CfShGgc/OhtFCVTyydDf3Lm6kPmq/1pyxbu4+Pp9pw/c/81IIMTh8tCPGNa/Vs6LaHv58xAgnD51ayMGtvj+UZWJFalBWLNnkphzdU4QVqSVevx4zuAPdlY/uzu/Ua4bjilc32QHIlzdGCMVbdp2Tihx8aYqXCyZ7OWBo+neY1I0VQgghhMgQzYGraBIVj5ZhRev3mq27Cyi9fBNb/zIRK7y788+rO9sJVLrQDAeabk83fMMYfvrjbP3T2HZfv+zbW4nVrJELtYOIBCNtXQ5GttbY2AhAbm7u/j5FVhgMwcjItnfRnP5O11Fr1rJ5KCoaEizYHOP1zRHeqojREE3fdA4YYjBnjIs5Y10cNyYP17Cp3LtwIw+1ygi65pixXHNMOcc9/D6rq5s4aKiDu0/I55TyzHX0FkL0PwlL8YflQe5cFKAxpjA0uHpmDrfMzk0r76DMWLLJjY7hK8YMV6OUheEdhqZ3XKkkmlC8vtkOQL6wPkJTqwBkeb7BhVO8XDjFx7Rhjn1fiJOsQCGEEEKIPmGGawhvWUC8YQNDjv8F2/46ud1lS7+5nt1vXUe89gsw4ygrhrLiKDMGzb+V2e7jO+IcchDFZ/+349e/Yqt9AT0hF6kHCwlG2roVjBwoJBjZdQlL8WFljNc3R1mwOcKyHXFab0jPXnY4S7fWc9fre9dKu2XORGaNKWDr9nV89UAfRn9vTiOEyJjtjSY3vFnP/LX2AdyoXINfnZzPWRM8aQFCy4qjElE0w4XewZDsuKl4qyLKU6vDPLcunHbRpTTP4ILJXi6c4mVGcdeG6AghhBBCiN5jn/O+TXjTK0R3fgjKQvcOpfSb69j6p/JuZSYqZSUDk3awsr2gpbLiYMZQVgJlxdA0J3kzrmbro2M6zMys/+iXeEtPRHf6e/AdEdlKgpE2CUYiwcieUBM2eXNLlNc3RVlWbfHBtSd22EV2x+2nwADvIiuE6DuvbIzwg9fr2dxgX7k+Y7yHX56cz9iinNQw6fpwjAKvi2g4gDu6IzVM2rQU726N8Z/VIZ5ZF6Em3FJTt8Svc8EULxdO9nLESFeqNqUQQgghhMgsZSWI7vyI8OZXiGx7G5UIp+Y5hxyEb+w8cqdfSdNnf8lYzcYOa0Ye8WNcxTOofv5CNKcf37iz8U/6Eo6ckb22PiLzJBhp63I3bSHaMsRr8KUpPr40xQeGm7pIvM1AJEB9OE4gHCPfcEiHaSFEj5g3zsNxlw3nvg8aefDDJl7cEKEy7OTNK6fzq3c28tCiJXs0kJnIinWf8/cVtTyzJszOUEsAcphP57xJdgbk0aNckr0txEAh5RKEEKLfU0oRr1tDePMrhLe8hhWpTc0zckbjHTsX39i5OHLL7OWjjeQf9kOAdrtZ9yYrXNvh6wc+/TOO3DEkGrcQXPMvgmufwDP6RHKmXIxr6LReXTchMkkyI5HMyB6nOdCKDqTkjgXtZkZW3X4KSjIjhRC9YNXuON9bUM/1cw5h2bb2y0XMGF3A+Y8tBaDIo3HOJDsD8rgyNw4JQAoxYGiGB91bhOEpxIzUpX5b4dq+bSQlwVAhhNhviaZKwlteJbz5FRKBlgCi7srHM+YUfGPn4RxyYJtldFrvB6xIPbqnADNchxXpm/3Avl5fKYvojg9oWv0vYjuXph7nHHIgOZMvxlN64j5rnYv+QzIjbV0KRsbjcebNm8cf/vAHJk6c2CMrmg0kGNnzYr5yfvn+Tu5csHcQ4LZTJnL90cW4Qpv6ZF2EEIOPwoCigxh5Z/sXRbbeOocf/ed95pY7OGmMG6chAUghBhrN8ODIH0PDR79oNyOmt09EsyYYKoQQ/YwVbSC89U3Cm18htuuTlhmGG8+oY/GNnYd7xFGdD9Rl+qJQJ14/Xr+e4JonCG1+BSz7GNbwleCf9CV8489Gd/Xv5sFCgpHN9HbntMHpdLJy5cpur1yz3//+9xx88MHk5eWRl5fHrFmzePnll1PzI5EIV111FUOGDCEnJ4cLLriAnTt3pj1HRUUFZ5xxBj6fj+HDh3PDDTeQkKG/GeeO7uDGE8dz2ykTKfA6Afvk/7ZTJnLjieNxR3dkeA2FEAOZ7nASiMQ6LBcRjMZ5cO5Q5o7zSCBSiAFK9xbR8NEvqF/y81TzACtaT/2Sn9Pw0S/QvUW9+vrNwdDGlf+Pij+WsvXRMir+WErjyv+HI38MmuHp1dcXQoisojnQHB7Q2g8eKjNKeOtCat+9kapnzqBh6X3JQKSGq/gwCo68hZLzXqJo9l14Rh3TtYxBlbC7VmcqO70Tr+8smEDBkT+h+OxnyDnoW+juQsxQFYEVD7Hz2bNpWPZLEo3b+nClhegdXR6m/YMf/AC32829997b7Rd//vnnMQyDiRMnopTib3/7Gw888ADLly/nwAMP5Morr+TFF1/kscceIz8/n6uvvhpd13nvvfcAME2T6dOnU1JSwgMPPMCOHTv4+te/zhVXXMHdd9/d6fWQzMjeoRmeVOOIhnCMfK+LaLgBd7RKMgGEEL1LykUIITQHrqLJVDxa2mEX023/mIGKN6LpTjTdBYYTzXDZt/Xm2/bvlvsuNMMJyd+px+mu1PIYLnzlpxFc80TGGicIIUQ22FeGuFIWsV2f2HUgK95ExRtTj3UUTMA3dh7eMadi+IZn8K/IDGVGCW1+leCaf5No2JicquEZfRz+yRfjGja9zaHpIntJZqSty8HIa665hr///e9MnDiRmTNn4vent5//1a9+tX9rnFRUVMQDDzzAhRdeyLBhw3j88ce58MILAVi9ejUHHHAAixcv5qijjuLll1/mzDPPpLKykuLiYgD+8Ic/cOONN7Jr1y5cLlenXlOCkb0s0+nwQohBScpFCDE4WdEGItveIR7YROGsn7Ltr5PaXXb0N9ey89nzidd81uProXuHUvrNdWz9U3m7wdCyb28lVrNGjo+EEANWh+UyZl5P/dL7aPr8b5ihqtRjdO8wfGPn4h0zF2fhwCkP1x1KKaJVHxJc82+iOxanpjsLJ+OffDHesjn2RTKR9SQYaetyFdTPPvuMGTNmALB27dq0ed2JyJumyVNPPUUwGGTWrFksW7aMeDzOnDlzUstMmTKFsrKyVDBy8eLFTJs2LRWIBJg7dy5XXnkln3/+OYceemibrxWNRolGo6n7gUBgv9dbdIJKSNdsIUSfs8tF2Aewv120eY9u2uMxAusY9B3chBggrFiAyLZ3CFe8QbTqQ1AmuncoQ09+GN1d0G4w0OEroeDoOyDWhLLiKCuGMuNgxVBm8sdqvh+3byenKTO6x/3Wy0Uxcsdghne3+dpgDxc3wzUoZSE5LUKIgap1uYxmzeUyUAp3yeE0LL0PzenHW3oS3rHz7Gw/3cjgWmcfTdPwjDgSz4gjiTdsIrj2SUKbXiJet4b6D+4g8Mkj+CdeiH/Cueju/EyvrhD71OVg5MKFC3t0BT799FNmzZpFJBIhJyeH+fPnM3XqVFasWIHL5aKgoCBt+eLiYqqq7KsmVVVVaYHI5vnN89pzzz33cMcdd/To3yGEyGKSnTsoKTOCEVjH9UeP4McnT0wrF2EE1km5CCH6OSvWaAcgtyYDkFbL97ujYALe0pMwQ7vIm35Vm8Ok86ZfhRmtx5kzqndWUHPg8Jd0GAzV3flUP3kinhFH4Z94Po7c0t5ZFyGEyATNgeEpJLDi4TZnBz55hNLLN1N0/K9wD59h15MU++TML6fg8BvJPfg7hNbPJ7j2P1jhXTSu/D1Nn/8Fb/np5Ey+GEfemL0fLOdFIkvsd3/49evXs2HDBo477ji8Xi9Kqf3KjJw8eTIrVqygoaGB//znP1x66aW8/fbb+7tanXLzzTdz3XXXpe4HAgFKS+XgT4iBJms6mMpOP2OUGcEV2oQKO8g3HKhwApdKSEakEP2UFWsksv3dZAbkkvQAZP54vGUn4yk7CWfeWABUPET+YT8EaLebdq9RCcxIXfvB0EOuIrLtXczAJoKBTQTX/At3yVH4J12Ae8TRkhUkhBgA1D4zxFWsEW/ZSXZjF9ElhruA3AMvI2fKJYQrXqdp9b9J1K8ltH4+ofXzcY+cTc7ki3EVH4bu8GbHeZEQSV0ORtbU1PDlL3+ZhQsXomka69atY9y4cXzrW9+isLCQX/7yl116PpfLxYQJEwCYOXMmS5cu5Te/+Q0XXXQRsViM+vr6tOzInTt3UlJSAkBJSQkffvhh2vM1d9tuXqYtbrcbt9vdpfUUQvQvHdanSZ6A9vaON2uCoULKRQjRj1mxpmQA8vV2ApAn4Sk9CWd++V6PVWaERMMWcg/+DgVH3IQVqUf3FGCG6/pkP2CFazsMhsbrN1J03C8Jrv8v0crFRKs+IFr1AYa/BN+E8/GNOwvDU9ir6yiEED3NjNYTWvc04a0LGXXJhx1niHsKSAR39v1KDiCa4cJXfjresacRq/6Y4Jp/E9m+iGjle0Qr38Mz5lSKT/8/Gj7+dcbOi4TYU5eDkT/4wQ9wOp1UVFRwwAEHpKZfdNFFXHfddV0ORu7Jsiyi0SgzZ87E6XTyxhtvcMEFFwCwZs0aKioqmDVrFgCzZs3i5z//OdXV1QwfbnfWWrBgAXl5eUydOrVb6yGE6N86rE8D5Ey7HKuxCU3f7wTxDmVDMFQIIforKx5sGYK9YwlY8dQ8R/44vKUn4Sk7uc0A5J6UGcFsqsQMVqMZDvukt4+y1PcVDMWK4xk1G8+o2SQatxFcP5/Qxucxg1U0fvIIjZ8+irfsZPwTL8Q55EDpmCqEyGqJwBaa1vyb8KaXUKbdoyGy7V3yDrmK+g/bKZcRqZORQz1E0zTcxTNxF88k0VhB05onCW98gbyDv0PDsgep//Du1LKtz4tyD/4OZlNlplZbDFJd7qZdUlLCq6++yiGHHEJubi6ffPIJ48aNY+PGjRx88ME0NTV1+rluvvlmTjvtNMrKymhsbOTxxx/nvvvu49VXX+WUU07hyiuv5KWXXuKxxx4jLy+Pa665BoD3338fsJveTJ8+nZEjR3L//fdTVVXF1772NS6//HLuvvvujl46jXTTFmKA0Ry4iiZT8Whpu1dhSy/fxNa/TMSK1KHpTjBcaIYLTXei6a7kffu2ZrhAdybn730fw4lmuO3HGk403Y1v0oWE1v6nzQOvgiN/Ijt9IcTgs4+SFVY8SGT7u0Qq3iCy44P0AGTeWDxlJ+MtOxln/ri+XOue08mSHSoRIVzxOsF1TxOv/SI13Vk4Cd/EC/GOORVd6qoJIbKEUopY9cc0rX6caOV7qenOwkn4p/wPvvIzcBZOkAv0GWIlwriLZ7D10THtnheVfXsrsZo1EhTuI9JN29bllKBgMIjP59trem1tbZeHPldXV/P1r3+dHTt2kJ+fz8EHH5wKRAI8+OCD6LrOBRdcQDQaZe7cuTzyyCOpxxuGwQsvvMCVV17JrFmz8Pv9XHrppdx5551d/bOEEAOAGd5NZNs7JBq3UXj0T/fRwXQXhq8EK7wbZZpgRnqsjqDuHUr+4T8k8Ek7xbpXPEzBETdhBqtlpy+EGPA6KllhRmqIbF/UKgAZSz3OkTcGT9kcvKUn4cgf1/+zAjtZLkJzePCNOxPfuDOJ1XxBcN1/CW9ZQLxuLQ0f3k1g+UP4xp2RbHhT1gcrLoQQe1Nm3L5wsuZfxOvWpqa7Rx1DzpT/wTXsUPt7W5kZLZcx2BmeQqxoQ8fnRZFa+2KZlDQSfajLmZGnn346M2fO5Gc/+xm5ubmsXLmSMWPGcPHFF2NZFv/5z396a117jWRGCtF/JQIVhLe9TWTb28RrPgPsYGDpN9ex9U/l7V8BvGIrkaqlqHgQZcVRVgzMGMqM2ffNGFgxlBlHmVGUFU/eT05rXj65bMvyMYzc0RTN+ilb/zKh3fUu/dYGQltex1U0Fc1w9tbbI4QQGdVRyYq8Q69hx1OnEK/5NLW8I3dMMgPyJBz54/t/ALKHWNEGQhtfILj+acym7anp7pIj8U+8APfI2dLwRoh9kYaCPcKKBQiuf4bg2qewwrsA0Aw33vIzkh2cO7hIIp9B39McuIZMpuKPHY8Y2/ncBfjGnYl7xCzZ9/YyyYy0dTkz8v777+fkk0/mo48+IhaL8aMf/YjPP/+c2tpa3nvvvX0/gRBCdINSinjtKiLJAGQisDltvnPIgXhGH48Zqm6/g+n0qzCjdehOHzj3zvTuNs2B4S/eR7HuIure+wlYJt7y0/GPP6fjgzchhOiHOqzfqxSFR99OzVvX4S072c6ALJggJ0Ft0N355BxwCf4pXyG64wOC6/5LtPJ9olVLiFYtwfCV4JtwHr7xZ2F4itp+EgkCiEFKGgr2jETjVoJrniC08YXU+6Z7huCf9CX8E85Dd+fv+0mkoWDfUwnMSF3750WH/C/hijeIbH2TyNY3ceSPJ+eAS/CWnSIJE6JXdTkzEqChoYHf/e53fPLJJzQ1NTFjxgyuuuoqRozon5FdyYwUIrspK0Gs+mPC294hsu3t1FVYADQDd/FheEYfj2fUsRi+YcnJmW0gY+SMpHHl/2tzp19w5E/wlp/OzmfPwQrvTk13DTsU34Rz8JaeiGZ0reyFEEJkHc2Bq2gSFY+WdZClXkG0Zg0aZt+vXz+XaNpOaP18Qhuex4o12BN1J97Sk/BPuhDnkIPQNE0CMWJQy/TxYH+nlCK26xOCa/5FZNs7kCxq5CiYQM7kr+Adc4pdS11ktX39H0SrltH4+V8IrX8GlQgBoHuHkTP5YnwTzkV3+jP8Fwwskhlp269g5EAjwUghso+VCBPdsZjItneIbH8PFW9MzdMcPtwjZuEZfRyekUeju3LbfI7WJ2Ct69NYkd4/AevMwa8VbyJa+T7BDc8S3bEYlGU/1pWHb+w8fOPPwVkwvlfXUwgheppSFtEdHxCtXkbhUbex7a+T21227IqtmJEaVEKCAftLmVHCW14nuP6/xGtaGt44CiaRe8h3yDvomxKIEYPWvi4OS0PBtikrQWTrQppWP068dlVqunvk0eRM/gqu4sMki72f6cx5kRVrJLh+PsE1T2BFauzHOXPwTzgP/6Qvp5I+RPdIMNK2X8HIuro6/vznP7Nqlf3FNHXqVC677DKKitoZFpLlJBgpRC/r5NAwM1JHtPI9wtveIlq1FMxoap7uLsQz+lg8o47HXXJY1zIHMzQ0rSvBUDNUTWjj84Q2PI8ZqkpNdw45CP/4c/CMmSP/v0KIrGbXNXye4LqnMYOVnavfKx08e1SsZpXd8KZiAZhRhp/1X2I7l1H/4d17LSuBGDHgdaZW3hUVhDa+iOEpQnPl9X6ALcvLJVixRkIbniO49knM0E57ouHGN/Y0/JMvwplfntkVFN3XiW1QmTHCm1+lafU/SQS22BN1h70dTPkf2Q66SYKRti4HI9955x3OOuss8vPzOeywwwBYtmwZ9fX1PP/88xx33HHdW/MMkGCkEL2jM0PDEk2VdvbjtreJ7f4klR0IYOSMsodfjz4O15Bp/bc4fxcOPJVlEq36kNCGZ4lsfxeUmXwKH96xc/GNPwdX0ZS+WGshhOgUu+PzfwhveT3VDVtz5uIbdwaFR99J0xd/k6ykPmZFGwhvXUjBETdKMFgMWprDg+4uZOufxrS7zOhvrmXns+cTr/kMzZmD4R+JI2cERs4oHP6RGDn2j8M/olsldLKmXEI7x6SJpspkPcjnW4bpugvxT7oQ34TzMTyFfbeOImsoZRGtfI+mVf8ktuuT1HT3qGPIOeCruIYeIhmy+0GCkbYuByOnTZvGrFmz+P3vf49h2IEB0zT53//9X95//30+/fTTfTxD9pFgpBA9r8NhyjOvo+GjB2la+ySJ+rVpj3MWTsIz+gQ8o48b9J1UzXANoU0vEtrwHGbTttR0Z+EkfOPPxTt2rtRwEUJkhEpECFe8TnDdf9OG8DkLJ+GbeCHeMaeiOzxSry2DNIcH3VPE1kfbb45WesVWLBkmLwag2O5PCa1/jmGn/73DgHzp5ZvZ/n+Hk6hft8/n1L1DWwKU/pE4clpuG95h7V40z4bvwfaCodHKDwis/AORbW+lEgIc+ePsepBjT5Ua5iIltvtTmlb9M612qHPIQeQccAmeUcf136SRDJBgpK3LwUiv18uKFSuYPDm9/s+aNWuYPn064XB4/9Y4gyQYKUTP67BGzxE/xlU8g+rnLwRNxzVseioDcqB+KXeHUhaxnR8T2vAs4W1vgRUH7ANLT9kc/BPOSTUqEEK0I8uHxvUXicZtBNfPt7NnYgF7ou7EW3Yy/okX4hxy4F7fRZms3zuodWaI6uWbqHn7enxj5+HIbT9oKUR/0FYWV2dLFViJCGZwB2bTdhLBSswm+6f5dnO2YLt0B4avxA5QJgOWzbc9pSfQ9NmfM5Yh3m4w9JD/JW/6Vex46mTidatxlxyJf8pXcJccKceUol2JQAVNqx8ntOml1GgII7eUnCmX4Cs/TQLYnSDBSFuXg5GzZ8/mhhtu4Nxzz02b/swzz3DvvffywQcf7NcKZ5IEI4XoYZ06AdpMYMUjuIpnYLgL+nwV+yszWk9408uENjxLIrA5Nd2RPw7f+HPwjZ2H7s7f+4ESiBGDVNYMjevHlGUS3bGY4Lr/Et3xAc0ZEYa/BN+E8/GNO6tzQ/jke6jPdfrCIHZjCv+ki3CXHCGBCNGvKDNOeMurNK36PxKBTfbEZH27nIO/g3fU7G5lJSqlULEAiabtmMFKEslAZep2cEeqrM6eOlM7t/Tyzexa8F1UPADoLf9/mg5ooGlpv7XUfT35LC237Xl6cln7OXKnfZvwxufbDsge8WO8Y08l0bhdmiaKLjHDNQTXPUVw7X9TjUZ1dyH+yV/GP+H8ts9HBCDByGadCkauXLkydXvVqlX86Ec/4pprruGoo44C4IMPPuDhhx/m3nvv5aKLLuqB1e9bEowUoucoM0qs5gt8Y05h618mtLucdFDtHqUUsd0r7dqSFW+gmpv96C68pSfim3AOrmGHoju8EogRg1Y2DI3rz8xoPaENzxFaP98+2U5yjzgK/8QLcI84WoZlZbl9/Q8E1z9H46d/JFr5Ps1BZkfeGPyTvox37GnoTl9m/wAhOmDFg4TWP0PTmn9jhXcBoDn9yc6/F6U6//Z2drayTMzwLsxkFmUiFajcju7OZ9ipf2bbXye3+/jWdSt7mjQSE73Niofs5nWr/5Vqwqk5vPjGnY1/ysV7B9wG+4VJzYEZrcFVNBWHvzjTa9MrejQYqev2FZp9LappGqbZ9lWhbCbBSCG6L16/wT5p3fwymuGSA58+ZMUaCW9+leCGZ9NqHrlHn0jxWU8S+PjXEogRg1KHWWHSPKVNSiniNZ8TXPc04YpWDWlcefjGnYl/wnk4ckszvJaiKzoTiEk0biW49j9pzSs0Zw6+8Wfjn3ghjpyRmfwThEhjhmsIrnmC4PqnUfEmwA66+SddhH/CeeiunLYfmIkgiObAVTSZikc76ui9hfold2PFmgAFSiV/Nzd1VKjm28pqWaZ5OVTyPL31YxVgYeSMJv/Qq9n65/azHiVBQPQEZSUIV7xuZyg3n49oBt6yk5PNbg4e1AkSaSN1wrUY3iKUlRiQ9f97NBi5ZcuWTr/wmDHtdyvLVhKMFGL/WPEQ4YrXCW14Lu1qruErZvg5zxDe+IIEAfqQUop47Sq7tuSWBQw77R+dqpMkxIDUqXIRW6hfeh+6Kw/DX2J3S3Xl9c4Q1UxnAuzj9a1EhMiWBQTX/5d47erUdGfhZPwTL8Qz5hR0h6cv11j0tE5sg1Y8SGjTiwTXPNnSOE3T8Yw6Fv+kL+MaPkOGcIuMsWvV/V+yVp1dP9uROwb/AZfgGzsPzXBleA3bltELY53YF0qCgOhJSimiVR/atVt3LgXAWTiFERe9RWD5Q4MyQaL9UQpXk3/4jwbc8VWv1YwciCQYOcBl+gRwgGnOmgltfI7wltdbCnprBp5Rx+IbfzbukiPRnX4ZHplBlhnDPfwQtj46Rg4+xaCjLJNY7Wp8pcd3WC6iraFxmsOH4R+BkTMCh38Ehq8EI2eE3Tl1P4KVma5Zua/XTzRuJbjuaUKbXmzVkMaFt2wO/onnt9mQRgx8SllEd3xAcM0TRKuWpKY78sfjn/xlfGPmog2wkyeRvWK7P0t28X2bVBffodPIOeBreEYdg5aqnZidMl0yREYJiEyJ1a4muPpxcg/+zqBOkOj4f/AW8g+7fkBlSPZqMLKyspJFixZRXV2NZVlp8773ve91fW0zTIKRA1OmTwAHGivaQGjzK4Q2PEeiYUNqupFbhn/82XjHnobhHZL2GOmgmjmaw4PuKWLro+13Ry391gaiOz/GyBktwQYxIFixRrtu0dr/oKzYvpsGXLGFXa9cRrxuNWbTDqxo3T5fww5WltgBS38yYJn6KUF3F6T+nzJ9Atrh68/4AbvfuIrg2idSyxv+EXZDmvFnSWMxkRJv2ERw7VOEN72U2l41Vx7+8efin3gBxgCteSUySylFdMdimlb9g1j18tR096hjyDngq7iHTc/cyu2HTB4TZ3pfJAY5zYGraBIVj5YNzgSJTmUnb8vazO790WvByMcee4zvfOc7uFwuhgwZknYCq2kaGzdu3P+1zhAJRg48stPtGUpZxHZ+bGdBbn0rVTsMw4239CR848/BNeyQfQeyJDu173VqiOomtv5lot35bsJ5eMfOHVBX5cTgkQhsoWntU4Q3vYhKhAE7WFJy/suEN73U6WwQKxHBDFVhNu3ADNo/iWDz7SqsSM0+10UzPKnMyqJj7yO86eV2MwFyDvwm8bo1oOloqU6pyS6oyS6q6Z1R7emdvXjQuU7KX2rVkGaWNKQR7bJiAUIbnie47j8tDY00A8/oE/BP/jKuoQfLha1s1w+Ox5SVILzlNbvuXPPFb92Bd8xccg74Ks788syuYHdl6DOQBAGRKZ1KkPjmekJbFuAacuCACsopK0G8dg3efYzUKfv29lTDrYGg14KRpaWlfPe73+Xmm29G17M7Jb6zJBg58MhwhO4xQ7sIbXqJ0MbnW2pGAY6CSfgnnI13zFx0V24G11B0xr7+Dzxlp1D19FxIduLWHD68Y+fin3A+zsKJfb26QnSJPYx0CcG1TxDd8UFquiN/XLIT8DwMd0GPXphSiQhmaGdLgLJpB2aoKnXfCu9OLduZDqbNFwRaP67TksHK5gCm1iqAiaahe4Yx+uvL95kZGq54G4d/eNdfXwxayjKJVC4iuOZJYtXLUtOdhZPxT74Ib9mctk8m+0EgbKDKmtFCHWwDVjxIaMNzBNf8GzO0M7m4D9+E88iZfBGGT76neoT8H4q+1oUECawE3vIz8E84t183y0s0biW08QVCm14E6ERj18GZGeno6hOHQiEuvvjiAROIFAOQ5sDwFBJY8XCbswMrHqbg8BtJNFWhYbW5TG+sU7bv+JWVILpjMaENzxGpfB+UCYDm9OMdMxff+LNxFU3J8FqKrrDCteQf9kOAdgMxJec8R2jTSwTXz8dsrCC0fj6h9fNxDp2Gf8L5eMtOQjPcGf5LhGhhxUOEN71EcO1TJBqbG+xpuEfNJmfSRbiKD0tlZykzQqJhC7kHf4eCI25KywbZnwx5zeHBkTcGR17bzfqUGcUM2sFKlIkVqW3zwBPAitZjhndh+Er2LxiZ6qya9itFzyvHDFV3+PoqGsCZXyYdVEWXaLqBd/TxeEcfT7xuHcF1TxHa/CrxujXUf3AngeUP4Zt4Pv4J52F4h2ZPICwbZOB4MBtGC3W0DSSathNc9xTBtf9FxRsB0D1F+CdfnOyMLRe/e5RKoBLZeS4iBiiVwIzUkTf9qjYTJPKmX0WsZhWgYUXrCa7+P4Kr/w9X8eH4J5yHZ/RxaHqXw1Z9TiUihLe9RWjDc8SqP05N192FxHZ/0cHffzXKig+oYGRndTkz8kc/+hFFRUXcdNNNvbVOfU4yIwcWOxW8kK2Ptt/ZffQ317Lz+Yuwwrvs2l++Ehz+ktRt+/fwbn8pZM0BeAcHv4mm7YQ2PEdo04tpJ8SuYYfgG3c2nrKTBsV2M1B1dliOUorYzmUE188nsu2tVDBad+XjHXdmv79CKfq/RNN2gmv/Q2jj86h4E2BfLPGNOwv/xAv2vX32dRCgkx1Mo7tXg4q3Ci5aoCwUqp1pzdNb5qvk/JZpCnQnvrKTB2+NJtGnzGi9ndW27j9YoWp7ou4gZ+qlDDnufhqW/WpQl83J5PFgpkcLdRQMzTv0e+x4ag7xmk/tdc0tIyfVGVsuhAoxUHTmoogVbyJS+T6h9fOTI17sMJXuKcI37ix848/BkTMys39IG+J16whteJbQ5ldTF1RAwz3iKHzjz8Iz8lh0V650025Dl4ORpmly5plnEg6HmTZtGk6nM23+r371q/1b4wySYOTAoJQitusTwhWvM+zUR3tgaJyG7h2SDE4Wtxmw7OhqbTZfiTaDVYQ3v0pww7PEdn6UWl53F+ItPx3f+LNw5o3t1XUTfawLgRgzvNsOUG94NjVUCsBdcgS+CefbnSv7wRVK0f8ppYhVf0xwzRNEtr9L84GpkVtKzqQv4y0/PavrnGY6CJDp1xeDj7ISRLa9TXDNE8R2r2T4Wf8d1B1UoeeOB5VSYMVQiQhWIoRKRFCJ8B4/reaZYdCdDDnuAbb+aWwHx8Sb2fX6lZAIoxlO0J1ouhN0B5rusvf3hj3Nnp683eGyydu6E2fRFJo++1OHtWvr3r892Rn7WKlbK8QA1ZW6pYmmSjvAt/F5rEht8zPgHnEkvgnn4Rk5O6PnIlasifCW1whtfI547erUdMNfgm/cWXjLz8DhL0l7TFvn5cpKZPVx7P7qtWDkXXfdxW233cbkyZMpLi7eq4HNm2++uf9rnSESjOzfrFgT4c0vE1w/n0SD3UBpnwe/075NdOcyzNBOzGCVXfur+XaoCjNYhUrW0euI5vS3ZFL6SzB8xcnOqiV4Sk+k6fO/Zt+V6EP+l7xDr2bHkycRr1sNaLhLjsQ3/mz7INBw7vO5xeCgLJPojvcJrns6/Qqldxi+8WfjH3+O1HASvUIlIoS2vEpwzZMtDQwAd8mR+CdfhHvEUWha9peLyfRFqUy/vhjc4g2b8JWf1mEgbDBk5+6rkZS3/HQalv2y7YBiIowyI6h4yP5fVV0rL+QcchDFZ/+XbX+d3O4yo7+5lp3Pnk+85rMu/2370qnauVdUEKtZg4bZ468vhMhCXUiQUFaCyPZ3CK6bT2zn0tT01LnIuLMx/MW9vcb2uiQTn0IbnyNS8UZLrEB34Bl9PL5xZ+MuOXzfx6eaAzNag6toKo4+Wve+1mvByMLCQh588EG+8Y1vdHcds4YEI/unWO1qQuv+S3jLgtTJlGZ48I6dS87US/GWnbjfJ2BKKbueV2hnqotq6nYyaNleHS7obOOCzex65RtYsUbQNPuLS9Np7pqaup9qSNDcoMBIv48O+h6PQyP3oG8S2vBc2wHZI36Me8RRBDc8i2/cmTj8I7rwzovBKNFUSWj9M/YVymidPVEz8Iw6Bt+E8zu38xWZ1Q9q15qhaoLr/kto/TNYsQYg+b1efjr+SV/ql11UM93BNNOvLwavTnVQvXwziaYdA7YLt8LANWQyWzsol7Bfjax0l/3+OrxoqR9Py23Di+7woHuHUXTcvWx9dEyHjazqPrgLFW1AWXGUGQMrgbLiYMXtaVY8NW2v+eYe81s9zlk4ZZ/B0LIrtmJGaqR2rRCiQ4nGrclsyRdbnYvouEfMwj/hfPtCdS9kVpvhGjvxacNzmI0VqemOvHJ848/GW34ahrugS8+ZaNqGu+TwAXsO3msNbNxuN7Nnz+7Wygmxv6xEmPCWBYTWzydeuyo13ZE/zm62MXYeuisHoFtNCzRNw/AUYngKoZ2mLVYi3CqzsiWj0gzuRHfnYYZ27aNxQTXx+vW9diW66Lj7CDz9SJvzA588QtkRN2P4R2ZtUEJkF0fOSPKm/y+50y63h+Cte5rYruVEtr1NZNvbGDmj8U84F++4M9veIfeDQFivyuDfn+21a5VSxHd/StPaJ4hsfStVr9Twj8A/8UJ8489Cd/XfC4XKjGA2VWIGq9EMB4ngzj7dBjL9+mLwUmYCw1OI7i5oNxCmu/Op/tfsZJ3qM3ANP3RAXNhKNG0nvPkV4g0bGXryIx0eD1qROvIO/l+saF0yoOhrFVj0oDffN1oFHbswPNGKNnTYOMKKNpAz8YL9/VM7pDBw+Ed2vA14CuzvJSGE6IAjt5S86VeTO+3b9rnI+vnEqj8mWvke0cr3MHwl+MafjW/cWRi+Yd16LWWZRKuWENrwLJHti1oauzq8eMvm4Bt/Ds4hBw7YC2l9pcvByO9///s89NBD/Pa3v+2N9RGiTfGGjXaX300vpxoXoDvxlp6Eb+J5uIYesteXQW+fgOkOL3re2LZrK2oOHP4RHR58Gb5i/BMvQI2dm2w+oAD7d0szAivVrCDVzKC5kUHrZgVKgTJTyzhyRu+zi6sVrbcDA9JRT3SBZrjwjjkF75hTWv1fvoTZtI3Ait8RWPlHvGUn4ZtwHq6hB9v/J9kQCMuQTAcCs2GYbke1a0MbXyS49om0ejuu4TPwT74Iz8hjBlbtsEx3MM3064vBZ18dVA+5isj29zCD2wkHtxPe/BKGfyS+cWfgLT+932WMWNEGwlvfJLzpZWK7VwL2xWHDN3wfx4P2cMPeukhghWvJP+yHAO3uB3qLhokZ7biLrhmpkwskQohOa30ukghsIbj+GUKbXsQMVdH46R9p/OzPyZFb5+EuOWLvC1wdNnatJLTxBUKbXmhpxoZd8sI3/my8ZScPyBqPmdLlYdrnnXceb775JkOGDOHAAw/cq4HN008/3aMr2BdkmHZ2UmaM8Na3CK2fT2zX8tT0fWZgZYmMNg7oZBfXgV6nSfQNO2P5NULrniZetyY13VN2CsVnPE7Dx78elPXqsiEQmOkGJp2uXau78I2di3/Sl3EWTuy19RFC9K19fQ/G6zcTq/6I0MYX7LI7iVDzI3EVz8Q37kw8o0/I2k6jyowRqXyf8OaXiVS+D1Y8OUfDVXwYvvLTyDnwsvYbuPRRE59MlmvIhn2hEGJgU2aUcMWbhDY8Q2zXJ6nphn8kvvHn2GXJckZ12Ng1tPF5olVLaa6Rr7ny8JWfjm/cWTgLxvfo+sowbVuXg5GXXXZZh/P/+te/duXpsoIEI7NLomm7nW218YWWQFo/rE2X6YOvTAchxOAUq/mC4LqniVQsYNjpjw/qLqpd+R9UVgJlRpMdUCPpv9ua1nrZdpbTHH5GfPnNfdSu3UTlkyegYo3Jzqeuls6oht0NVdNddsdUo3m+w17GaHU71V3Vleyqat/3lp9GcM2/223c4B5xJKFNL+ObcG5WX1wSQuy/zgbCrESEyNaFhDa9SGznRy2Pd/rxlp2Cb9yZWTEsTilFbPdKwptfIVzxBioWSM1zFEzAN/Y0vGNOSTV4y/TxYJoMlQyR2rVCiL5ij9x6htCml1IjKp1FUxnx5TcJLH9oH41dwV1yBL5xZ+EZfbx9XNsLJBhp63IwciAaDMHI6M7loBvoenZ2SlZWgkjle4TWzSda9UFquu4dhn/CucnaD/2va69ciRaDlZUI4y6e0WHR/AGdnduJ7OTSyzex7e/TMYPbwer596A/dFEtu2IrsdoBug0IIdJ1IRCWaKokvOkle+hdcEdquiNvLN7yM/CVn4bhHdrba5y+To0VhDa/SnjzK5hN21PTde8wvGNOxTd2XruZ3RKMSxrs9aOFEH3GSkSIVLxOcP0zFB59R/sJEsmL48H1ycauOSN7fd0kGGnrcs1I0b9Y8SCa7sRZUI7hLsKMZk/TArA7p4Y2PEdww7NY4V2p6e6So/BNPB/PyKO7VKQ722SycYAyI91q4iNEdxieQqxoQ8dNnII7iWx/B9eQA9Hd+X27gr3MDO3E9Bbto4nVLnRXLmZj6+8ELdkJ1Z1sWOBp9dudnNc8rdUyadOSTQ9cBRj7rF1bQv5hP0TFg8kOqXE7S9Nq6Zba0jk1hrISYMZbbic7qaZ3XLWnGXljMMO7pXatEMLWhbqljpyR5E67nJyDvkmsejmhjS8Q2fomicBmGj95mMaVf8A94ih8487AM/JYNKN3Lrab0XoiW14ntPll4jWfp6ZrDi+e0SfiK5+Ha/jMfda3lUZSSVK7VgjRR3SHB9+4M/GNPxdX0SR2v/atNpdraew6anB+L2dQl6M85eXlHQ6P2LhxY7dWSPQcKxHJzqYFod1Etr9LaP3Tad2pdHcBvnFn4ZtwLo6cUb26bn0uQwdfcvArMqVTXVS9Q6j/8G6saD2eEUfjHTsPz6jZaIa771e4ByQatxKueJ3wltexYg2UfnNdh3+/w1dC4ey70DQ9FVhEd/XoEEQrWr+PLqr1uIqm9NjrpdEcOPwl0kVVCLHfNE3HXTwTd/FMrMN+SLjidUIbXyC++9NUB1XdlY937Fx7GHfhpH084b4z85QZJbJ9EaHNLxOtXJw6TkXTcZccgXfsaXhGH7d/pY8kGCeEEH1KMxyYyQvgbZGL45nT5WDktddem3Y/Ho+zfPlyXnnlFW644YaeWi/RTVY8SMNHv0g7AbWi9an7OVMvJd6wMVkTrKXeF7qjR06E229acBV5h15F4ye/T9VlcA07FN+E8/CWntBrdRkGPTn4FX1tX11Up19FvHYtursQK7ybyPZ3iGx/B82Zg7f0RLxj5+EafmjW14dNNFUSrnidSMUbac170B1Edy7ruINotB6Hv6RX1y+TXVQ7sw1IF1UhRGfpTj/+8efgH38OicAWQhtfJLT5ZazwLoJrnyS49kkcBZPsbtxj56bVoW3vAnnzaCGlLGK7PiG8+WXCFW+m6owBOAsn422uA+kdkoG/XAghxP7qVIKEXBzPiB6rGfnwww/z0UcfSQObLKHMGBV/HN1hrbKtf5mIFd6994ObGxGkNShwpRoakLxvNytoDmQmGxsY9uPyDv0+4U0vtluXwVVyGMHV/8I34Tyc+eN64R0QQmRaZ+uWxus3EN78KuEtr2KGWg4EdN9wfGPm4h07F2fBhAz+JenM4E7CW98gXPE68ZovWmZoBu7iw/GOmYNn9HEY3uFZUbdVatcKIQYqZSWIVn1IaOOLRLa/09LNWnfgGXUsvvIz8ZQej7NgfNvfQzOvp37pfTR98TfMYFXqeQ1fMd4xc/GWn4YzvzxDf50QQoiekG2NXaVmpK3HgpEbN25k+vTpBAKBfS+cZQZiMNIMVVPxx9Htzh/9zXVUv/BlYrs+AWX16GtL0wIhRLOuBMLszJQVyQ6l6ZkpdofSeXjHnJqRZlZmeDfhrW8S2fI6sd0rW2ZoOq7hM/CWzcFTesJeHaGzqmmBdFEVQgxgVrSB8JbX7GHcrTLVi895juiOD9q/QF48g+rnL7S7dpee1G8y84UQQnROtl0cl2CkrceCkffffz+PPPIImzdv7vRj7rnnHp5++mlWr16N1+vl6KOP5r777mPy5JbOn5FIhOuvv55///vfRKNR5s6dyyOPPEJxcXFqmYqKCq688koWLlxITk4Ol156Kffccw8OR+dGoQ/EYOS+MiNbd7FVltmq6cCejQpiezUlSN1uZ3ndN5y8ad9i65/Ht7t+ZVdsxYzUoBJyIirEoNDFQJgyo0Qq3ye8+RUile+16jat4Ro+A9/YeXhKT0R35fTaKpuRWiJbFxKueINY9XKgeXep4Rp2SDIAeWLnhu1JB1F5D4QQfSZet47QpheJVi1l1Fc/6vACeenlm2n87M+4h8+0a/cKIYQYcLLp4rgEI21drhl56KGHptUUVEpRVVXFrl27eOSRR7r0XG+//TZXXXUVhx9+OIlEgh//+MeceuqpfPHFF/j9fgB+8IMf8OKLL/LUU0+Rn5/P1Vdfzfnnn897770HgGmanHHGGZSUlPD++++zY8cOvv71r+N0Orn77r2vgA4WyoqTN/1q6pfctde8Pet0abqR7ALYQwdgmgPDN1zqMgghWnSxbqlmuO3akaUn2tkuWxcS3vwKsV0riFUvI1a9DD56wB6GN3Yu7hGzOu6m2slAmBVtILztLcJbXrdfo1XmuHPoNLxlc/CWntj17Eyp2yrvgRCizzgLJ5JfeC1ojlRzgrZY0XpUrBFv2clygVwIIQYwaeyafbqcGXnHHXek3dd1nWHDhnHCCScwZUr3OnLu2rWL4cOH8/bbb3PcccfR0NDAsGHDePzxx7nwwgsBWL16NQcccACLFy/mqKOO4uWXX+bMM8+ksrIylS35hz/8gRtvvJFdu3bhcu27IcpAzIyEZDftpfcTWPG7Pk9Fzra6DEKIgSHRVEl4y2uEN79CIrA5NV1z5eEtO9keXjf04NRFs301LQCwYo1Etr1NuOINolUftnROBZxFB9gZkGUnDdirl0IIMWBpDlxDJlPxx9JOjRYSQggheptkRtq6nBl5++23d2vFOtLQ0ABAUVERAMuWLSMejzNnzpzUMlOmTKGsrCwVjFy8eDHTpk1LG7Y9d+5crrzySj7//HMOPfTQvV4nGo0SjUZT9/tjncvO0B0e8g+7noIjbsKM1GK47ZPwvqiJkNEOrkKIAcuRM5LcA79BztRLSdStJbT5FcJbXsOK1BBaP5/Q+vkY/pF4x87FN/FCvKOObrc+TOMX/yS49gmiO5a0ND0AHAUT7QzIspNx5LZfe1cIIUSWUwnMSB15069q8wL5nqOFhBBCCNE3uhyM7C2WZXHttdcye/ZsDjroIACqqqpwuVwUFBSkLVtcXExVVVVqmdaByOb5zfPacs899+yV4TlQ6U4/ViJMvH4jcd1A1zsYxtiDlBkh0bCF3IO/Q8ERN6XVZZDuqUKI7tI0DWfRZPKLJpM3/WqiOz8ivPlVItvewgxW0vT5X/GNO5OGpQ+kNS2wovX2CalSuIpnEN2+CABHXjneMXPwls3BkTcmU3+WEEKIHiYXyIUQQojs0+lgpK7rabUi26JpGon9rAd11VVX8dlnn7Fo0aL9enxX3HzzzVx33XWp+4FAgNLS0l5/3UxS8SY0px/6KBgJUpdBCNE3NN3AM+JIPCOOxEr8iOj2d4nsWIy37CR2v/atNh8T+OQRSi/fRO707+EZeRTO/HF9vNZCCCH6glwgF0IIIbJPp4OR8+fPb3fe4sWL+e1vf4tlWe0u05Grr76aF154gXfeeYfRo1uGxJWUlBCLxaivr0/Ljty5cyclJSWpZT788MO059u5c2dqXlvcbjdut3u/1lXsB2laIIToI7rDg3fMKfjGn4UVC3TYtMCKNZE37ZvStEAIIQY4uUAuhBBCZJdOByPPOeecvaatWbOGm266ieeff55LLrmEO++8s0svrpTimmuuYf78+bz11luUl5enzZ85cyZOp5M33niDCy64IPWaFRUVzJo1C4BZs2bx85//nOrqaoYPt7ubLliwgLy8PKZOndql9RFCCDEwKDOB4SlCdxe027TA8BRgBnf2/coJIYTIDLlALoQQQmQFfX8eVFlZyRVXXMG0adNIJBKsWLGCv/3tb4wZ07U6W1dddRX//Oc/efzxx8nNzaWqqoqqqirC4TAA+fn5fOtb3+K6665j4cKFLFu2jMsuu4xZs2Zx1FFHAXDqqacydepUvva1r/HJJ5/w6quvcsstt3DVVVdJ9qMQQgxWrZoWtEWaFgghhBBCCCFEZnSpgU1DQwN33303Dz30ENOnT+eNN97g2GOP3e8X//3vfw/ACSeckDb9r3/9K9/4xjcAePDBB9F1nQsuuIBoNMrcuXN55JFHUssahsELL7zAlVdeyaxZs/D7/Vx66aVdztIUQgxcSikwo/YdTU/9aNp+XY8R/YQ0LRBCCCGEEEKI7KMppVRnFrz//vu57777KCkp4e67725z2HZ/FQgEyM/Pp6Ghgby8vEyvTo+zEmEi295Fc/rRHd5Mr44QvUYpBVYcZUZTPyjTDjwaLkADZdrLKTP1GE3TQCl7Psnfmg6ahqYZre4nA5h7BTRb3++40ZfoW5rhQfcWYXgK05oWWJFaaVoghBBCCCGE6FOJpm24Sw7H4R+R6VXpFZ2Nr3U6GKnrOl6vlzlz5mAYRrvLPf30011f2wyTYKQQ/Y+yEnbAMRGxf6sEGhqa4UQzPGhOH7q7EN3hRUv+oGmgLJRlAhZYpn1fpf9GmSgzgbLiKCsBVtyuM2Ul7CCmUmCZKFTqvmqebq8dqcBmKr6po+lONKcfzeGToGVf0xxohgNlJmRothBCCCGEECIjJBhp6/Qw7a9//ety8iyE6HPKMtMzHa24PUN3oBtudKcPLWckejLY3hx41Axn76yP2juIaWdbWsnAZKvpVst0ZZlY0TqsaANWpNbOunT40Z3+ZNam6FXStEAIIYQQQgghskKng5GPPfZYL66GEGKwU8pCmTFoHXiE5BBrN5rDg+Edgu7OSwYbvcngY982qtI0HQy71uT+XJ6x4iGsWAAr2oAZ2mkPF7ZioLvswKTDh6a3n30uhBBCCCGEEEL0Z11qYCOEEN1l13WMJYdYNwcd7WHNmsONZrjRvcPQ3Xl21mMq09EzILKzdacP3ekDfwmqYAJWrBEVC2CGa7AitZihHaCU/Tc7c9AdnkyvshBCCCGEEEII0WMkGCmE6DXNXaytRBiVCKeaxmiGyw46egrQ3QV7Bx0HSWagphsYngLwFODIK0MlolixAGa0AStUjRVvJBGuBs1hZ006/Wi6fG0LIYQQQgghhOi/5KxWCNFj7PqOEVQy+KgA3eFGc/gw/MXortz0uo4SWEujOdwYjmEYvmGogvGoeBAr1oAZqcMK78IMVYNKJBv0+O33UNMzvdpCCCGEEEIIIUSnSSRACLHflBlHJUJ2R2srBmjoDi+6Kw89v9wOPjZn9EnQrEs0TUNz5aC7cnDkjEJZiWStyQBmeBcqUo8ZqQMNNIcv2Qinb+tnCiFEf6KsBMpK2CU/NAP7C1QfECVAhBBCCCH6EwlGigFNKcvO0IuH7O7GusPOxtOdyd8OCZJ1klIqWecxlBxybaHpTruxjL8E3VOI7spBS3a1Fj1L0x0YniIMTxHO/LH20PdoADNabzfCidbZDYB0Z7IRjn/QDHcXQohmqWZoVgxl2j8o065MnDwGUMoCpVDKBKWw6xa3eg6aG5TZwUo7YGn/bglg6ql5aDoayQCn1mq+EEIIIYRokwQjxYDSOviozAhoGrrhRfcUoOluVCJoZ/AlwlgqjrISyRORJN2BpjnAcNq/kycug3E4cWrIdfN7CWgOD5rDi+EfieHOsxusuHIG5fuTabrDCw4vhr8YVTgRFWu06022aoSjLMuux+n0D5gGQEIIAcnM/OZmaGYMrLg9Q9PQDDea7rQbobny0Zw+e5rhQTOc9n5fmcmgpAnKavO2skxIZlMqK2G/hkrebl7eitvHHlj2Yy0LsOx1VAr7a1drdayhJRuU+eR7WQghhBCDlkQQRL/WUfBR9w7FcOWhuXLTOhIry0RZcTBjKCuedtuK21l/yoyAGUeZYSwznmq8AtgZD7oTNGNAZVkqM4ZKhLESYbBioOnoDp/9XnqGoLty0J059glUP/47ByJN09Hc+ejufBy5pSgzZgcmI/VY4d123cnwLjuw7vChO/z2CbkQQmQxe38ds/fRZsy+rSxAs7/Pks3QDN8we//k8NgBPocnGZDsvcNcO2CZDEAmg5hYyQAn9u20ecnbyoxjhXdhxYNY4d2AXWpDgpNCCCGEGEwkGCn6FaVUsjlKcqgwoDm86J58dM94O1sv2SSlPZpu2MNXWwUo23odkoFKZcbt4V7J28qMouLhVJalSoRQqUyJZOZDsh5VepalkRzGpQF68ndm6lXZQ66TWY9WFJSJpjnRnF4cOSPtIdfO5iHX7b9PIjtphgvDOxTDO7RVI5zm4GQ1ZmQ3WHFphCOEyDh7fxtr2b9aMbASyXHSejKj0WXvl9z5ySZonlSmI4YrIwG8lmHbzUO6O0+piahECCvWiBUNJIOTTZihXWi6jmZI5qQQQgghBjYJRoqstnfwUUNzeOzGKPnjOhV83B+aptknOIYLOkgg61SWZSJsBzbNSHIYl7JrVaGSGR4qGcTUUCj7tVsNHW+pXYV9KxXE1NDSgpotwU173h6Bz+YsUjPa8j46fOje0fZQtmTwUYZcDyzpjXBGoqxJyRPgBmmEI4ToM3Ytx6i9D0ruJ1GWvb/SnWi6yy4r4Sqxy38Y7vRMxwF0wUTTNPtin9MP/pL2g5Ph3fayhjdZbsMtwUkhhBBCDAgSdRBZJS1jLxECkpmPrlz0/PLUsGs7kyvzB+Rdy7JMkAo8NtekSgtIJgvqpwKWyWFdeyyjrFa1rDBT91F2ZmaqllXqcRZYlj3s2jsEw1NkBx5dOfbQsCx4H0XfsRvhFGJ4CjvRCCe5jUgjHCFEF7Q0PEuWPbESyVqOyYxG33B0Zw6605s+rNpwZXrVM6LN4GQ8iBVvahWcbLTLbUhwUgghhBADgAQjRUalBR/NMChlZ+w5c9DzxyaDj/07aJaWZdmHmruFpgKTMGhP9ET7OmyEE67BDO1I/l967YZFMmxfCNGKUgrMKJYZQSUiKCuGlsy+1wyvXc/RnY/uSDbTGmBZjr2hdUZ7enAymTkZkuCkEEIIIfo3CUYOIlZ4F5Zm0FKnUKf1sF40PTm0t7kOUut6hq2W6cZJRCpbIh5EmWGUUujNwce8McnOl7n9OviYLex6VgCS1SY6Z69GOImoHZiMNtjfH7EAiXA1aA57OLcM6xdZzm5yFmnJ0FN2l2N7X5ZsPJZqQGa03Bdtag48KjNqZ1Vb8WTg0WUHHnNHobvy7eHWUo+2x6QHJ0egCie1EZwMYIYjaJqRqgcsF4+EEEIIka3kiHsQ0Aw3zqLJYCXsob3KtIfyWiZKJezhvWbC7vhIcsivFU8NI27OsEt1iGxVz7CdV2xVt7ClpqGyYihl2sFHRw56XlmyVmGufdIiwUchsormcGM4hmH4hrVqhNOAGanDCu/CDFXbzY8MdzLwIBcRRGYpK5GsMRzBSkSSzUA86E6/vc9x+uxav2YsVdO3uYahlWpEZmKXuUg+qe5oI3DZ/Htgb+/2UOuWjEewM+w1hxeHf6TdPK75f9/pk8BjH9lXcNIMVaPiAeLhajs46fDamakSnBRCCCFElpBg5CCgaTrOvDGdWlYl6xSmahrueZ+O5pvJmoZtBTwte5iWBB+F6JfSG+GMQpnx5IlvA2aoGivagBWptS9COPzJRjhSFkD0npa6hMkGZ8q0a506vOjeYTi9RckM3pwO6wy31PWNo8x4y20rngxaRtJqH6p41A56NtcBbqYZLcFK3QFa6+Bl9gfpUgHaZOajAnTDZZdO8RdjeAqTQ619Uks2y+wdnEyvOWmGqrHiAVR4l50VLMFJIYQQQmSYBCNFGi01RLt1B2chhEinGU4MowjDU4QzvxwrHsKKBbAidZihXViRWjuTSnclO7VL1pToHjvrsVU2I9j1Bx1eHDmj7BIfzpxkINzZ6edNq+vbwcPsoGXC7gLdKmCJaf+2EhE7YBkP2yMBzBAqmW2plNpjn6ql9rUtJVK0vabbIwya5+lpy2jNy+zx2M5c6FNmzK7XnIi0Cjw67SxS7zAMbyGaw9eS9SiBx35F03Q0Vy66Kzc9OBlLXkAK78KKNdjBSd1AM7z20HrDnelVF0KIHrX3vjt5m+bzXsPe1yZ/2/eb98st0ySJRoieJ8FIIYQQ3aY7fehOn91soXASVqwRFQtghnZjRWsxg/V2IxzDk8ysklpyon2ppijJ4CMqYdcqdXjRvUMwvEPQHf4+bXBmBy2dnQp0KstMC1o2ByyVFd9jZIFpjyawTBT279R0ZSbLorQsmyqdAqjmsilKoWjVrEwpQEOh7HVuo7SKpjvtjEfvUHR3AbrLb7+fTp/UzByA0oKTOSNRavLewclovR3k14xkIFqCk0KI7GfvQ1sFGZO37X2mTdOd9igFw4nusi+Q249N2Mub8Zb9rJWw600n973KstKagdrpOq1HRejJ4KXe0nehucfCXvft3g1ygU8ImxxxCiGE6FGabmB4CsBTgCOvzM4YSzXCqUHFGjGjdSjLQnd47GCSwysHZ4OYssxWWY8Ru7mZ04Nm+DDyizHc+XZDDmdOvxj+r+lGcnvu3jBYpRSpAGNzSZS0wGPrms5tTE8FLFtqQGuGKzlE19elDFIxcLQZnIw12R26Iw1Y4d1Y0TqUGbPLDTh99jbTD/73hBADR+syKs3Zjc23UzQDzXDaF9kMF5qnMDlCwm3fN1xousseAaE72z3WVErZwchWpcfscmOtLxI2ByxbbqcuPppxuzRZqwuPrfswNF9gTLvQmKzpqzm89sV6yb4Ug4wEI4UQQvQq3eEBhwfDNxwKJ9rZbs0nvuEaVLQBM1RvZ07qLjSnNzk0tH/vopSVaGkAYkbTrtJnjzYajqWG/jZfyW89fLj1UOCW5bua5apaZz1acdB0dIfPbojiGY/uypHh/SSzMdGSdVPsEyg5VRE9TdN0NHceujvPrglsmah4E1a8CTNSnwxO1trZQ5ohwUkhRI9I1V/eM+CoLPvQQ2lohgNNc4LhRHfnJeuS+9KDjMnb3bnApmkaaPZxZ0/sZ1MjINoJaKpEBCvWiBnebWeqR2rsC7G6K1mCRi4YioGvf5/pCSGE6Hd0hxccXgyG4cwfh0pE7WY4sSbMSC0qWp/s1J1INiTJ7iyu5iHFqtVPc/BIN9z2QXPOSHtoUKYDrMksueaGZKkhwlYCaB4ynGhpQta6cVnyBCE1VDiVkWe1ORQ4eSbRamSTnnqsbrjRHF6M3FIMd0FL1qNDhoUKkWmabqC589Hd+enByVgjZjQZnGyuC6w5WmqLZul3tBAic5Sy7Czr1DFSjNSBQVpWoxvNU9R+VqPh6lcXJ1PDtHVHh8FNpZTdiC8exIoHMSN1qGh9MjgZB3Q7azJZI7s/vQdC7IsEI4UQQmSU5nBjONwY3qE488eizBhWvAmVDE5a0TrMyO5kBl3zkEFvRuqZpbIdkxmPzdmOWnPXYe9QdHd+8uS8eeiNu98OvVGthge3BCFbflTrYGVaLcS95yvLtDMgXTnJ+oR+GZovRD+QFpzMHY2yTLsucLwRM1KHFalp+Y5uvoDk9Gf+4osQSS377SjKitoX0DTD3kZ1h/27+b7mkH3TfrCHK8fsC7JmzL5YoSx79EQyuKh7h6K78tCd3h7NauzPNE1Dc/rB6ccAnPnl9rFmPIgVb8KKNdkXgOJBrGidve3qTvs42OGR2r6iX5OjBCGEEFlFM1wYRhF4inDklaGsBFasCRVvasnKidYluyHqaA5vMnuye/X5WrPrFMVahlmnDqoddrajw4vmL0F35SYPCJuHlg+sExitubOkDBEWQiSl1QXOLW31Hd1oX0CK1GKGd0lwUvQ5OwuvpTyKMmN2sMdwohkedE8hursATTfsetZmBOJhOwMtEcFSiVajAuz8PQ1t74Cl7kDTHHY3+kGWqdZyUTbWEnTUwM7gc9s/vuF7HB957Oy+AXaM1Fs03ZG6AASg1CS7nnY8aAcno/VY0Tr7x4zZpTYMT0vtSXmfRT8hRwVCCCGymqY7Wp34jk4OGQzaQ7ujAbsTbDyAFa5OHpB57VqDnSwGriwzeWCdPHmx4mjoyZMXN7p3iN1xuLkLuMPXr7MdhRCiJ6V/RzcHJxvtZmXNwclU6Q1XS4BCak6KblBWolXQMZK8YKilhrQavmQWXnOTPGf7tahTTUjSOjLbXZaVFU82WEsGL60EKh61X18lUEq1XKjTDDTNaAle6o7UfXte/zlusP/2WEv5meamMZqRLLXiRvcMQXfnpgccHZ5BF6DtbZqmoTWXOPIOBWg5Fk4kA5ThmuRF+7rUxXPN6UM3PCDHrCJLSTBSCCFEv2IPGbSbLZAzyu4E2zycJdqIFd5l3w7vtpdPXZn32icRZmSPoVrJq/kOL4av2L6anwo8eiWbRwghusAOThaCp9DObjfjybrAjVhhu/RGS81JoyWAIRk9og1t1mUG0B3ohscu/eEuRXcla5c2B8a6EBDTdKNT215zx+VU9+Q9G6+YMVQ8jDLDyeHKUazmGsxWws4gbF1iuXVjOLS9msjZzeWabzdPb2fafgQAU92qzZago0qWn9GT3al1w4PmG4buymsVcOzfJWgGgrRjYT/JBpF29qSKBzGjDViRWvtifSiSzBB2J/9HPHJsK7KCbIVCCCH6NU3T0Vy56K5c8I9AqYl2MfBYE2YsgBWuwYoFsKJ19tCXVkO17JMXb8vQFjmwFkKIHqUZTgyjCMNTBHljWtVDS2b0RGqSNYLrAKtV47KBUw9NKSs1pNXuSt68r2m1z0lO0/YsiLHXstoe09MWbvMxLZl7zbf0VOArm7LY2q3L7LCH/+q+4Xa2o8uPZnhTXZX7SnPHZU13gMPb4bJKWa2ClMlsS5Wwg5gqkaylbLU0jLPM5HQzOa91E7nm5nIWCoVK1WqmjUZyGmgtzePsoea0mmc3k7PfW93uVq277VrXOSOTNa89ydrcHruuoxwb9Qu6wwMOD3iH4CBZtiDtu7bWzlgPBezPXzNaGuPIMbDIAAlGCiGEGFDSioH7i5NXi8OoeMju2NjBUC0hhBC9a+96aKqlHlo8aNdDi9TZv80YGrRkY2V5Ro8dTEvW0Us18UhWHnTYjTp0py+5sB1WaokatU6ZU61+qz3mtbNscppij2VTU1otp1R6EKs5CKFalkyFMVMZei0BTNDseol7ZejpLV2EU/fbDnDY2Xh7j1TQDU8bdZmTGY/9KHNW0/RUgxb2szeLUs2f/x5N4jqYltZIbo/Gc8oyW4aztwo42oF/KZsw0KRfrLen2U0ig8kh3QE7QJkcTaSUSg7B9yRLEg3OpkKi72Tv3lwIIYToIXqy1o4QQojssnc9tDF2PbREqKWbbHP2ZKghmdHjaJXV3rfDRVsanMVahrcmh+BqmsPuDrxXE49W9fT2EUxVqnUgklaBxw6ClnsFItt5bPO0VNDKbAlUYe0R4DJTAazmYcZKJezGRJZpD+dtXs6KJ4ObzcEvlZyvUmtlf0Racp5Cd7jaGakgdZmb2e9BcwBYmsiJ7rObRLrsMhq5yYtBiVDqYpAZqUNF6+3vXCmlIXpZRoOR77zzDg888ADLli1jx44dzJ8/n3PPPTc1XynF7bffzqOPPkp9fT2zZ8/m97//PRMnTkwtU1tbyzXXXMPzzz+PrutccMEF/OY3vyEnJycDf5EQQgghhBCiOzTd2COjZyIqEcVKpNdDU3G7TjCQqv3bU7V+7SBcMsOxuXswdhahpicbnLly0FwtQ1vtk3Z3t4Y8ansOy+7C0/R1sCot627P4GbavJbpKAsMV0tjGcm+EiJj0kYTAc788j1KaTQmh3c3N8dRdmMmh1ea44huy2gwMhgMcsghh/DNb36T888/f6/5999/P7/97W/529/+Rnl5Obfeeitz587liy++wOPxAHDJJZewY8cOFixYQDwe57LLLuPb3/42jz/+eF//OUIIIYQQQoheoDncGA43eIrsrt3KQsVDqY6yZrgWFQtghnclm4Xo6cO726mNmN41OGZn/mlg19Nz2008vMnOzE5vepbQIA+ktQzJlqw9IQaKfZfSaLBLacQaWpXS6NmLQWJw0JTaswhJZmialpYZqZRi5MiRXH/99fzwhz8EoKGhgeLiYh577DEuvvhiVq1axdSpU1m6dCmHHXYYAK+88gqnn34627ZtY+TIkZ167UAgQH5+Pg0NDeTl5fXK3yeEEEIIIYToPXbnbrsemt29uwYrEbJPpJWFrrtB05O1HE2gOcvRHjKsue1szLSAYxc7MwshxEDXUkojvTmOlQiDSiRLaUhznPYkmrbhLjkch39EplelV3Q2vpa1YetNmzZRVVXFnDlzUtPy8/M58sgjWbx4MRdffDGLFy+moKAgFYgEmDNnDrqus2TJEs4777xMrLoQQgghhBCij9mduwvAUwA010MLt2T0ROpQVhzdlYfmtIcZNgcdpWuwEEJ0zt6lNFo3xwkmm+PU2N+9kRq7TqzuahWglIZJIouDkVVVVQAUFxenTS8uLk7Nq6qqYvjw4WnzHQ4HRUVFqWXaEo1GiUajqfuBQKCnVlsIIYQQQgiRBex6aD5w+jAYBvljM71KQggxIO2rOY4VqceK1dtZlFY8+Rh36kfqTw4+WRuM7E333HMPd9xxR6ZXQwghhBBCCCGEEGJA2bM5DvmkN8eJh7CiDah4ACseQIWjKFSqQZhdl9ctHbwHsKwNRpaUlACwc+dORoxoGUu/c+dOpk+fnlqmuro67XGJRILa2trU49ty8803c91116XuBwIBSktLe3DthRBCCCGEEEIIIQTs3RwHWupPqkTYDlDGGrGi9XZNymit3cEbLVlSw92vmocpK5FqjKashF2v2EqAZIACWRyMLC8vp6SkhDfeeCMVfAwEAixZsoQrr7wSgFmzZlFfX8+yZcuYOXMmAG+++SaWZXHkkUe2+9xutxu3293rf4MQQgghhBBCCCGE2Ftz/UlcuTTnQLZ08G4OUgaxonWoWBArXoNlxdDQ0JrrUGZgmLdSCloFGJUVtwOPymxZSHckMz2d6K4cNGcOutNnD2l3F/XZumarjAYjm5qaWL9+fer+pk2bWLFiBUVFRZSVlXHttddy1113MXHiRMrLy7n11lsZOXJkquP2AQccwLx587jiiiv4wx/+QDwe5+qrr+biiy/udCdtIYQQQgghhBBCCJF5mqahObzg8KZNV2bMDk4mMynNSD0qlhzmHYmBslo6eTfXo9T3L+RlBxvjdpDRioOZ/N0q2KjpTjTdCYYT3Z2H5sxFd3rtIKnhthv1GC77vgw334umlFKZevG33nqLE088ca/pl156KY899hhKKW6//Xb++Mc/Ul9fzzHHHMMjjzzCpEmTUsvW1tZy9dVX8/zzz6PrOhdccAG//e1vycnJ6fR6dLb1uBBCCCGEEEIIIYTIPHuYdzgVpLRiTahInX3fjCQDlHpaFqVmuFDKsoONzUHG5qHUyrRHUSsNzXCg6S7QnWgOL7orN/kcrlTAEcNl39f0TL8VWaOz8bWMBiOzhQQjhRBCCCGEEEIIIfo3e5h3tKUWZSw5zDsetId/m3HQtGRmowsMJ5rDZwcbk8FK+8ednO+STt9d0Nn4WtbWjBRCCCGEEEIIIYQQorPsYd4ecHjSpisznsqiRHe0DKXWnRJszAAJRgohhBBCCCGEEEKIAUsz7GYyuGU0bDaQge1CCCGEEEIIIYQQQog+IcFIIYQQQgghhBBCCCFEn5BgpBBCCCGEEEIIIYQQok9IMFIIIYQQQgghhBBCCNEnJBgphBBCCCGEEEIIIYToExKMFEIIIYQQQgghhBBC9AkJRgohhBBCCCGEEEIIIfqEBCOFEEIIIYQQQgghhBB9QoKRQgghhBBCCCGEEEKIPiHBSCGEEEIIIYQQQgghRJ9wZHoFsoFSCoBAIJDhNRFCCCGEEEIIIYQQov9pjqs1x9naI8FIoLGxEYDS0tIMr4kQQgghhBBCCCGEEP1XY2Mj+fn57c7X1L7ClYOAZVlUVlaSm5uLpmmZXp0eFwgEKC0tZevWreTl5WV6dUQGyDYgZBsQsg0MbvL5C9kGhGwDQrYBIdvA4NYXn79SisbGRkaOHImut18ZUjIjAV3XGT169CZCmAAADBVJREFUdKZXo9fl5eXJF84gJ9uAkG1AyDYwuMnnL2QbELINCNkGhGwDg1tvf/4dZUQ2kwY2QgghhBBCCCGEEEKIPiHBSCGEEEIIIYQQQgghRJ+QYOQg4Ha7uf3223G73ZleFZEhsg0I2QaEbAODm3z+QrYBIduAkG1AyDYwuGXT5y8NbIQQQgghhBBCCCGEEH1CMiOFEEIIIYQQQgghhBB9QoKRQgghhBBCCCGEEEKIPiHBSCGEEEIIIYQQQgghRJ+QYKQQQgghhBBCCCGEEKJPSDAyg9555x3OOussRo4ciaZpPPPMM2nzd+7cyTe+8Q1GjhyJz+dj3rx5rFu3Lm2ZE044AU3T0n6++93vpi2zdOlSTj75ZAoKCigsLGTu3Ll88skn+1y/t956ixkzZuB2u5kwYQKPPfZYl9Zf7Ft/3wZ++tOf7vXaU6ZM2a/3YjDq759/Y2Mj1157LWPGjMHr9XL00UezdOnS/XovBqu+2gbeeOMNjj76aHJzcykpKeHGG28kkUjsc/1kP9D7+vs2IPuB7uvv24DsC7qvJ7YBgMWLF3PSSSfh9/vJy8vjuOOOIxwOp+bX1tZyySWXkJeXR0FBAd/61rdoamra5/rJvqD39fdtQPYF3dPfP3/ZD4j9IcHIDAoGgxxyyCE8/PDDe81TSnHuueeyceNGnn32WZYvX86YMWOYM2cOwWAwbdkrrriCHTt2pH7uv//+1LympibmzZtHWVkZS5YsYdGiReTm5jJ37lzi8Xi767Zp0ybOOOMMTjzxRFasWMG1117L5Zdfzquvvtqp9Red09+3AYADDzww7bUXLVrUzXdl8Ojvn//ll1/OggUL+Mc//sGnn37Kqaeeypw5c9i+fXsPvDuDQ19sA5988gmnn3468+bNY/ny5TzxxBM899xz3HTTTR2um+wH+kZ/3wZA9gPd1d+3AdkXdF9PbAOLFy9m3rx5nHrqqXz44YcsXbqUq6++Gl1vOd275JJL+Pzzz1mwYAEvvPAC77zzDt/+9rc7XDfZF/SN/r4NgOwLuqO/f/6yHxD7RYmsAKj58+en7q9Zs0YB6rPPPktNM01TDRs2TD366KOpaccff7z6/ve/3+7zLl26VAGqoqIiNW3lypUKUOvWrWv3cT/60Y/UgQcemDbtoosuUnPnzu3U+ouu64/bwO23364OOeSQTvx1Yl/62+cfCoWUYRjqhRdeSFtmxowZ6ic/+UmHf6toW29tAzfffLM67LDD0qY999xzyuPxqEAg0O7jZD/Q9/rjNiD7gZ7V37YB2Rf0vP3dBo488kh1yy23tPu8X3zxhQLU0qVLU9NefvllpWma2r59e7uPk31B3+uP24DsC3pOf/v8ZT8g9pdkRmapaDQKgMfjSU3TdR23273XVab/+7//Y+jQoRx00EHcfPPNhEKh1LzJkyczZMgQ/vznPxOLxQiHw/z5z3/mgAMOYOzYse2+/uLFi5kzZ07atLlz57J48eIe+OtEZ/SXbWDdunWMHDmScePGcckll1BRUbG/f7JoJds//0QigWmaaesH4PV65Up4D+mpbSAajbb5OUUiEZYtW9bu68t+IPP6yzYg+4Hek+3bgOwLel9ntoHq6mqWLFnC8OHDOfrooykuLub4449P+wwWL15MQUEBhx12WGranDlz0HWdJUuWtPv6si/IvP6yDci+oHdk++cv+wGxvyQYmaWmTJlCWVkZN998M3V1dcRiMe677z62bdvGjh07Usv9z//8D//85z9ZuHAhN998M//4xz/46le/mpqfm5vLW2+9xT//+U+8Xi85OTm88sorvPzyyzgcjnZfv6qqiuLi4rRpxcXFBAKBtLoTovf0h23gyCOP5LHHHuOVV17h97//PZs2beLYY4+lsbGxh9+NwSfbP//c3FxmzZrFz372MyorKzFNk3/+858sXrw4bf3E/uupbWDu3Lm8//77/Otf/8I0TbZv386dd94J0OFnJfuBzOsP24DsB3pXtm8Dsi/ofZ3ZBjZu3AjYdfuuuOIKXnnlFWbMmMHJJ5+cqitXVVXF8OHD057b4XBQVFREVVVVu68v+4LM6w/bgOwLek+2f/6yHxD7S4KRWcrpdPL000+zdu1aioqK8Pl8LFy4kNNOOy2t7sO3v/1t5s6dy7Rp07jkkkv4+9//zvz589mwYQMA4XCYb33rW8yePZsPPviA9957j4MOOogzzjgjtfPIyclJ/exZ7FxkTn/YBk477TS+9KUvcfDBBzN37lxeeukl6uvrefLJJ3v2zRiE+sPn/49//AOlFKNGjcLtdvPb3/6Wr3zlK2nrJ/ZfT20Dp556Kg888ADf/e53cbvdTJo0idNPPx0g9TyyH8hO/WEbkP1A7+oP24DsC3pXZ7YBy7IA+M53vsNll13GoYceyoMPPsjkyZP5y1/+0unXkn1BduoP24DsC3pPf/j8ZT8g9kf7aTEi42bOnMmKFStoaGggFosxbNgwjjzyyLTU6j0deeSRAKxfv57x48fz+OOPs3nzZhYvXpz6Mnj88ccpLCzk2Wef5eKLL2bFihWpx+fl5QFQUlLCzp070557586d5OXl4fV6e/gvFe3pb9tAQUEBkyZNYv369d35s0VStn/+48eP5+233yYYDBIIBBgxYgQXXXQR48aN68m3YVDriW0A4LrrruMHP/gBO3bsoLCwkM2bN3PzzTenPivZD2Sv/rYNyH6g52X7NiD7gt63r21gxIgRAEydOjXtcQcccEBqqGxJSQnV1dVp8xOJBLW1tZSUlACyL8hm/W0bkH1Bz8r2z1/2A2J/SDCyH8jPzwfsOhwfffQRP/vZz9pdtvkLpPkLKRQKoes6mqallmm+33wFZcKECXs9z6xZs3jppZfSpi1YsIBZs2Z1628R+6e/bANNTU1s2LCBr33ta537w0SnZPvn7/f78fv91NXV8eqrr6Z1cBU9ozvbQDNN0xg5ciQA//rXvygtLWXGjBmA7Af6g/6yDch+oPdk+zYg+4Le1942MHbsWEaOHMmaNWvSll+7di2nnXYaYH+W9fX1LFu2jJkzZwLw5ptvYllWKngt+4Ls11+2AdkX9I5s//xlPyC6JMMNdAa1xsZGtXz5crV8+XIFqF/96ldq+fLlasuWLUoppZ588km1cOFCtWHDBvXMM8+oMWPGqPPPPz/1+PXr16s777xTffTRR2rTpk3q2WefVePGjVPHHXdcaplVq1Ypt9utrrzySvXFF1+ozz77TH31q19V+fn5qrKyst1127hxo/L5fOqGG25Qq1atUg8//LAyDEO98sornV5/sW/9fRu4/vrr1VtvvaU2bdqk3nvvPTVnzhw1dOhQVV1d3Qvv1sDT3z//V155Rb388stq48aN6rXXXlOHHHKIOvLII1UsFuuFd2tg6ottQCml7r//frVy5Ur12WefqTvvvFM5nc59djuV/UDf6O/bgOwHuq+/bwOyL+i+7m4DSin14IMPqry8PPXUU0+pdevWqVtuuUV5PB61fv361DLz5s1Thx56qFqyZIlatGiRmjhxovrKV77S4brJvqBv9PdtQPYF3dPfP3/ZD4j9IcHIDFq4cKEC9vq59NJLlVJK/eY3v1GjR49WTqdTlZWVqVtuuUVFo9HU4ysqKtRxxx2nioqKlNvtVhMmTFA33HCDamhoSHud1157Tc2ePVvl5+erwsJCddJJJ6nFixd3av2mT5+uXC6XGjdunPrrX//apfUX+9bft4GLLrpIjRgxQrlcLjVq1Ch10UUXpe3wRMf6++f/xBNPqHHjximXy6VKSkrUVVddperr67v9vgwmfbUNnHjiiSo/P195PB515JFHqpdeeqnT6yf7gd7V37cB2Q90X3/fBmRf0H3d3Qaa3XPPPWr06NHK5/OpWbNmqXfffTdtfk1NjfrKV76i/n97d3ACQAhDUZC9iz2m/6MFZFsQl/0gzFQgGAg8BMcYPefsquq11tb57IJ/3T4DdsE3t9+/PcCJp7v7/F0lAAAAAMAe3xsBAAAAABFiJAAAAAAQIUYCAAAAABFiJAAAAAAQIUYCAAAAABFiJAAAAAAQIUYCAAAAABFiJAAAAAAQIUYCAAAAABFiJAAAAAAQIUYCAAAAABFiJAAAAAAQ8QK+jFsH3s9BFQAAAABJRU5ErkJggg==", "text/plain": [ "
" ]