-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_transforms.py
329 lines (260 loc) · 10.5 KB
/
custom_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Basic library of transforms not included in torch.torchvision
# By Ashkan Pakzad (ashkanpakzad.github.io) 2022
import torch
import torchvision.transforms.functional as TF
import numpy as np
import numbers
from typing import Tuple, List, Optional
from collections.abc import Sequence
class GaussianNoise(object):
"""Add gaussian noise to image.
inpired by torchio.
Args:
p (float): Desired probability of applying transform
"""
def __init__(self, p=1.1, mean=(0, 1), std=(0, 0.25)):
assert isinstance(p, float)
assert isinstance(mean, (float, tuple))
assert mean[1] >= mean[0]
_check_sequence_input(std, "std", req_sizes=(2,))
assert std[1] >= std[0]
self.p = p
self.mean = mean
self.std = std
def __call__(self, sample):
tensor = sample["image"]
if torch.rand(1) < self.p:
# get std and mean from random distribution
std = torch.rand(1) * (self.std[1] - self.std[0]) + self.std[0]
mean = torch.rand(1) * (self.mean[1] - self.mean[0]) + self.mean[0]
# add gaussian noise
tensor = tensor + torch.randn(tensor.size()) * std + mean
sample["image"] = tensor
return sample
class GaussianBlur(object):
"""
Blurs image with randomly chosen Gaussian blur.
If the image is torch Tensor, it is expected
to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
Args:
kernel_size (int or sequence): Size of the Gaussian kernel.
sigma (float or tuple of float (min, max)): Standard deviation to be used for
creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
of float (min, max), sigma is chosen uniformly at random to lie in the
given range.
p (float): Desired probability of applying transform
Returns:
PIL Image or Tensor: Gaussian blurred version of the input image.
"""
def __init__(self, kernel_size=(3, 3), sigma=(0.1, 2.0)):
self.kernel_size = _setup_size(
kernel_size, "Kernel size should be a tuple/list of two integers"
)
for ks in kernel_size:
if ks <= 0 or ks % 2 == 0:
raise ValueError(
"Kernel size value should be an odd and positive number."
)
if isinstance(sigma, numbers.Number):
if sigma <= 0:
raise ValueError(
"If sigma is a single number, it must be positive.")
sigma = (sigma, sigma)
elif isinstance(sigma, Sequence) and len(sigma) == 2:
if not 0.0 < sigma[0] <= sigma[1]:
raise ValueError(
"sigma values should be positive and of the form (min, max)."
)
else:
raise ValueError(
"sigma should be a single number or a list/tuple with length 2."
)
self.kernel_size = kernel_size
self.sigma = sigma
def __call__(self, sample):
tensor = sample["image"]
sigma = self.get_params(self.sigma[0], self.sigma[1])
tensor = TF.gaussian_blur(tensor, self.kernel_size, [sigma, sigma])
sample["image"] = tensor
return sample
@staticmethod
def get_params(sigma_min: float, sigma_max: float) -> float:
"""Choose sigma for random gaussian blurring.
Args:
sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.
Returns:
float: Standard deviation to be passed to calculate kernel for gaussian blurring.
"""
return torch.empty(1).uniform_(sigma_min, sigma_max).item()
def _setup_size(size, error_msg):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
class ScaleInOut(object):
"""Scale desired range of intensity values of image to desired output desired range. Clips
beyond range.
inpired by torchio.
Args:
p (float): Desired probability of applying transform
"""
def __init__(self, inz=(None, None), outz=(-1, 1)):
assert isinstance(inz, tuple)
if inz[0] is not None or inz[1] is not None:
assert inz[1] >= inz[0]
assert isinstance(outz, (float or int, tuple))
assert outz[1] >= outz[0]
self.inz = inz
self.outz = outz
def __call__(self, sample):
tensor = sample["image"]
# if in is not provided, set to min and max of img
inz = list(self.inz)
outz = self.outz
if self.inz[0] is None:
inz[0] = tensor.min()
if self.inz[1] is None:
inz[1] = tensor.max()
# linear rescale image as desired
tensor = (tensor - inz[0]) * \
((outz[1] - outz[0]) / (inz[1] - inz[0])) + outz[0]
# clip intensities to desired range
tensor[tensor < outz[0]] = outz[0]
tensor[tensor > outz[1]] = outz[1]
sample["image"] = tensor
return sample
class RandomScaling(object):
"""Random affine transformation of the image keeping center invariant.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
Adapted from pytorch. ONLY intended for use with image only dataset.
Args:
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
fill (sequence or number): Pixel fill value for the area outside the transformed
image. Default is ``0``. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
scale,
interpolation=TF.InterpolationMode.BILINEAR,
fill=0,
):
if scale is not None:
_check_sequence_input(scale, "scale", req_sizes=(2,))
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = float(torch.empty(1).uniform_(scale[0], scale[1]).item())
self.resample = self.interpolation = interpolation
if fill is None:
fill = 0
elif not isinstance(fill, (Sequence, numbers.Number)):
raise TypeError("Fill should be either a sequence or a number.")
self.fill = fill
def __call__(self, sample):
tensor = sample["image"]
fill = self.fill
if isinstance(tensor, torch.Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * TF.get_image_num_channels(tensor)
else:
fill = [float(f) for f in fill]
tensor = TF.affine(
tensor,
scale=self.scale,
interpolation=self.interpolation,
fill=fill,
angle=0,
translate=[0, 0],
shear=[0, 0],
)
sample["image"] = tensor
return sample
def _check_sequence_input(x, name, req_sizes):
msg = (
req_sizes[0] if len(req_sizes) < 2 else " or ".join(
[str(s) for s in req_sizes])
)
if not isinstance(x, Sequence):
raise TypeError(f"{name} should be a sequence of length {msg}.")
if len(x) not in req_sizes:
raise ValueError(f"{name} should be sequence of length {msg}.")
class RandomFlip(object):
"""Random image flip in specified axis.
Args:
p (float): Desired probability of applying transform
"""
def __init__(self, axis, p=1.1):
assert axis == 0 or axis == 1, f"axis must be either 0 or 1, got {axis}"
assert isinstance(p, float)
self.p = p
# bump up from channel
self.axis = axis + 1
def __call__(self, sample):
if torch.rand(1) < self.p:
sample["image"] = sample["image"].flip(self.axis)
if "measures" in sample:
measures = sample["measures"]
vals = measures[2:9]
# flip centre point axis sign
if self.axis == 1:
Cflip = 3
elif self.axis == 2:
Cflip = 2
vals[Cflip] = -vals[Cflip]
# flip rotation angle
vals[4] = -vals[4]
measures[2:9] = vals
sample["measures"] = measures
return sample
class CenterCrop(object):
"""crop to centre by given values
Args:
p (float): Desired probability of applying transform
"""
def __init__(self, outputsize):
assert (
len(outputsize) == 2
), f"please provide crop size H x W only as list of length 2, got {outputsize}"
assert all(
[x > 0 for x in outputsize]
), f"crop sizes must be positive, got {outputsize}"
assert [
isinstance(x, int) for x in outputsize
], f"crop sizes must be integer values, got {outputsize}"
self.outputsize = outputsize
def __call__(self, sample):
tensor = sample["image"]
tensor = TF.center_crop(tensor, self.outputsize)
assert list(tensor.size()[1:3]) == list(
self.outputsize
), f"output shape should be the same as input, got {list(tensor.size()[1:3])} and {list(self.outputsize)}"
sample["image"] = tensor
return sample
class Normalize(object):
"""Normalize/standardise
Args:
p (float): Desired probability of applying transform
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, sample):
tensor = sample["image"]
TF.normalize(tensor, self.mean, self.std, inplace=True)
sample["image"] = tensor
return sample
class Identity(object):
"""a transform that returns the original sample"""
def __init__(self):
pass
def __call__(self, sample):
return sample