-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdirichletmixture.R
181 lines (137 loc) · 5.23 KB
/
dirichletmixture.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#################################################################################################
#################################################################################################
################## THE MAIN FUNCTION ###########################################################
#################################################################################################
dirichletmixture = function(Y, time, censoring, iter, F ) {
setwd('/home/bit/ashar/Dropbox/Code/DPmixturemodel/DPplusAFT')
Time <- cbind(time, censoring)
D = NCOL(Y)
N = NROW(Y)
K = as.integer(N/2)
source('rchinese.R')
## Initialization of all the hyperparameters and
shape.alpha <- 2
rate.alpha <- 1
alpha = rgamma(1, shape = shape.alpha, rate = rate.alpha )
beta = D+1
ro = 0.5
## Empirical Bayes Estimate of the Hyperparameters
epsilon = as.vector(apply(Y,2,mean))
W = cov(Y)
c <- rchinese(N,alpha)
f <- table(factor(c, levels = 1:max(c)))
## Initialization of the parameters for Gaussian Mixture
mu = matrix(data = NA, nrow = K, ncol = D)
S = array(data = NA, dim =c(K,D,D))
#Sparsity controlling parameter
r =1
si = 1.78
lambda2 <- numeric(K)
tau2 = matrix(data = NA, nrow = K, ncol = D)
betahat = matrix(data = NA, nrow = K, ncol = D)
sigma2 <- rep(NA, K)
beta0 <- rep(NA, K)
That <- numeric(N)
## Setting the parameters from the prior
source('priorparameter.R')
prior <- priorparameter(c,S, mu, lambda2,tau2,sigma2,beta0, betahat,K, epsilon, W, beta, ro, D, r, si, Time, N)
mu <- prior$mu
S <- prior$Sigma
sigma2 <- prior$sigma2
betahat <- prior$betahat
lambda2 <- prior$lambda2
tau2 <- prior$tau2
beta0 <- prior$beta0
## Initialization part for the parmaters of AFT Model with k-means
source('kmeansinit.R')
km <- kmeansinit(Y,time, N, F,D, K, mu, sigma2, betahat, beta0)
c <- km$c
mu <- km$mu
S <- km$S
sigma2 <- km$sigma2
betahat <- km$betahat
beta0 <- km$beta0
lambda2 <- km$lambda2
tau2 <- km$tau2
## Fitting a linear model to the whole model
Ysc <- scale(Y[1:N,1:D], center = TRUE, scale =TRUE)
lm.data <- lm(time ~ Ysc)
sig2.dat <- var(lm.data$residuals)
# The Time has to be initialized
source('updatetime.R')
ti <- updatetime(c, Y, Time,That, beta0, betahat, sigma2)
That <- ti$time
# That <- Time[,1]
## MCMC sampling
source('posteriorchineseAFT.R')
source('posteriorGMMparametrs.R')
source('posteriortimeparameters.R')
source('updatetime.R')
source('priordraw.R')
source('posterioralpha.R')
source('likelihood.R')
source('posttime.R')
cognate <- NA
param <- NA
paramtime <- NA
loglike<- rep(0, iter)
timeparam <- NA
for (o in 1:iter) {
################## PARAMETERS OF THE DP Mixture Model ######################################################
## Updating the parameters based on the observations
param <- posteriorGMMparametrs(c,Y,mu,S, alpha,K, epsilon, W, beta, ro,N,D )
mu <- param$mean
S <- param$precision
paramtime <- posteriortimeparameters(c, That, lambda2,tau2,sigma2,beta0, betahat, Y, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.data)
beta0 <- paramtime$beta0
betahat <- paramtime$betahat
sigma2 <- paramtime$sigma2
lambda2 <- paramtime$lambda2
tau2 <- paramtime$tau2
########################## THE HYPERPARAMETERS OF THE GMM #################################
# source('posteriorhyper.R')
# # Updating the hyper paramters
# hypercognate <- posteriorhyper (c, Y, mu, S, epsilon, W, beta, ro )
# epsilon <- hypercognate$epsilon
# W <- hypercognate$W
# W <- matrix(as.matrix(W),nrow = D, ncol =D)
# ro <- hypercognate$ro
#
############################# PARMATERS OF THE TIME MODEL ######################################
source('posttime.R')
timeparam <- posttime(c, That, lambda2,tau2,sigma2,beta0, betahat, Y, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.data )
beta0 = timeparam$beta0
sigma2 = timeparam$sigma2
betahat <- timeparam$betahat
lambda2 <- timeparam$lambda2
tau2 <- timeparam$tau2
################# INDICATOR VARIABLE ##################################################################
## Updating the indicator variables and the parameters
source('posteriorchineseAFT.R')
cognate <- posteriorchineseAFT(c,Y,mu,S,alpha,That, beta0, betahat, sigma2, lambda2, tau2, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.dat)
c <- cognate$indicator
mu <- cognate$mean
S <- cognate$precision
beta0 <- cognate$beta0
betahat <- cognate$betahat
sigma2 <- cognate$sigma2
lambda2 <- cognate$lambda2
tau2 <- cognate$tau2
########################### The Concentration Parameter #################################################################
source('posterioralpha.R')
# Updating the concentration parameter
alpha <- posterioralpha(c, N, alpha, shape.alpha, rate.alpha)
######################## The Censored Times ###########################################################
source('updatetime.R')
# Updating the Time Variable
ti <- NA
ti <- updatetime(c, Y, Time,That, beta0, betahat, sigma2)
That <- ti$time
## Value of the Log-likelihood
source('likelihood.R')
loglike[o] <-loglikelihood(c,Y,mu,S,alpha,That, beta0, betahat, sigma2, lambda2, tau2, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.dat)
print(o/iter)
print(loglike[o])
}
return(list('c' = c, 'time' = That, 'beta0' = beta0,'sigma2' = sigma2, 'betahat' = betahat, 'lambda2' = lambda2, 'tau2' = tau2 ))
}