Skip to content

Conversation

@michaelteboul
Copy link
Collaborator

@michaelteboul michaelteboul commented Nov 3, 2025

Description of the goal of the PR

This pull request introduces a significant new recommendation model, the SelfAttentionModel, which leverages attention mechanisms and user embeddings for more personalized recommendations. It also refactors the core data structures to properly handle user identities, enabling the development of user-aware models. The changes include updates to existing models to integrate user data, improvements in evaluation methodologies with new metrics, and enhancements to data generation and loading processes to support these new capabilities. The overall aim is to expand the framework's ability to build and evaluate advanced recommendation systems.

Checklist before requesting a review

  • I have commented my code, particularly in hard-to-understand areas
  • I have typed my code
  • I have created / updated the docstrings
  • I have updated the README, if relevant
  • I have updated the requirements files if a new package is used
  • I have tested my code
  • The CI pipeline passes
  • I have performed a self-review of my code

@gemini-code-assist
Copy link
Contributor

Summary of Changes

Hello @michaelteboul, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request introduces a significant new recommendation model, the SelfAttentionModel, which leverages attention mechanisms and user embeddings for more personalized recommendations. It also refactors the core data structures to properly handle user identities, enabling the development of user-aware models. The changes include updates to existing models to integrate user data, improvements in evaluation methodologies with new metrics, and enhancements to data generation and loading processes to support these new capabilities. The overall aim is to expand the framework's ability to build and evaluate advanced recommendation systems.

Highlights

  • New Self-Attention Model Introduced: A new SelfAttentionModel has been added, designed for sequential item recommendation. This model incorporates both short-term preferences (using an attention mechanism over recent basket items) and long-term preferences (using user and item embeddings). It includes methods for computing short-term and long-term distances, masked attention, and a combined loss function with ridge regularization.
  • User ID Integration in TripDataset: The Trip and TripDataset classes have been extended to include user_id. This allows for tracking individual user behavior, which is essential for user-specific recommendation models. The data generation methods in SyntheticDataGenerator were also updated to support user profiles and generate user-specific baskets.
  • Enhanced Evaluation Metrics: New evaluation metrics, hit_rate (Hit@K) and mrr (Mean Reciprocal Rank), have been implemented in the AleaCarta and SelfAttentionModel classes. These metrics are crucial for assessing the performance of recommendation systems, with logic to exclude already purchased items from recommendations.
  • Model Refinements and Timing: Existing models like AleaCarta and Shopper have been updated to support the new user_batch parameter. Performance timing (time.perf_counter()) has been integrated into AleaCarta and BaseBasketModel's training steps to monitor execution time. The loss normalization in AleaCarta's compute_batch_loss was adjusted, and Shopper now explicitly handles 'end-of-basket' items with dedicated parameters.
  • Dataset Handling Improvements: The bakery dataset loading utility has been streamlined, removing an outdated version parameter and simplifying file extraction. The synthetic_dataset module was moved and updated to generate user-specific data, aligning with the new user ID features.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point by creating a comment using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands on the current page.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in pull request comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request introduces a new SelfAttentionModel, adds user-specific features, and refactors several parts of the codebase. The changes are substantial and add valuable new capabilities. However, there are several areas that require attention before merging. The code includes temporary profiling and debugging artifacts (e.g., print statements, time.perf_counter() calls) that should be removed. I've also identified some potential design issues, such as a base class containing logic specific to its children, and inconsistencies in data representation (e.g., the checkout item ID). Additionally, there are potential bugs related to missing security checks during file extraction, lack of bounds checking in data processing, and incorrect validation procedures. My review provides specific suggestions to address these points and improve the overall quality and robustness of the code.

@github-actions
Copy link
Contributor

github-actions bot commented Nov 3, 2025

Coverage

Coverage Report for Python 3.11
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–836, 897–900, 940–941
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3032193%144, 186, 283, 291, 297, 306, 346, 353, 382, 401, 432–433, 442–443, 544, 546, 562, 566, 568, 691–692
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL561483985% 

Tests Skipped Failures Errors Time
221 0 💤 1 ❌ 0 🔥 8m 39s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Nov 3, 2025

Coverage

Coverage Report for Python 3.9
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–836, 897–900, 940–941
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3032193%144, 186, 283, 291, 297, 306, 346, 353, 382, 401, 432–433, 442–443, 544, 546, 562, 566, 568, 691–692
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2362360%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL561283785% 

Tests Skipped Failures Errors Time
221 0 💤 0 ❌ 0 🔥 7m 51s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Nov 3, 2025

Coverage

Coverage Report for Python 3.10
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–836, 897–900, 940–941
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3032193%144, 186, 283, 291, 297, 306, 346, 353, 382, 401, 432–433, 442–443, 544, 546, 562, 566, 568, 691–692
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL561483985% 

Tests Skipped Failures Errors Time
221 0 💤 0 ❌ 0 🔥 8m 32s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Nov 3, 2025

Coverage

Coverage Report for Python 3.12
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–836, 897–900, 940–941
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 53, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6493395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py400599%42–43, 153–154, 714
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3032193%144, 186, 283, 291, 297, 306, 346, 353, 382, 401, 432–433, 442–443, 544, 546, 562, 566, 568, 691–692
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py1241885%186, 341, 360, 364–380
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL561485585% 

Tests Skipped Failures Errors Time
221 0 💤 1 ❌ 0 🔥 9m 23s ⏱️

@VincentAuriau VincentAuriau changed the title Sub branch ADD: self-attention model Nov 5, 2025
Copy link
Collaborator

@VincentAuriau VincentAuriau left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

quelques petits commentaires =)

@VincentAuriau VincentAuriau merged commit 58ee896 into main Nov 27, 2025
8 checks passed
@VincentAuriau VincentAuriau deleted the sub_branch branch November 27, 2025 08:33
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants