-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel2onnx.py
32 lines (24 loc) · 958 Bytes
/
model2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# import the necessary packages
from tensorflow.keras.models import load_model, save_model
import argparse
import tf2onnx
import onnx
def model2onnx():
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", type=str,
default="mask_detector.model",
help="path to trained face mask detector model")
ap.add_argument("-o", "--output", type=str,
default='mask_detector.onnx',
help="path to trained face mask detector model")
args = vars(ap.parse_args())
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
model = load_model(args["model"])
onnx_model, _ = tf2onnx.convert.from_keras(model, opset=13)
onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = '?'
onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_param = '?'
onnx.save(onnx_model, args['output'])
if __name__ == "__main__":
model2onnx()