-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathsetup.py
52 lines (41 loc) · 1.61 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from setuptools import setup
import codecs
with codecs.open('README.md', encoding='utf-8') as readme_file:
long_description = readme_file.read()
setup(
name="hep_ml",
version='0.7.3',
description="Machine Learning for High Energy Physics",
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/arogozhnikov/hep_ml',
# Author details
author='Alex Rogozhnikov',
# Choose your license
license='Apache 2.0',
packages=['hep_ml', 'hep_ml.experiments'],
classifiers=[
# Indicate who your project is intended for
'Intended Audience :: Science/Research',
# Pick your license as you wish (should match "license" above)
'License :: OSI Approved :: Apache Software License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 2.7 ',
'Programming Language :: Python :: 3.5 ',
'Programming Language :: Python :: 3.6 ',
'Programming Language :: Python :: 3.7 ',
],
# What does your project relate to?
keywords='machine learning, supervised learning, '
'uncorrelated methods of machine learning, high energy physics, particle physics',
# List run-time dependencies here. These will be installed by pip when your project is installed.
install_requires=[
'numpy >= 1.9',
'scipy >= 0.15.0',
'pandas >= 0.14.0',
'scikit-learn >= 0.19',
'theano >= 1.0.2',
'six',
],
)