-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaveragingwriter.h
255 lines (217 loc) · 7.21 KB
/
averagingwriter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#ifndef AVERAGING_MS_WRITER_H
#define AVERAGING_MS_WRITER_H
#include "writer.h"
#include <iostream>
#include <memory>
class UVWCalculater
{
public:
virtual void CalculateUVW(double date, size_t antenna1, size_t antenna2, double &u, double &v, double &w) = 0;
};
class AveragingWriter : public Writer
{
public:
AveragingWriter(std::unique_ptr<Writer>&& writer, size_t timeCount, size_t freqAvgFactor)
: _writer(std::move(writer)), _timeAvgFactor(timeCount), _freqAvgFactor(freqAvgFactor), _rowsAdded(0),
_originalChannelCount(0), _avgChannelCount(0), _antennaCount(0)
{
}
virtual ~AveragingWriter() final override
{
destroyBuffers();
}
virtual void WriteBandInfo(const std::string &name, const std::vector<Writer::ChannelInfo> &channels, double refFreq, double totalBandwidth, bool flagRow) final override
{
if(channels.size()%_freqAvgFactor != 0)
{
std::cout << " Warning: channels averaging factor is not a multiply of total number of channels. Last channel(s) will be left out.\n";
}
_avgChannelCount = channels.size() / _freqAvgFactor;
_originalChannelCount = channels.size();
std::vector<Writer::ChannelInfo> avgChannels(_avgChannelCount);
for(size_t ch=0; ch!=_avgChannelCount; ++ch)
{
Writer::ChannelInfo channel;
channel.chanFreq = 0.0;
channel.chanWidth = 0.0;
channel.effectiveBW = 0.0;
channel.resolution = 0.0;
for(size_t i=0; i!=_freqAvgFactor; ++i)
{
const Writer::ChannelInfo& curChannel = channels[ch*_freqAvgFactor + i];
channel.chanFreq += curChannel.chanFreq;
channel.chanWidth += curChannel.chanWidth;
channel.effectiveBW += curChannel.effectiveBW;
channel.resolution += curChannel.resolution;
}
channel.chanFreq /= (double) _freqAvgFactor;
avgChannels[ch] = channel;
}
_writer->WriteBandInfo(name, avgChannels, refFreq, totalBandwidth, flagRow);
if(_antennaCount != 0)
initBuffers();
}
virtual void WriteAntennae(const std::vector<Writer::AntennaInfo> &antennae, double time) final override
{
_writer->WriteAntennae(antennae, time);
_antennaCount = antennae.size();
if(_originalChannelCount != 0)
initBuffers();
}
virtual void WritePolarizationForLinearPols(bool flagRow) final override
{
_writer->WritePolarizationForLinearPols(flagRow);
}
virtual void WriteSource(const Writer::SourceInfo &source) final override
{
_writer->WriteSource(source);
}
virtual void WriteField(const Writer::FieldInfo& field) final override
{
_writer->WriteField(field);
}
virtual void WriteObservation(const ObservationInfo& observation) final override
{
_writer->WriteObservation(observation);
}
virtual void SetArrayLocation(double x, double y, double z) final override
{
_writer->SetArrayLocation(x, y, z);
}
virtual void AddRows(size_t rowCount) final override
{
if(_rowsAdded == 0)
_writer->AddRows(rowCount);
_rowsAdded++;
if(_rowsAdded == _timeAvgFactor)
_rowsAdded=0;
}
virtual void WriteRow(double time, double timeCentroid, size_t antenna1, size_t antenna2, double u, double v, double w, double interval, const std::complex<float>* data, const bool* flags, const float *weights) final override;
virtual void WriteHistoryItem(const std::string &commandLine, const std::string &application, const std::vector<std::string> ¶ms) final override
{
_writer->WriteHistoryItem(commandLine, application, params);
}
virtual bool IsTimeAligned(size_t antenna1, size_t antenna2) final override {
const Buffer &buffer = getBuffer(antenna1, antenna2);
return buffer._rowTimestepCount==0;
}
virtual bool AreAntennaPositionsLocal() const final override
{
return _writer->AreAntennaPositionsLocal();
}
virtual bool CanWriteStatistics() const final override
{
return _writer->CanWriteStatistics();
}
private:
struct Buffer
{
Buffer(size_t avgChannelCount)
{
_rowData = new std::complex<float>[avgChannelCount*4];
_flaggedAndUnflaggedData = new std::complex<float>[avgChannelCount*4];
_rowFlags = new bool[avgChannelCount*4];
_rowWeights = new float[avgChannelCount*4];
_rowCounts = new size_t[avgChannelCount*4];
initZero(avgChannelCount);
}
~Buffer()
{
delete[] _rowData;
delete[] _flaggedAndUnflaggedData;
delete[] _rowFlags;
delete[] _rowWeights;
delete[] _rowCounts;
}
void initZero(size_t avgChannelCount)
{
_rowTime = 0.0;
_rowU = 0.0;
_rowV = 0.0;
_rowW = 0.0;
_rowTimestepCount = 0;
_interval = 0.0;
for(size_t ch=0; ch!=avgChannelCount*4; ++ch)
{
_rowData[ch] = 0.0;
_flaggedAndUnflaggedData[ch] = 0.0;
_rowFlags[ch] = false;
_rowWeights[ch] = 0.0;
_rowCounts[ch] = 0;
}
}
double _rowTime, _rowU, _rowV, _rowW;
size_t _rowTimestepCount;
double _interval;
std::complex<float> *_rowData, *_flaggedAndUnflaggedData;
bool *_rowFlags;
float *_rowWeights;
size_t *_rowCounts;
};
void writeCurrentTimestep(size_t antenna1, size_t antenna2)
{
Buffer& buffer = getBuffer(antenna1, antenna2);
double
time = buffer._rowTime / buffer._rowTimestepCount,
u = buffer._rowU / buffer._rowTimestepCount,
v = buffer._rowV / buffer._rowTimestepCount,
w = buffer._rowW / buffer._rowTimestepCount;
for(size_t ch=0;ch!=_avgChannelCount*4;++ch)
{
if(buffer._rowCounts[ch]==0)
{
buffer._rowData[ch] = std::complex<float>(
buffer._flaggedAndUnflaggedData[ch].real() / (buffer._rowTimestepCount*_freqAvgFactor),
buffer._flaggedAndUnflaggedData[ch].imag() / (buffer._rowTimestepCount*_freqAvgFactor));
buffer._rowFlags[ch] = true;
} else {
buffer._rowData[ch] = std::complex<float>(
buffer._rowData[ch].real()/buffer._rowWeights[ch],
buffer._rowData[ch].imag()/buffer._rowWeights[ch]);
buffer._rowFlags[ch] = false;
}
}
_writer->WriteRow(time, time, antenna1, antenna2, u, v, w, buffer._interval, buffer._rowData, buffer._rowFlags, buffer._rowWeights);
buffer.initZero(_avgChannelCount);
}
Buffer &getBuffer(size_t antenna1, size_t antenna2)
{
return *_buffers[antenna1*_antennaCount + antenna2];
}
void setBuffer(size_t antenna1, size_t antenna2, Buffer *buffer)
{
_buffers[antenna1*_antennaCount + antenna2] = buffer;
}
void initBuffers()
{
destroyBuffers();
_buffers.resize(_antennaCount*_antennaCount);
for(size_t antenna1=0; antenna1!=_antennaCount; ++antenna1)
{
for(size_t antenna2=0; antenna2!=antenna1; ++antenna2)
setBuffer(antenna1, antenna2, 0);
for(size_t antenna2=antenna1; antenna2!=_antennaCount; ++antenna2)
{
Buffer *buffer = new Buffer(_avgChannelCount);
setBuffer(antenna1, antenna2, buffer);
}
}
}
void destroyBuffers()
{
if(!_buffers.empty())
{
for(size_t antenna1=0; antenna1!=_antennaCount; ++antenna1)
{
for(size_t antenna2=antenna1; antenna2!=_antennaCount; ++antenna2)
delete &getBuffer(antenna1, antenna2);
}
}
_buffers.clear();
}
std::unique_ptr<Writer> _writer;
size_t _timeAvgFactor, _freqAvgFactor, _rowsAdded;
size_t _originalChannelCount, _avgChannelCount, _antennaCount;
std::vector<Buffer*> _buffers;
};
#endif