-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_movielens_dssm.py
203 lines (144 loc) · 7.45 KB
/
train_movielens_dssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import pandas as pd
import torch
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from preprocessing.inputs import SparseFeat, DenseFeat, VarLenSparseFeat
from model.dssm import DSSM
from deepctr_torch.callbacks import EarlyStopping, ModelCheckpoint
import random
def data_process(data_path, samp_rows=100000):
data = pd.read_csv(data_path)
data = data.drop(data[data['rating'] == 3].index)
data['rating'] = data['rating'].apply(lambda x: 1 if x > 3 else 0)
data = data.sort_values(by='timestamp', ascending=True)
train,test = train_test_split(data,test_size= 0.2 )
return train, test, data
def get_user_feature(data):
data_group = data[data['rating'] == 1]
data_group = data_group[['user_id', 'movie_id']].groupby('user_id').agg(list).reset_index()
data_group['user_hist'] = data_group['movie_id'].apply(lambda x: '|'.join([str(i) for i in x]))
data = pd.merge(data_group.drop('movie_id', axis=1), data, on='user_id')
data_group = data[['user_id', 'rating']].groupby('user_id').agg('mean').reset_index()
data_group.rename(columns={'rating': 'user_mean_rating'}, inplace=True)
data = pd.merge(data_group, data, on='user_id')
return data
def get_item_feature(data):
data_group = data[['movie_id', 'rating']].groupby('movie_id').agg('mean').reset_index()
data_group.rename(columns={'rating': 'item_mean_rating'}, inplace=True)
data = pd.merge(data_group, data, on='movie_id')
return data
def get_var_feature(data, col):
key2index = {}
def split(x):
key_ans = x.split('|')
for key in key_ans:
if key not in key2index:
# Notice : input value 0 is a special "padding",\
# so we do not use 0 to encode valid feature for sequence input
key2index[key] = len(key2index) + 1
return list(map(lambda x: key2index[x], key_ans))
var_feature = list(map(split, data[col].values))
var_feature_length = np.array(list(map(len, var_feature)))
max_len = max(var_feature_length)
var_feature = pad_sequences(var_feature, maxlen=max_len, padding='post', )
return key2index, var_feature, max_len
def get_test_var_feature(data, col, key2index, max_len):
print("user_hist_list: \n")
def split(x):
key_ans = x.split('|')
for key in key_ans:
if key not in key2index:
# Notice : input value 0 is a special "padding",
# so we do not use 0 to encode valid feature for sequence input
key2index[key] = len(key2index) + 1
return list(map(lambda x: key2index[x], key_ans))
test_hist = list(map(split, data[col].values))
test_hist = pad_sequences(test_hist, maxlen=max_len, padding='post')
return test_hist
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# %%
embedding_dim = 32
epoch = 15
batch_size = 2048
lr = 0.001
seed = 1023
dropout = 0.3
setup_seed(seed)
print("1")
data_path = './data/movielens.txt'
train,test,data = data_process(data_path)
train = get_user_feature(train)
train = get_item_feature(train)
test = get_user_feature(test)
test = get_item_feature(test)
sparse_features = ['user_id', 'movie_id', 'gender', 'age', 'occupation']
dense_features = ['user_mean_rating', 'item_mean_rating']
target = ['rating']
user_sparse_features, user_dense_features = ['user_id', 'gender', 'age', 'occupation'], ['user_mean_rating']
item_sparse_features, item_dense_features = ['movie_id', ], ['item_mean_rating']
# 1.Label Encoding for sparse features,and process sequence features
for feat in sparse_features:
lbe = LabelEncoder()
lbe.fit(data[feat])
train[feat] = lbe.transform(train[feat])
test[feat] = lbe.transform(test[feat])
mms = MinMaxScaler(feature_range=(0, 1))
mms.fit(train[dense_features])
mms.fit(test[dense_features])
train[dense_features] = mms.transform(train[dense_features])
test[dense_features] = mms.transform(test[dense_features])
# 2.preprocess the sequence feature
genres_key2index, train_genres_list, genres_maxlen = get_var_feature(train, 'genres')
user_key2index, train_user_hist, user_maxlen = get_var_feature(train, 'user_hist')
user_feature_columns = [SparseFeat(feat, data[feat].nunique(), embedding_dim=embedding_dim)
for i, feat in enumerate(user_sparse_features)] + [DenseFeat(feat, 1, ) for feat in
user_dense_features]
item_feature_columns = [SparseFeat(feat, data[feat].nunique(), embedding_dim=embedding_dim)
for i, feat in enumerate(item_sparse_features)] + [DenseFeat(feat, 1, ) for feat in
item_dense_features]
item_varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_size=1000, embedding_dim=embedding_dim),
maxlen=genres_maxlen, combiner='mean', length_name=None)]
user_varlen_feature_columns = [VarLenSparseFeat(SparseFeat('user_hist', vocabulary_size=4000, embedding_dim=embedding_dim),
maxlen=user_maxlen, combiner='mean', length_name=None)]
# 3.generate input data for model
# user_feature_columns += user_varlen_feature_columns
item_feature_columns += item_varlen_feature_columns
# add user history as user_varlen_feature_columns
train_model_input = {name: train[name] for name in sparse_features + dense_features}
train_model_input["genres"] = train_genres_list
# train_model_input["user_hist"] = train_user_hist
# %%
# 4.Define Model,train,predict and evaluate
device = 'cpu'
use_cuda = True
if use_cuda and torch.cuda.is_available():
print('cuda ready...')
device = 'cuda:3'
es = EarlyStopping(monitor='val_auc', min_delta=0, verbose=1,
patience=3, mode='max', baseline=None)
mdckpt = ModelCheckpoint(filepath='model.ckpt', monitor='val_auc',
mode='max', verbose=1, save_best_only=True, save_weights_only=True)
model = DSSM(user_feature_columns, item_feature_columns, task='binary', device=device)
model.compile("adam", "binary_crossentropy", metrics=['auc', 'accuracy', 'logloss']
, lr=lr)
model.fit(train_model_input, train[target].values, batch_size=batch_size, epochs=epoch , verbose=2, validation_split=0.2
,callbacks=[es, mdckpt])
model.load_state_dict(torch.load('model.ckpt'))
model.eval()
test_genres_list = get_test_var_feature(test, 'genres', genres_key2index, genres_maxlen)
test_model_input = {name: test[name] for name in sparse_features + dense_features}
test_model_input["genres"] = test_genres_list
eval_tr = model.evaluate(train_model_input, train[target].values)
# %%
pred_ts = model.predict(test_model_input, batch_size=2048)
print("test LogLoss", round(log_loss(test[target].values, pred_ts), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ts), 4))