-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbulkrodesolver.py
675 lines (547 loc) · 20.9 KB
/
bulkrodesolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import numpy as np
import scipy.constants as const
from scipy.special import expit # 'expit(x) = 1/(1+exp(-x))'
from scipy.optimize import fmin
from scipy.interpolate import interp1d
from scipy.integrate import quad
from materials import Material
class RodeSolver(object):
"""
Calculates non-equilibrium distribution function (solution of B.T.E.) using Rode's iteration method;
Uses non-equilibrium distribution function to compute thermoelectric transport coefficients.
"""
# temperature gradient (arbitrary, cancelled out)
dTdx = 1e3 # [K/m]
# field strength (arbitrary, cancelled out)
eps_field = 1e4 # [V/m]
def __init__(self, mat, T, Rc=1., n=None, p=None, num_k=10000, k_MIN=2e6):
# assign material
if isinstance(mat, Material):
self.mat = mat
else:
raise TypeError("`mat` argument must be an instance of `materials.Material`")
# set temperature
self._T = T # protecting this to keep things simple
# threshold electron energy and wave number for optical phonon emission
self.Epo = const.k * self.mat.Tpo
self.kpo = self.k_CB(self.Epo)
# polar optical phonon occupation number
self.Npo = RodeSolver.bE(self.Epo, self.T)
# pre-computed arrays for efficient iteration; see `compute_spaces` method
self.SPACES = {}
# some defaults
self._p = p if p is not None else 0. # [1/m^3] hole concentration
self.k_MIN = k_MIN # [1/m] minimum wave number, approximates zero
# maximum `k` value (set by `get_k_MAX` method)
self.k_MAX = None # [1/m] maximum wave number, approximates infinity
# average energy (set by `E_J` method)
self._EJ = None
# dopant compensation ratio
self._Rc = Rc
# number of points in k-space
self.num_k = num_k
self._is_intrinsic = False
if n is not None:
self._n = n # [1/m^3] electron concentration
self._Ef = self.calculate_Ef(n) # [J] Fermi energy
self.compute_spaces(n, self._p, Rc, num_k)
else:
self._n = None
self._Ef = None
# PROPERTIES
# ----------
@property
def T(self):
# temperature setting [K]
return self._T
@T.setter
def T(self, newT):
self._T = newT
# update Fermi energy--assuming electron concentration somehow stays constant
self._Ef = self.calculate_Ef(self.n)
# update phonon occupation number
self.Npo = RodeSolver.bE(self.Epo, newT)
# update pre-computed arrays
self.compute_spaces(self.n, self.p, self.Rc, self.num_k)
@property
def n(self):
# electron concentration [1/m^3]
return self._n
@n.setter
def n(self, new_n):
if new_n == 'intrinsic':
self._Ef = self.calculate_Ei()
self._n = self.calculate_n(self._Ef)
self._p = self.calculate_p(self._Ef)
self._Rc = 0.
self._is_intrinsic = True
else:
self._n = new_n
# update Fermi energy--assuming no temperature change has occurred
self._Ef = self.calculate_Ef(new_n)
self._p = self.calculate_p(self._Ef)
# update pre-computed arrays
self.compute_spaces(self._n, self._p, self._Rc, self.num_k)
@property
def p(self):
# hole concentration [1/m^3]
return self._p
@p.setter
def p(self, new_p):
self._p = new_p
# update ionized impurity scattering rate
if not self._is_intrinsic:
self.SPACES['r_ii'] = self.r_ii(self.n, new_p, self.Rc)
@property
def Rc(self):
# dopant compensation ratio
return self._Rc
@Rc.setter
def Rc(self, newR):
self._Rc = newR
# update ionized impurity scattering rate
self.SPACES['r_ii'] = self.r_ii(self.n, self.p, newR)
@property
def Ef(self):
# No setter for this!
# Ef is "private" to keep things simple, manipulate `n` or `T` instead
return self._Ef
# MAIN ITERATOR FUNCTION
# ----------------------
def g_dist(self, i, xi):
"""
Iterative solver of the B.T.E. with assumptions in Rode #3;
Rode #3, Eq. (16)
Parameters:
i : (int)
number of iterations to perform
xi : (array)
value of perturbation at each `k`
Returns:
gk : (numpy.array)
the perturbation that applied to the equilibrium distribution
function (the Fermi-Dirac distribution) at wave number `k`
"""
# zeroth iteration is 0 for all `k`
if i <= 0:
return np.zeros(self.num_k)
# pre-computed values
fk = self.SPACES['f']
fk_p = self.SPACES['f+']
fk_m = self.SPACES['f-']
lo_p = self.SPACES['lo+']
lo_m = self.SPACES['lo-']
li_p = self.SPACES['li+']
li_m = self.SPACES['li-']
# values over k+ or k- of the previous solution
g_previous = self.g_dist(i - 1, xi) # previous solution over all k
g_prev = interp1d(self.SPACES['k'], g_previous, bounds_error=False, fill_value=0.)
g_p = g_prev(self.SPACES['k+'])
g_m = g_prev(self.SPACES['k-'])
# numerator terms
S_in_em = (self.Npo + fk) * li_m * g_m
S_in_ab = (self.Npo + 1. - fk) * li_p * g_p
# denominator terms
S_out_em = (self.Npo + 1. - fk_m) * lo_m
S_out_ab = (self.Npo + fk_p) * lo_p
r_el = self.SPACES['r_el']
return (S_in_em + S_in_ab - xi) / (S_out_em + S_out_ab + r_el)
# TRANSPORT COEFFICIENTS
# ----------------------
def mu(self, i=30):
"""
Electron drift mobility [m^2/V/s];
Rode #3, Eq. (32)
Formula is equivalent to: sigma / (e * n)
"""
v = self.SPACES['v']
k = self.SPACES['k']
f = self.SPACES['f']
dfdk = self.SPACES['dfdk']
xi = -const.e * self.eps_field / const.hbar * dfdk
g = self.g_dist(i, xi)
I1 = np.trapz(g * v * k**2, x=k)
I2 = np.trapz(f * k**2, x=k)
return -1. / 3. / self.eps_field * I1 / I2
def sigma(self, i=30):
"""
Electrical conductivity (electron contribution only) [S/m];
"""
v = self.SPACES['v']
k = self.SPACES['k']
dfdk = self.SPACES['dfdk']
xi = -const.e * self.eps_field / const.hbar * dfdk
g = self.g_dist(i, xi)
I1 = np.trapz(g * v * k**2, x=k)
return -const.e / (3. * np.pi**2 * self.eps_field) * I1
def S(self, i=30):
"""
Seebeck Coefficient [V/K]
"""
dfdk = self.SPACES['dfdk']
dEfdx = self.SPACES['dEfdx']
E = self.SPACES['E']
sigma = self.sigma(i)
xi = -1. / const.hbar * dfdk * (dEfdx + (E - self.Ef) / self.T * self.dTdx)
g = self.g_dist(i, xi)
Jsc = self.J_e(g)
return 1. / const.e * dEfdx / self.dTdx - Jsc / (sigma * self.dTdx)
def kappa_e(self, i=30):
"""
Open-circuit electronic thermal conductivity [W/m/K];
"""
dfdk = self.SPACES['dfdk']
dEfdx = self.SPACES['dEfdx']
E = self.SPACES['E']
xi = -1. / const.hbar * dfdk * (dEfdx + (E - self.Ef) / self.T * self.dTdx)
g = self.g_dist(i, xi)
J_Q_oc = self.J_Q(g)
return -J_Q_oc / self.dTdx
# AVERAGES
# --------
def EJ(self):
"""
The average energy of conduction electrons [J];
This is kT times the integrals ratio in Rode #3, Eqs. (A5) and (A6)
"""
k = self.SPACES['k']
f0 = self.SPACES['f']
E = self.SPACES['E']
I1 = np.trapz(k**2 * f0 * (1. - f0) * E, x=k)
I2 = np.trapz(k**2 * f0 * (1. - f0), x=k)
return I1 / I2
# CURRENT DENSITIES
# -----------------
def J_e(self, g):
"""
Electrical current density [A/m^2];
"""
k = self.SPACES['k']
v = self.SPACES['v']
j = 1. / (3. * const.pi**2) * np.trapz(k**2 * v * g, x=k)
return -const.e * j
def J_Q(self, g):
"""
Electronic component of heat flux density [W/m^2];
"""
k = self.SPACES['k']
v = self.SPACES['v']
E = self.E_CB(k)
return 1. / (3. * const.pi**2) * np.trapz(k**2 * v * g * (E - self.Ef), x=k)
# CONDUCTION BAND MODEL (KANE BANDS)
# ---------------------------------
def E_CB(self, k):
"""
Sub-parabolic conduction band energy model;
Rode #1, Eq. (3)
"""
Eg = self.mat.get_Eg(self.T)
E0 = const.hbar**2 * k**2 / 2. / const.m_e
_alpha = self.alpha(k)
return E0 + (_alpha - 1.) * Eg / 2.
def k_CB(self, E):
"""
Analytical inverse of `E_CB`
"""
Eg = self.mat.get_Eg(self.T)
meG = self.mat.get_meG(self.T)
a1 = const.hbar**2 / 2. / const.m_e
a2 = Eg / 2.
a3 = 2. * const.hbar**2 / const.m_e * (const.m_e - meG) / (meG * Eg)
# solve resulting equation by substituting x**2 = 1 - c*k**2, then use quadratic formula:
x1 = (-a2 + np.sqrt(a2**2 + 4. * a1 / a3 * (a2 + a1 / a3 + E))) / (2. * a1 / a3)
return np.sqrt((x1**2 - 1.) / a3)
def v_CB(self, k):
"""
Group velocity of electrons [m/s];
From Rode #1, Eq. (5), we have: 'dEdk = ℏ**2 * k / (m_e * d)',
where 'd' is the output of `augmented_dos(k)`.
The group velocity is defined as: 'v = dω/dk = 1/ℏ * dEdk'.
Therefore, we have: 'v = ℏ * k / (m_e * d)'
"""
return const.hbar * k / const.m_e / self.augmented_dos(k)
def alpha(self, k):
"""
The non-parabolic parameter;
Rode #1, Eq. (4)
"""
Eg = self.mat.get_Eg(self.T)
meG = self.mat.get_meG(self.T)
E0 = const.hbar**2 * k**2 / 2. / const.m_e
return np.sqrt(1. + 4. * E0 * (const.m_e - meG) / meG / Eg)
def psi_coeffs(self, k):
"""
Coefficients of s- and p-type wave function components;
Rode #1, Eqs. (8) and (9)
see also: Kane (1957), Eq. (17)
"""
a_coeff = np.sqrt(.5 + .5 / self.alpha(k))
c_coeff = np.sqrt(1. - a_coeff**2)
return a_coeff, c_coeff
def augmented_dos(self, k):
"""
Augmented density of states--used to scale electron effective mass;
Rode #1, Eq. (6)
"""
meG = self.mat.get_meG(self.T)
_alpha = self.alpha(k)
return meG * _alpha / (const.m_e + meG * (_alpha - 1.))
# CARRIER CONCENTRATIONS
# ----------------------
def calculate_n(self, Ef):
"""
Calculates electron concentration [1/m^3];
"""
k_MAX = self.get_k_MAX(Ef, self.T)
ks = np.linspace(self.k_MIN, k_MAX, self.num_k)
return 1. / const.pi**2 * np.trapz(ks**2 * self.fk(ks, Ef, self.T), x=ks) # [1/m^3]
# a simple description of the valence band using the D.O.S. effective mass
def calculate_p(self, Ef):
"""
Integrate hole distribution over energy to find hole concentration [1/m^3];
"""
# N.B. f(-E, -Ef, T) == [1 - f(E, Ef, T)]
Eg = self.mat.get_Eg(self.T)
return quad(lambda E: self.fE(-E, -Ef, self.T) * self.g_VB(E), -Eg - 5. * const.e, -Eg)[0]
def g_VB(self, E):
"""
Valence band density of states; assuming parabolic bands;
Pichanusakorn (2010), Eq. (16)
"""
Eg = self.mat.get_Eg(self.T)
if -Eg - E < 0:
return 0
return (1. / (2. * np.pi**2)
* (2. * self.mat.mh_DOS / const.hbar**2)**(3 / 2) * (-Eg - E)**(1 / 2))
# STATISTICS
# ----------
def calculate_Ef(self, n): # `n` in [1/m^3] !!
"""
Numerically inverts `calculate_n` to determine Fermi energy
provide input `n` in [1/m^3]
"""
guess = -self.mat.get_Eg(self.T) / 2.
return fmin(lambda Ef: abs(np.log(self.calculate_n(Ef[0]) / n)),
x0=guess, maxiter=100, disp=False)[0]
def calculate_Ei(self):
"""
Finds `Ef` such that `n == p`
"""
guess = self.mat.get_Eg(self.T) / 2.
return fmin(lambda Ef: abs(self.calculate_n(Ef[0]) - self.calculate_p(Ef[0])),
x0=guess, maxiter=100, disp=False)[0]
@staticmethod
def bE(E, T):
"""
The Bose-Einstein distribution, determines polar-optical phonon occupation number;
Rode #3, Eq. (10)
"""
return 1. / (np.exp(E / const.k / T) - 1.)
@staticmethod
def fE(E, Ef, T):
"""
The Fermi-Dirac distribution--function of energy;
Rode #3, Eq. (2)
"""
return expit((Ef - E) / const.k / T)
@staticmethod
def dfdE(E, Ef, T):
"""
Energy-derivative of the Fermi-Dirac distribution
"""
return -RodeSolver.fE(E, Ef, T)**2 * (1 / const.k / T) * (1. / expit((Ef - E) / const.k / T) - 1.)
def fk(self, k, Ef, T):
"""
The Fermi-Dirac distribution--function of wave number;
Rode #3, Eq. (2)
"""
E = self.E_CB(k)
return RodeSolver.fE(E, Ef, T)
def dfdk(self, k, Ef):
"""
k-derivative of Fermi-Dirac distribution
"""
meG = self.mat.get_meG(self.T)
dfdE = self.dfdE(self.E_CB(k), Ef, self.T)
# apply chain rule: 'dfdk = dfdE * dEdk'
return dfdE * (const.hbar**2 * k / const.m_e) * (1. + 1. / self.alpha(k) * (const.m_e / meG - 1.))
# ELASTIC SCATTERING RATES
# ------------------------
def calculate_beta_sq(self):
"""
Calculates square of inverse screening length for ionized impurities;
Rode #3, Eq. (29)
"""
k = self.SPACES['k']
f = self.SPACES['f']
factor = const.e**2 / (np.pi**2 * const.k * self.T * self.mat.eps_lo)
integral = np.trapz(k**2 * f * (1. - f), x=k)
return factor * integral
def r_ac(self):
"""
Acoustic deformation potential scattering relaxation rate [1/s];
Rode #3, Eq. (22)
"""
c = self.SPACES['c']
d = self.SPACES['d']
k = self.SPACES['k']
rate_ac = (
(const.k * self.T * self.mat.E1**2 * const.m_e * d * k)
/ (3. * np.pi * const.hbar**3 * self.mat.cl)
* (3. - 8. * c**2 + 6. * c**4)
) # NOTE: Rode has an extra factor of `e**2` in this expression, because he inputs `E1` in units of eV
return rate_ac
def r_pe(self):
"""
Piezoelectric scattering relaxation rate;
Rode #3, Eq. (23)
"""
c = self.SPACES['c']
d = self.SPACES['d']
k = self.SPACES['k']
rate_pe = (
(const.e**2 * const.k * self.T * self.mat.Pz**2 * const.m_e * d)
/ (6. * np.pi * const.hbar**3 * self.mat.eps_lo * k)
* (3. - 6. * c**2 + 4. * c**4)
)
return rate_pe
def r_ii(self, n, p, Rc):
"""
Ionized impurity scattering relaxation rate;
Rode #3, Eqs. (25-29)
"""
c = self.SPACES['c']
d = self.SPACES['d']
k = self.SPACES['k']
beta_sq = self.calculate_beta_sq()
N = Rc * (n + p) + p # density of ionized impurity scattering centres
D = 1. + (2. * beta_sq * c**2 / k**2) + (3. * beta_sq**2 * c**4 / 4. / k**4)
B = (
(
(4. * k**2)
+ (8. * (beta_sq + 2. * k**2) * c**2)
+ (3. * beta_sq**2 + 6. * beta_sq * k**2 - 8. * k**4) * c**4 / k**2
)
/ (beta_sq + 4. * k**2)
)
rate_ii = (
(const.e**4 * N * const.m_e * d)
/ (8. * np.pi * self.mat.eps_lo**2 * const.hbar**3 * k**3)
* (D * np.log(1 + 4. * k**2 / beta_sq) - B)
)
return rate_ii
# INELASTIC SCATTERING RATES
# --------------------------
def lambda_inout(self, pm):
"""
Rode's 'lambda' parameters related to inelastic in/out-scattering rates;
Rode #3, Eqs. (17-20)
"""
if pm not in ['+', '-']:
raise ValueError("`pm` must be one of '+' or '-'")
a = self.SPACES['a']
c = self.SPACES['c']
k = self.SPACES['k']
k_pm = self.SPACES['k' + pm]
a_pm = self.SPACES['a' + pm]
c_pm = self.SPACES['c' + pm]
d_pm = self.SPACES['d' + pm]
A_pm = a * a_pm + (k_pm**2 + k**2) / (2. * k_pm * k) * c * c_pm
beta_pm = (
(const.e**2 * self.mat.wpo * const.m_e * d_pm)
/ (4. * np.pi * const.hbar**2 * k)
* (1. / self.mat.eps_hi - 1. / self.mat.eps_lo)
)
lambda_in = beta_pm * (
(k_pm**2 + k**2) / (2. * k_pm * k) * A_pm**2 * np.log(abs((k_pm + k) / (k_pm - k)))
- A_pm**2
- c**2 * c_pm**2 / 3.
)
lambda_out = beta_pm * (
A_pm**2 * np.log(abs((k_pm + k) / (k_pm - k)))
- (A_pm * c * c_pm)
- (a * a_pm * c * c_pm)
)
if pm == '+':
# absorption
return lambda_in, lambda_out
else:
# no emission possible below optical phonon energy
# hence 0 in/out scattering via emission in those cases (see `self.k_step` method)
lambda_in[k < self.kpo] = 0.
lambda_out[k < self.kpo] = 0.
return lambda_in, lambda_out
# UTILITIES
# ---------
def get_k_MAX(self, Ef, T):
"""
Given the Fermi energy, determine `k_MAX` such that 'k**2 * f(k)' is approx. 0
"""
E_MAX = 50. * const.k * T + Ef
while E_MAX < 0.3 * const.e:
dE = 5. * const.k * T
E_MAX += dE # increase maximum energy
return self.k_CB(E_MAX)
def k_step(self, ks, pm):
"""
Calculates the wave vector of new state at plus/minus the optical phonon energy
"""
if pm == '+':
Es = self.E_CB(ks) + self.Epo # E + ℏω
return self.k_CB(Es)
elif pm == '-':
out = np.zeros(ks.shape)
for i, k in enumerate(ks):
newE = self.E_CB(k) - self.Epo # E - ℏω
if newE >= 0:
out[i] = self.k_CB(newE)
else:
out[i] = -1 # use -1 as placeholder for "no real solution" case
return out
else:
raise ValueError("`pm` should be either '+' or '-'")
def compute_spaces(self, n, p, Rc, num_k):
"""
Pre-computes a number of arrays that don't need to be updated during iteration of `g_dist`.
"""
# set maximum wave number
self.k_MAX = self.get_k_MAX(self.Ef, self.T)
# discrete linear space of `k` values
ks = np.linspace(self.k_MIN, self.k_MAX, num_k, dtype=np.double)
self.SPACES['k'] = ks
self.SPACES['k+'] = self.k_step(ks, '+')
self.SPACES['k-'] = self.k_step(ks, '-')
# electron energies
self.SPACES['E'] = self.E_CB(ks)
# carrier velocities
self.SPACES['v'] = self.v_CB(ks)
# Fermi-Dirac (equilibrium) distribution function
self.SPACES['f'] = self.fk(ks, self.Ef, self.T)
self.SPACES['f+'] = self.fk(self.SPACES['k+'], self.Ef, self.T)
self.SPACES['f-'] = self.fk(self.SPACES['k-'], self.Ef, self.T)
# average energy of mobile electrons
self._EJ = self.EJ()
# space derivative of Fermi-Energy
self.SPACES['dEfdx'] = 1. / self.T * (self.Ef - self._EJ) * self.dTdx
# k-derivative of Fermi-Dirac distribution function
self.SPACES['dfdk'] = self.dfdk(ks, self.Ef)
# coefficients of wave function with s-type and p-type basis
self.SPACES['a'], self.SPACES['c'] = self.psi_coeffs(ks)
self.SPACES['a+'], self.SPACES['c+'] = self.psi_coeffs(self.SPACES['k+'])
self.SPACES['a-'], self.SPACES['c-'] = self.psi_coeffs(self.SPACES['k-'])
# augmented density of states (multiplies m_e to make effective mass)
self.SPACES['d'] = self.augmented_dos(ks)
self.SPACES['d+'] = self.augmented_dos(self.SPACES['k+'])
self.SPACES['d-'] = self.augmented_dos(self.SPACES['k-'])
# total elastic scattering relaxation rate
self.SPACES['r_pe'] = self.r_pe()
self.SPACES['r_ac'] = self.r_ac()
self.SPACES['r_ii'] = self.r_ii(n, p, Rc)
if self._is_intrinsic:
self.SPACES['r_el'] = self.SPACES['r_pe'] + self.SPACES['r_ac']
else:
self.SPACES['r_el'] = (self.SPACES['r_pe'] + self.SPACES['r_ac']
+ self.SPACES['r_ii'])
# lambda parameters for inelastic in/out scattering rates
self.SPACES['li+'], self.SPACES['lo+'] = self.lambda_inout('+')
self.SPACES['li-'], self.SPACES['lo-'] = self.lambda_inout('-')