-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
238 lines (218 loc) · 9.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json
import torch
import os
from tqdm import tqdm
from resnet import ResNet1d
from dataloader import BatchDataloader
import torch.optim as optim
import numpy as np
def compute_loss(ages, pred_ages, weights):
diff = ages.flatten() - pred_ages.flatten()
loss = torch.sum(weights.flatten() * diff * diff)
return loss
def compute_weights(ages, max_weight=np.inf):
_, inverse, counts = np.unique(ages, return_inverse=True, return_counts=True)
weights = 1 / counts[inverse]
normalized_weights = weights / sum(weights)
w = len(ages) * normalized_weights
# Truncate weights to a maximum
if max_weight < np.inf:
w = np.minimum(w, max_weight)
w = len(ages) * w / sum(w)
return w
def train(ep, dataload):
model.train()
total_loss = 0
n_entries = 0
train_desc = "Epoch {:2d}: train - Loss: {:.6f}"
train_bar = tqdm(initial=0, leave=True, total=len(dataload),
desc=train_desc.format(ep, 0, 0), position=0)
for traces, ages, weights in dataload:
traces = traces.transpose(1, 2)
traces, ages, weights = traces.to(device), ages.to(device), weights.to(device)
# Reinitialize grad
model.zero_grad()
# Send to device
# Forward pass
pred_ages = model(traces)
loss = compute_loss(ages, pred_ages, weights)
# Backward pass
loss.backward()
# Optimize
optimizer.step()
# Update
bs = len(traces)
total_loss += loss.detach().cpu().numpy()
n_entries += bs
# Update train bar
train_bar.desc = train_desc.format(ep, total_loss / n_entries)
train_bar.update(1)
train_bar.close()
return total_loss / n_entries
def eval(ep, dataload):
model.eval()
total_loss = 0
n_entries = 0
eval_desc = "Epoch {:2d}: valid - Loss: {:.6f}"
eval_bar = tqdm(initial=0, leave=True, total=len(dataload),
desc=eval_desc.format(ep, 0, 0), position=0)
for traces, ages, weights in dataload:
traces = traces.transpose(1, 2)
traces, ages, weights = traces.to(device), ages.to(device), weights.to(device)
with torch.no_grad():
# Forward pass
pred_ages = model(traces)
loss = compute_loss(ages, pred_ages, weights)
# Update outputs
bs = len(traces)
# Update ids
total_loss += loss.detach().cpu().numpy()
n_entries += bs
# Print result
eval_bar.desc = eval_desc.format(ep, total_loss / n_entries)
eval_bar.update(1)
eval_bar.close()
return total_loss / n_entries
if __name__ == "__main__":
import h5py
import pandas as pd
import argparse
from warnings import warn
# Arguments that will be saved in config file
parser = argparse.ArgumentParser(add_help=True,
description='Train model to predict rage from the raw ecg tracing.')
parser.add_argument('--epochs', type=int, default=70,
help='maximum number of epochs (default: 70)')
parser.add_argument('--seed', type=int, default=2,
help='random seed for number generator (default: 2)')
parser.add_argument('--sample_freq', type=int, default=400,
help='sample frequency (in Hz) in which all traces will be resampled at (default: 400)')
parser.add_argument('--seq_length', type=int, default=4096,
help='size (in # of samples) for all traces. If needed traces will be zeropadded'
'to fit into the given size. (default: 4096)')
parser.add_argument('--scale_multiplier', type=int, default=10,
help='multiplicative factor used to rescale inputs.')
parser.add_argument('--batch_size', type=int, default=32,
help='batch size (default: 32).')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument("--patience", type=int, default=7,
help='maximum number of epochs without reducing the learning rate (default: 7)')
parser.add_argument("--min_lr", type=float, default=1e-7,
help='minimum learning rate (default: 1e-7)')
parser.add_argument("--lr_factor", type=float, default=0.1,
help='reducing factor for the lr in a plateu (default: 0.1)')
parser.add_argument('--net_filter_size', type=int, nargs='+', default=[64, 128, 196, 256, 320],
help='filter size in resnet layers (default: [64, 128, 196, 256, 320]).')
parser.add_argument('--net_seq_lengh', type=int, nargs='+', default=[4096, 1024, 256, 64, 16],
help='number of samples per resnet layer (default: [4096, 1024, 256, 64, 16]).')
parser.add_argument('--dropout_rate', type=float, default=0.8,
help='dropout rate (default: 0.8).')
parser.add_argument('--kernel_size', type=int, default=17,
help='kernel size in convolutional layers (default: 17).')
parser.add_argument('--folder', default='model/',
help='output folder (default: ./out)')
parser.add_argument('--traces_dset', default='tracings',
help='traces dataset in the hdf5 file.')
parser.add_argument('--ids_dset', default='',
help='by default consider the ids are just the order')
parser.add_argument('--age_col', default='age',
help='column with the age in csv file.')
parser.add_argument('--ids_col', default=None,
help='column with the ids in csv file.')
parser.add_argument('--cuda', action='store_true',
help='use cuda for computations. (default: False)')
parser.add_argument('--n_valid', type=int, default=100,
help='the first `n_valid` exams in the hdf will be for validation.'
'The rest is for training')
parser.add_argument('path_to_traces',
help='path to file containing ECG traces')
parser.add_argument('path_to_csv',
help='path to csv file containing attributes.')
args, unk = parser.parse_known_args()
# Check for unknown options
if unk:
warn("Unknown arguments:" + str(unk) + ".")
torch.manual_seed(args.seed)
print(args)
# Set device
device = torch.device('cuda:0' if args.cuda else 'cpu')
folder = args.folder
# Generate output folder if needed
if not os.path.exists(args.folder):
os.makedirs(args.folder)
# Save config file
with open(os.path.join(args.folder, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent='\t')
tqdm.write("Building data loaders...")
# Get csv data
df = pd.read_csv(args.path_to_csv, index_col=args.ids_col)
ages = df[args.age_col]
# Get h5 data
f = h5py.File(args.path_to_traces, 'r')
traces = f[args.traces_dset]
if args.ids_dset:
h5ids = f[args.ids_dset]
df = df.reindex(h5ids, fill_value=False, copy=True)
# Train/ val split
valid_mask = np.arange(len(df)) <= args.n_valid
train_mask = ~valid_mask
# weights
weights = compute_weights(ages)
# Dataloader
train_loader = BatchDataloader(traces, ages, weights, bs=args.batch_size, mask=train_mask)
valid_loader = BatchDataloader(traces, ages, weights, bs=args.batch_size, mask=valid_mask)
tqdm.write("Done!")
tqdm.write("Define model...")
N_LEADS = 12 # the 12 leads
N_CLASSES = 1 # just the age
model = ResNet1d(input_dim=(N_LEADS, args.seq_length),
blocks_dim=list(zip(args.net_filter_size, args.net_seq_lengh)),
n_classes=N_CLASSES,
kernel_size=args.kernel_size,
dropout_rate=args.dropout_rate)
model.to(device=device)
tqdm.write("Done!")
tqdm.write("Define optimizer...")
optimizer = optim.Adam(model.parameters(), args.lr)
tqdm.write("Done!")
tqdm.write("Define scheduler...")
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=args.patience,
min_lr=args.lr_factor * args.min_lr,
factor=args.lr_factor)
tqdm.write("Done!")
tqdm.write("Training...")
start_epoch = 0
best_loss = np.Inf
history = pd.DataFrame(columns=['epoch', 'train_loss', 'valid_loss', 'lr',
'weighted_rmse', 'weighted_mae', 'rmse', 'mse'])
for ep in range(start_epoch, args.epochs):
train_loss = train(ep, train_loader)
valid_loss = eval(ep, valid_loader)
# Save best model
if valid_loss < best_loss:
# Save model
torch.save({'epoch': ep,
'model': model.state_dict(),
'valid_loss': valid_loss,
'optimizer': optimizer.state_dict()},
os.path.join(folder, 'model.pth'))
# Update best validation loss
best_loss = valid_loss
# Get learning rate
for param_group in optimizer.param_groups:
learning_rate = param_group["lr"]
# Interrupt for minimum learning rate
if learning_rate < args.min_lr:
break
# Print message
tqdm.write('Epoch {:2d}: \tTrain Loss {:.6f} ' \
'\tValid Loss {:.6f} \tLearning Rate {:.7f}\t'
.format(ep, train_loss, valid_loss, learning_rate))
# Save history
history = history.append({"epoch": ep, "train_loss": train_loss,
"valid_loss": valid_loss, "lr": learning_rate}, ignore_index=True)
history.to_csv(os.path.join(folder, 'history.csv'), index=False)
# Update learning rate
scheduler.step(valid_loss)
tqdm.write("Done!")