Skip to content

Commit 2ad9e2a

Browse files
committed
btp-1 added
0 parents  commit 2ad9e2a

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

50 files changed

+11617169
-0
lines changed

Diff for: .ipynb_checkpoints/Bessel-checkpoint.ipynb

+572
Large diffs are not rendered by default.

Diff for: .ipynb_checkpoints/Filon-checkpoint.ipynb

+228
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,228 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [
8+
{
9+
"name": "stderr",
10+
"output_type": "stream",
11+
"text": [
12+
"Using TensorFlow backend.\n"
13+
]
14+
}
15+
],
16+
"source": [
17+
"import numpy as np\n",
18+
"import keras as k\n",
19+
"from sklearn.model_selection import train_test_split\n",
20+
"from sklearn import preprocessing\n",
21+
"from keras.models import Sequential\n",
22+
"from keras.layers import Dense,Dropout\n",
23+
"from keras import optimizers\n"
24+
]
25+
},
26+
{
27+
"cell_type": "code",
28+
"execution_count": 2,
29+
"metadata": {},
30+
"outputs": [],
31+
"source": [
32+
"random_ = np.loadtxt(\"random.txt\")"
33+
]
34+
},
35+
{
36+
"cell_type": "code",
37+
"execution_count": 3,
38+
"metadata": {},
39+
"outputs": [],
40+
"source": [
41+
"green_ = np.loadtxt(\"green.txt\")"
42+
]
43+
},
44+
{
45+
"cell_type": "code",
46+
"execution_count": 17,
47+
"metadata": {},
48+
"outputs": [],
49+
"source": [
50+
"random_ = preprocessing.normalize(random_)\n",
51+
"green_ = preprocessing.normalize(green_)"
52+
]
53+
},
54+
{
55+
"cell_type": "code",
56+
"execution_count": 18,
57+
"metadata": {},
58+
"outputs": [],
59+
"source": [
60+
"X_train, X_test, y_train, y_test = train_test_split(random_, green_, test_size=0.2, random_state=42)"
61+
]
62+
},
63+
{
64+
"cell_type": "code",
65+
"execution_count": 84,
66+
"metadata": {},
67+
"outputs": [],
68+
"source": [
69+
"X_train = scaler_trainx.transform(X_train)"
70+
]
71+
},
72+
{
73+
"cell_type": "code",
74+
"execution_count": 85,
75+
"metadata": {},
76+
"outputs": [],
77+
"source": [
78+
"X_test = scaler_trainx.transform(X_test)"
79+
]
80+
},
81+
{
82+
"cell_type": "code",
83+
"execution_count": 86,
84+
"metadata": {},
85+
"outputs": [],
86+
"source": [
87+
"y_train = scaler_trainy.transform(y_train)\n",
88+
"y_test = scaler_trainy.transform(y_test)"
89+
]
90+
},
91+
{
92+
"cell_type": "code",
93+
"execution_count": 5,
94+
"metadata": {},
95+
"outputs": [
96+
{
97+
"name": "stdout",
98+
"output_type": "stream",
99+
"text": [
100+
"WARNING:tensorflow:From /home/anmesh/.conda/envs/crystal/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
101+
"Instructions for updating:\n",
102+
"Colocations handled automatically by placer.\n",
103+
"WARNING:tensorflow:From /home/anmesh/.conda/envs/crystal/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n",
104+
"Instructions for updating:\n",
105+
"Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n"
106+
]
107+
}
108+
],
109+
"source": [
110+
"model = Sequential()\n",
111+
"model.add(Dense(10, input_dim=2, activation='relu'))\n",
112+
"model.add(Dense(10, activation='relu'))\n",
113+
"model.add(Dense(100, activation='relu'))\n",
114+
"model.add(Dense(100, activation='relu'))\n",
115+
"model.add(Dense(100, activation='relu'))\n",
116+
"model.add(Dense(50, activation='relu'))\n",
117+
"model.add(Dense(50, activation='relu'))\n",
118+
"model.add(Dense(10, activation='relu'))\n",
119+
"model.add(Dropout(0.5))\n",
120+
"model.add(Dense(3, activation=None))"
121+
]
122+
},
123+
{
124+
"cell_type": "code",
125+
"execution_count": 6,
126+
"metadata": {},
127+
"outputs": [],
128+
"source": [
129+
"sgd = optimizers.adam(lr=0.01)\n"
130+
]
131+
},
132+
{
133+
"cell_type": "code",
134+
"execution_count": 7,
135+
"metadata": {},
136+
"outputs": [],
137+
"source": [
138+
"model.compile(loss='mse', optimizer=sgd, metrics=['mae', 'acc'])\n"
139+
]
140+
},
141+
{
142+
"cell_type": "code",
143+
"execution_count": 8,
144+
"metadata": {},
145+
"outputs": [
146+
{
147+
"name": "stdout",
148+
"output_type": "stream",
149+
"text": [
150+
"WARNING:tensorflow:From /home/anmesh/.conda/envs/crystal/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
151+
"Instructions for updating:\n",
152+
"Use tf.cast instead.\n",
153+
"Epoch 1/10\n",
154+
"527648/737000 [====================>.........] - ETA: 1:32 - loss: 272082571.0638 - mean_absolute_error: 1763.0689 - acc: 0.3442"
155+
]
156+
},
157+
{
158+
"ename": "KeyboardInterrupt",
159+
"evalue": "",
160+
"output_type": "error",
161+
"traceback": [
162+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
163+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
164+
"\u001b[0;32m<ipython-input-8-65c9d0a99781>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
165+
"\u001b[0;32m~/.conda/envs/crystal/lib/python3.7/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1037\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1039\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1040\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m def evaluate(self, x=None, y=None,\n",
166+
"\u001b[0;32m~/.conda/envs/crystal/lib/python3.7/site-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
167+
"\u001b[0;32m~/.conda/envs/crystal/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2713\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legacy_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2714\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2715\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2716\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2717\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
168+
"\u001b[0;32m~/.conda/envs/crystal/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2673\u001b[0m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_metadata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2675\u001b[0;31m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2676\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfetched\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
169+
"\u001b[0;32m~/.conda/envs/crystal/lib/python3.7/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1437\u001b[0m ret = tf_session.TF_SessionRunCallable(\n\u001b[1;32m 1438\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstatus\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1439\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 1440\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
170+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
171+
]
172+
}
173+
],
174+
"source": [
175+
"model.fit(X_train, y_train, epochs=10, batch_size=8)"
176+
]
177+
},
178+
{
179+
"cell_type": "code",
180+
"execution_count": 16,
181+
"metadata": {},
182+
"outputs": [
183+
{
184+
"data": {
185+
"text/plain": [
186+
"array([-1.39919188e-05, -4.25042664e-04, -1.92839144e-04, ...,\n",
187+
" -2.45948816e-04, -2.22368138e-05, -6.38269712e-04])"
188+
]
189+
},
190+
"execution_count": 16,
191+
"metadata": {},
192+
"output_type": "execute_result"
193+
}
194+
],
195+
"source": [
196+
"y_train"
197+
]
198+
},
199+
{
200+
"cell_type": "code",
201+
"execution_count": null,
202+
"metadata": {},
203+
"outputs": [],
204+
"source": []
205+
}
206+
],
207+
"metadata": {
208+
"kernelspec": {
209+
"display_name": "Python 3",
210+
"language": "python",
211+
"name": "python3"
212+
},
213+
"language_info": {
214+
"codemirror_mode": {
215+
"name": "ipython",
216+
"version": 3
217+
},
218+
"file_extension": ".py",
219+
"mimetype": "text/x-python",
220+
"name": "python",
221+
"nbconvert_exporter": "python",
222+
"pygments_lexer": "ipython3",
223+
"version": "3.7.3"
224+
}
225+
},
226+
"nbformat": 4,
227+
"nbformat_minor": 2
228+
}

0 commit comments

Comments
 (0)