diff --git a/multi_agent_decision/__init__.py b/multi_agent_decision/__init__.py index 8b13789..69aa8f6 100644 --- a/multi_agent_decision/__init__.py +++ b/multi_agent_decision/__init__.py @@ -1 +1 @@ - +from multi_agent_decision.simulation import perturbed_response1,perturbed_response2,perturbed_response3,perturbed_response4,simulation_function_neighbors \ No newline at end of file diff --git a/multi_agent_decision/simulation.py b/multi_agent_decision/simulation.py new file mode 100644 index 0000000..7c79880 --- /dev/null +++ b/multi_agent_decision/simulation.py @@ -0,0 +1,646 @@ +import numpy as np +import pandas as pd +from collections import Counter +import datetime +import random +import matplotlib.pyplot as plt +import networkx as nx +import string +from functools import reduce +import itertools + + + +dotprod = lambda K, L: reduce(lambda z1, z2: z1+z2, map(lambda x: reduce(lambda x1, x2: x1*x2, x), zip(K, L))) if len(K)==len(L) else 0 + + + +# 1.random_seed : random seed to reproduce results. Integer +# 2.iteration_name: give any name for this iterations. String +# 3.path_to_save_output. the location where output excel files should be saved. String +# 4.num_strategies : total number of strategies. Integer +# 5.agent_initial_state : specify the initial state of agents in list format e.g. ['H','M','M'] in case of 3 agents where 1st agent follows 'H' strategy and agents 2 and 3 follow 'M'. List +# 6.strategy_share. percent distribution of strategies among agents. Must be specified in list. E.g.[0.4,0.4,0.2]. Must add up to 1. Specify in the order of strategies 0,1,2, and so on. List +# 7.strategy_pair. Strategy pair in dictionary format.E.g. {0: "H",1: "M",2: "L"}. 0 strategy is 'H', 1 strategy is 'M', and so on. Count must match with num_strategies argument. Keys would need to be 0,1,2, etc. Value corresponding to keys can be anything in string format. +# 8.payoff_values. List of payoff values. E.g. [[0,0,70],[0,50,50],[30,30,30]]. the first list [0,0,70] is the first row of the 3*3 payoff matrix assuming we have 3 strategies. Second list [0,50,50] is the second row of the payoff matrix and third list [30,30,30] is the third row of payoff matrix. +## It looks something like below. +# [0, 0, 70 +# 0, 50, 50 +# 30, 30, 30] +# 9.network_name: specify one of these values [small_world1,small_world2,small_world3,complete,random,grid2d]. String +# 10.prob_edge_rewire: small world network parameter. Probability of rewiring each edge. Float +# 11.grid_network_m: 2-dimensional grid network parameter. Number of nodes. Integer +# 12.grid_network_n: 2-dimensional grid network parameter. Number of nodes. Integer +# 13.num_agents : number of agents. Integer +# 14.num_neighbors: number of neighbours. Integer +# 15.delta_to_add: delta payoff value which will be added (or deducted in case of negative value) to the payoffs in case of norm displacement.Float/Integer +# 16.norms_agents_frequency: norm condition. Minimum percentage of agents require to propose same name. Specify number from 0 to 1. Float +# 17.norms_time_frequency: norm condition. Minimum percentage of times agents require to propose same name. Specify number from 0 to 1. Float +# 18.min_time_period: minimum time period for which the game should be run before adding delta payoff. Integer +# 19.enable_delta_payoff: if norm displacement is required to be assessed , specify 'Yes' else specify 'No'. +# 20.num_of_trials: number of trials. Integer +# 21.fixed_agents: agents assumed as fixed. List +# 22.fixed_strategy_to_use: specify key value from strategy_pair. e.g. if we want fixed agents to follow strategy 'H' and strategy_pair is {0: "H",1: "M",2: "L"}, specify the value as 0. Integer +# 23.function_to_use: specify one of these values [perturbed_response1,perturbed_response2,perturbed_response3,perturbed_response4]. String +# 24.perturb_ratio: probability of agents taking action randomly. Float + + + +# function_to_use +# perturbed_response1: Agent selects the best response (1-perturb_ratio)*100% times among the strategies which are most frequently used. Agents selects random strategy (perturb_ratio)*100% times from which are not most frequently used. +# perturbed_response2: Agent selects strategy according to the % share in which it has been used by opponents in the past. +# perturbed_response3: This is same as perturbed_response1 function except agent selects random strategy (perturb_ratio)*100% times from all the strategies. +# perturbed_response4: Agent selects the best response 100% times among the strategies which are most frequently used. There is no perturbation element. + + +# Note there may be instances wherein more than 1 strategy has been used by opponent agents more frequently. +# E.g. if an agent comes across s1 and s2 strategy used by their opponent agents most frequently during any history and both s1 and s2 +# have been used equally in the past, in that case agent deciding to take action will select randomly from s1 and s2. + + +# network_name +# small_world1: Returns a Watts–Strogatz small-world graph. Here number of edges remained constant once we increase the prob_edge_rewire value.Shortcut edges if added would replace the existing ones. But total count of edges remained constant. +# small_world2: Returns a Newman–Watts–Strogatz small-world graph. Here number of edges increased once we increase the prob_edge_rewire value. Would add more shortcut edges in addition to what already exist. +# small_world3: Returns a connected Watts–Strogatz small-world graph. +# complete: Returns the complete graph. +# random: Compute a random graph by swapping edges of a given graph. +# grid2d: Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. + + + + +def perturbed_response1(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents): + + agent_strategy_to_choose=[] + + if len(fixed_agents) > 0: + + for j in range(num_agents): + + if j in fixed_agents: + agent_strategy_to_choose.append(fixed_strategy_to_use) + + + else: + + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + xx = data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0] + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + xx = random.choices(population=xx,k=1)[0] + + non_recommended = [k for k in unique_strategies if k != xx] + + if len(non_recommended) > 0: + draw2= random.choices(population=non_recommended,k=1) + best_response = random.choices(population=[xx,draw2[0]],weights=[1-perturb_ratio,perturb_ratio],k=1) + best_response = best_response[0] + else: + best_response = xx + + agent_strategy_to_choose.append(best_response) + + + + else: + for j in range(num_agents): + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + xx = data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0] + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + xx = random.choices(population=xx,k=1)[0] + + non_recommended = [k for k in unique_strategies if k != xx] + + if len(non_recommended) > 0: + draw2= random.choices(population=non_recommended,k=1) + best_response = random.choices(population=[xx,draw2[0]],weights=[1-perturb_ratio,perturb_ratio],k=1) + best_response = best_response[0] + else: + best_response = xx + + agent_strategy_to_choose.append(best_response) + + return agent_strategy_to_choose + + + + +def perturbed_response2(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents): + + agent_strategy_to_choose=[] + + if len(fixed_agents) > 0: + + for j in range(num_agents): + + if j in fixed_agents: + agent_strategy_to_choose.append(fixed_strategy_to_use) + else: + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + flat_list1.remove(j) ## to get opponent's agents + + + percent_share_data =agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True)['strategy'].value_counts(normalize=True).to_frame() + percent_share_data.columns = ['prob'] + percent_share_data['strategy'] = percent_share_data.index.values + percent_share_data['prob'] = np.round(percent_share_data['prob'],2) + prob_opponent_strategy = [] + for i in unique_strategies: ### should be in 0,1,2,,,, order + try: + xx = percent_share_data.loc[percent_share_data['strategy']==i]['prob'].values[0] + except: + xx = 0 + prob_opponent_strategy.append(xx) + + agent_payoffs=[] + for i in unique_strategies: + agent_payoffs.append(dotprod(payoff_matrix[i,].tolist(),prob_opponent_strategy)) + + index_strategy = [index for index,item in enumerate(agent_payoffs) if item == max(agent_payoffs)] + agent_choice = random.choices(index_strategy,k=1)[0] + agent_strategy_to_choose.append(agent_choice) + + + else: + for j in range(num_agents): + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + flat_list1.remove(j) ## to get opponent's agents + + ### this is aggregated data.. + percent_share_data =agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True)['strategy'].value_counts(normalize=True).to_frame() + percent_share_data.columns = ['prob'] + percent_share_data['strategy'] = percent_share_data.index.values + percent_share_data['prob'] = np.round(percent_share_data['prob'],2) + prob_opponent_strategy = [] + for i in unique_strategies: ### should be in 0,1,2,,,, order + try: + xx = percent_share_data.loc[percent_share_data['strategy']==i]['prob'].values[0] + except: + xx = 0 + prob_opponent_strategy.append(xx) + + agent_payoffs=[] + for i in unique_strategies: + agent_payoffs.append(dotprod(payoff_matrix[i,].tolist(),prob_opponent_strategy)) + + index_strategy = [index for index,item in enumerate(agent_payoffs) if item == max(agent_payoffs)] + agent_choice = random.choices(index_strategy,k=1)[0] + agent_strategy_to_choose.append(agent_choice) + + return agent_strategy_to_choose + + + + +def perturbed_response3(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents): + + agent_strategy_to_choose=[] + + if len(fixed_agents) > 0: + + for j in range(num_agents): + + if j in fixed_agents: + agent_strategy_to_choose.append(fixed_strategy_to_use) + else: + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + xx = data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0] + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + xx = random.choices(population=xx,k=1)[0] + + + draw2= random.choices(population=unique_strategies,k=1) + best_response = random.choices(population=[xx,draw2[0]],weights=[1-perturb_ratio,perturb_ratio],k=1) + best_response = best_response[0] + + agent_strategy_to_choose.append(best_response) + + + + else: + for j in range(num_agents): + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + xx = data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0] + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + xx = random.choices(population=xx,k=1)[0] + + + draw2= random.choices(population=unique_strategies,k=1) + best_response = random.choices(population=[xx,draw2[0]],weights=[1-perturb_ratio,perturb_ratio],k=1) + best_response = best_response[0] + + agent_strategy_to_choose.append(best_response) + + return agent_strategy_to_choose + + + + +def perturbed_response4(num_agents,agent_and_strategy_pd2,potential_edges,fixed_agents): + agent_strategy_to_choose=[] + + if len(fixed_agents) > 0: + + for j in range(num_agents): + if j in fixed_agents: + agent_strategy_to_choose.append(fixed_strategy_to_use) + + else: + + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + agent_strategy_to_choose.append(data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0]) + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + agent_strategy_to_choose.append(random.choices(population=xx,k=1)[0]) + + else: + + for j in range(num_agents): + + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + data_to_check = agent_and_strategy_pd2.loc[agent_and_strategy_pd2['agent_no'].isin(flat_list1)].reset_index(drop=True) + + if data_to_check.loc[data_to_check['agent_no']==j]['payoff'].values[0] == max(data_to_check['payoff']): + agent_strategy_to_choose.append(data_to_check.loc[data_to_check['agent_no']==j]['strategy'].values[0]) + else: + xx = list(set(data_to_check.loc[(data_to_check['agent_no']!=j) & (data_to_check['payoff']==max(data_to_check['payoff']))]['strategy'].tolist())) + agent_strategy_to_choose.append(random.choices(population=xx,k=1)[0]) + + return agent_strategy_to_choose + + + + +def simulation_function_neighbors(random_seed, + iteration_name, + path_to_save_output, + num_strategies, + agent_initial_state, + strategy_share, + strategy_pair, + payoff_values, + network_name, + prob_edge_rewire, + grid_network_m, + grid_network_n, + num_agents, + num_neighbors, + delta_to_add, + norms_agents_frequency, + norms_time_frequency, + min_time_period, + enable_delta_payoff, + num_of_trials, + fixed_agents, + fixed_strategy_to_use, + function_to_use, + perturb_ratio + + ): + random_seed = random_seed + iteration_name = iteration_name + today = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + path_to_save_output = path_to_save_output + num_strategies = num_strategies + agent_initial_state = agent_initial_state + strategy_share = strategy_share + thisdict = strategy_pair + random.seed(random_seed) + payoff_values= payoff_values + network_name = network_name + prob_edge_rewire = prob_edge_rewire + grid_network_m=grid_network_m + grid_network_n=grid_network_n + num_agents = num_agents + num_neighbors = num_neighbors + delta_to_add = delta_to_add + norms_agents_frequency = norms_agents_frequency + norms_time_frequency = norms_time_frequency + min_time_period = min_time_period + enable_delta_payoff = enable_delta_payoff + num_of_trials = num_of_trials + fixed_agents = fixed_agents + fixed_strategy_to_use = fixed_strategy_to_use + function_to_use = function_to_use + perturb_ratio = perturb_ratio + + + + payoff_matrix = np.zeros((num_strategies,num_strategies)) + thisdict2 = {value:key for (key,value) in thisdict.items()} + for i in range(len(payoff_values)): + payoff_matrix[i,]= payoff_values[i] + + list_to_fill = [] + for i in range(num_strategies): + list_to_fill.append([i]*round(strategy_share[i]*num_agents)) + + flat_list = [item for sublist in list_to_fill for item in sublist] + if len(flat_list) == num_agents: + pass + # print("ok") + elif len(flat_list) < num_agents: + delta = num_agents - len(flat_list) + for kk in range(delta): + flat_list.append(flat_list[-1]) + # print("last elements added") + else: + delta = len(flat_list) - num_agents + for kk in range(delta): + flat_list.pop() + # print("last elements deleted") + + if len(agent_initial_state) > 0: + samplelist1 = agent_initial_state + else: + samplelist1 = random.sample(flat_list,len(flat_list)) + + + + if network_name == 'small_world1': + G = nx.watts_strogatz_graph(num_agents,num_neighbors,prob_edge_rewire) + if network_name == 'small_world2': + G = nx.newman_watts_strogatz_graph(n=num_agents,k=num_neighbors,p=prob_edge_rewire,seed=random_seed) + if network_name == 'small_world3': + G = nx.connected_watts_strogatz_graph(n=num_agents,k=num_neighbors,p=prob_edge_rewire,seed=random_seed) + if network_name == 'complete': + G = nx.complete_graph(num_agents) + if network_name == 'random': + G = nx.watts_strogatz_graph(num_agents,num_neighbors,prob_edge_rewire) + G = nx.random_reference(G, niter=5, connectivity=True, seed=random_seed) + if network_name == 'grid2d': + G = nx.grid_2d_graph(m=grid_network_m,n=grid_network_n) + mapping = dict(zip(G, range(len(G)))) + G = nx.relabel_nodes(G, mapping) + + + nx.draw(G,with_labels=True) + plt.savefig(path_to_save_output+"input_network_"+iteration_name+"_"+today+".png") + plt.clf() + + potential_edges = list(G.edges) + + agents_list = list(range(num_agents)) + agent_and_strategy_pd = pd.DataFrame({'agent_no':agents_list,'strategy':samplelist1}) + intial_states_pd = pd.DataFrame([{'initial_state':str([thisdict[k] for k in samplelist1])}],columns=['initial_state']) + + + trend_db_to_store = pd.DataFrame(columns=["percent_count","strategy","timeperiod_number","starting_position"]) + payoff_matrices = [] + payoff_matrices.append(str(payoff_matrix)) + payoff_matrices_timeperiod = [] + payoff_matrices_timeperiod.append(0) + agent_and_strategy_pd['timeperiod_number'] = 0 + unique_strategies = list(range(num_strategies)) + + + ### initial state graph + names_to_check=unique_strategies + get_colors = lambda n: list(map(lambda i: "#" + "%06x" % random.randint(0, 0xFFFFFF),range(n))) + list_of_colors = get_colors(len(names_to_check)) + color_map = [] + for j in range(len(samplelist1)): + for i in range(len(names_to_check)): + if samplelist1[j] == names_to_check[i]: + color_map.append(list_of_colors[i]) + + for i in range(len(G)): + G.nodes[i]["name_offered"] = [thisdict[k] for k in samplelist1][i] + + labels_for_graph = nx.get_node_attributes(G,"name_offered") + nx.draw(G,with_labels=True,node_color=color_map,labels=labels_for_graph) + l,r = plt.xlim() + plt.xlim(l-0.05,r+0.05) + plt.savefig(path_to_save_output+"networkgraph_initial_state"+'_'+iteration_name+"_"+today+".png") + plt.clf() + + for timeperiod in range(1,num_of_trials+1): + payoff_matrix_original = payoff_matrix.copy() + + agent_payoffs_to_store = [] + for j in range(num_agents): + check1 = [i for i in potential_edges if i[0] == j] + check2 = [i for i in potential_edges if i[1] == j] + check1.extend(check2) + flat_list1 = list(set([item for sublist in check1 for item in sublist])) + flat_list1.remove(j) + row_strategy = agent_and_strategy_pd.loc[agent_and_strategy_pd['agent_no'] == j]['strategy'].values[0] + data_to_check = agent_and_strategy_pd.loc[agent_and_strategy_pd['agent_no'].isin(flat_list1)].reset_index(drop=True) + agent_payoff = 0 + for i in range(len(data_to_check)): + agent_payoff += payoff_matrix[row_strategy,data_to_check.iloc[i]['strategy']] + agent_payoffs_to_store.append(agent_payoff) + + + agent_and_strategy_payoff = pd.DataFrame({'agent_no':agents_list,'payoff':agent_payoffs_to_store}) + agent_and_strategy_pd2 = pd.merge(agent_and_strategy_pd,agent_and_strategy_payoff,on='agent_no') + + if function_to_use == 'perturbed_response1': + agent_strategy_to_choose = perturbed_response1(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents) + elif function_to_use == 'perturbed_response2': + agent_strategy_to_choose = perturbed_response2(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents) + elif function_to_use == 'perturbed_response3': + agent_strategy_to_choose = perturbed_response3(num_agents,agent_and_strategy_pd2,potential_edges,perturb_ratio,unique_strategies,fixed_agents) + elif function_to_use == 'perturbed_response4': + agent_strategy_to_choose = perturbed_response4(num_agents,agent_and_strategy_pd2,potential_edges,fixed_agents) + + + agent_and_strategy_pd= pd.DataFrame({'agent_no':agents_list,'strategy':agent_strategy_to_choose}) + + data1_to_store = agent_and_strategy_pd['strategy'].value_counts(normalize=True).to_frame() + data1_to_store.columns = ['percent_count'] + data1_to_store['strategy'] = data1_to_store.index.tolist() + data1_to_store = data1_to_store.replace({"strategy":thisdict}) + data1_to_store["timeperiod_number"] = timeperiod + data1_to_store["starting_position"] = str([thisdict[k] for k in samplelist1]) + trend_db_to_store = trend_db_to_store.append(data1_to_store,ignore_index=True) + + #### added ### + if enable_delta_payoff == 'Yes' and timeperiod > min_time_period and max(trend_db_to_store['percent_count']) >= norms_agents_frequency: + norms_to_store = [] + percent_time_frequency = [] + norms_candidates = trend_db_to_store.loc[trend_db_to_store['percent_count']>= norms_agents_frequency] + norms_candidates = norms_candidates.replace({'strategy':thisdict2}) ### convert to numeric. + potential_norms_candidate = np.unique(norms_candidates['strategy']).tolist() + for k in potential_norms_candidate: + norms_candidates2 = norms_candidates.loc[norms_candidates['strategy']==k] + distinct_timeperiod = len(np.unique(norms_candidates2['timeperiod_number'])) + norms_candidates2 = round(distinct_timeperiod/len(np.unique(trend_db_to_store['timeperiod_number'])),2) + if norms_candidates2 >= norms_time_frequency: + norms_to_store.append(k) + percent_time_frequency.append(norms_candidates2) + + + if len(norms_to_store) > 0: + payoff_values_new = [] + norm_strategies = norms_to_store + for i in range(len(payoff_values)): + if i in norm_strategies: + payoff_values_new.append(payoff_values[i]) + else: + payoff_values_new.append([x + delta_to_add for x in payoff_values[i]]) + + for i in range(len(payoff_values_new)): ### replace with new payoff values ### + payoff_matrix[i,]= payoff_values_new[i] + + + if (payoff_matrix_original==payoff_matrix).all() == False: + payoff_matrices.append(str(payoff_matrix)) + payoff_matrices_timeperiod.append(timeperiod) + + + payoff_matrices_pd = pd.DataFrame(payoff_matrices) + payoff_matrices_pd.columns = ['payoff_matrix'] + payoff_matrices_pd['timeperiod'] = payoff_matrices_timeperiod + + #### strategy converted to norm #### + norms_to_store = [] + percent_time_frequency = [] + norms_candidates = trend_db_to_store.loc[trend_db_to_store['percent_count']>= norms_agents_frequency] + # norms_candidates = norms_candidates.replace({'strategy':thisdict2}) ### convert to numeric. + potential_norms_candidate = np.unique(norms_candidates['strategy']).tolist() + for k in potential_norms_candidate: + norms_candidates2 = norms_candidates.loc[norms_candidates['strategy']==k] + distinct_timeperiod = len(np.unique(norms_candidates2['timeperiod_number'])) + norms_candidates2 = round(distinct_timeperiod/len(np.unique(trend_db_to_store['timeperiod_number'])),2) + if norms_candidates2 >= norms_time_frequency: + norms_to_store.append(k) + percent_time_frequency.append(norms_candidates2) + + + try: + norms_candidates2 = pd.DataFrame() + norms_candidates2["percent_count"] = percent_time_frequency + norms_candidates2["name"] = norms_to_store + if len(norms_candidates2) > 0: + norms_candidates2.to_excel(path_to_save_output+"normcandidates_"+iteration_name+"_"+today+".xlsx",index=None) + except: + pass + + + + ##### distribution at the end of timeperiod. + color_map = [] + for j in range(len(agent_strategy_to_choose)): + for i in range(len(names_to_check)): + if agent_strategy_to_choose[j] == names_to_check[i]: + color_map.append(list_of_colors[i]) + + for i in range(len(G)): + G.nodes[i]["name_offered"] = [thisdict[k] for k in agent_strategy_to_choose][i] + + labels_for_graph = nx.get_node_attributes(G,"name_offered") + nx.draw(G,with_labels=True,node_color=color_map,labels=labels_for_graph) + l,r = plt.xlim() + plt.xlim(l-0.05,r+0.05) + # plt.show() + plt.savefig(path_to_save_output+"network_after_"+str(num_of_trials)+'_timeperiods_'+iteration_name+"_"+today+".png") + plt.clf() + + + ### trend graph + fig,ax = plt.subplots() + data_for_trend_plot = trend_db_to_store.loc[trend_db_to_store['starting_position']==str([thisdict[k] for k in samplelist1])] + data_for_trend_plot = data_for_trend_plot.reset_index(drop=True) + for label,grp in data_for_trend_plot.groupby('strategy'): + grp.plot(x='timeperiod_number',y='percent_count',ax=ax,label=label) + ax.set_xlabel('Timeperiod') + ax.set_ylabel('Count %') + # plt.show() + plt.savefig(path_to_save_output+"strategy_trend_"+iteration_name+"_"+today+".png") + plt.clf() + + + ###### dataframe of strategy the timeperiod when it reached the norms stage ##### + db_to_fill2 = pd.DataFrame() + db_to_fill2["timeperiod"] = -1 + db_to_fill2["name_offered"] = -1 + # data_for_norms_plot = trend_db_to_store.loc[trend_db_to_store['starting_position']==str([thisdict[k] for k in samplelist1])] + if len(norms_to_store) > 0: + for j in norms_to_store: + foocheck = data_for_trend_plot.loc[data_for_trend_plot["strategy"]==j] + foocheck = foocheck.loc[foocheck['percent_count']>= norms_agents_frequency].reset_index(drop=True) + foocheck = foocheck.sort_values(["timeperiod_number"]) + foocheck["count_names_offered"] = (foocheck["strategy"]==j).cumsum() + foocheck["cum_perc"] = foocheck["count_names_offered"]/len(np.unique(data_for_trend_plot['timeperiod_number'])) + xxxx= foocheck.loc[foocheck["cum_perc"]>=norms_time_frequency][["timeperiod_number"]].head(1) + if xxxx.shape[0] > 0: + timev = foocheck.loc[foocheck["cum_perc"]>=norms_time_frequency][["timeperiod_number"]].head(1)["timeperiod_number"].values[0] + foodb = pd.DataFrame({"timeperiod":[timev],"name_offered":[j]}) + db_to_fill2 = pd.concat([db_to_fill2,foodb],ignore_index=True,sort=False) + + + + try: + if len(db_to_fill2) > 0: + db_to_fill2.to_excel(path_to_save_output+"time_when_reached_norm_"+iteration_name+"_"+today+".xlsx",index=None) + except: + pass + + + trend_db_to_store.to_excel(path_to_save_output+"aggregate_data_detailed_agent_"+iteration_name+"_"+today+".xlsx",index=None) + + + parameters_pd = pd.DataFrame([{'random_seed':random_seed,'iteration_name':iteration_name, + 'path_to_save_output':path_to_save_output,'num_strategies':num_strategies, + 'agent_initial_state':str(agent_initial_state),'strategy_share':str(strategy_share), + 'strategy_pair':str(strategy_pair),'payoff_values':str(payoff_values), + 'network_name':network_name,'prob_edge_rewire':prob_edge_rewire, + 'grid_network_m':grid_network_m,'grid_network_n':grid_network_n, + 'num_agents':num_agents,'num_neighbors':num_neighbors, + 'delta_to_add':delta_to_add,'norms_agents_frequency':norms_agents_frequency, + 'norms_time_frequency':norms_time_frequency,'min_time_period':min_time_period, + 'enable_delta_payoff':enable_delta_payoff,'num_of_trials':num_of_trials, + 'fixed_agents':str(fixed_agents),'fixed_strategy_to_use':fixed_strategy_to_use, + 'function_to_use':function_to_use,'perturb_ratio':perturb_ratio, + 'datetime':today}]).T + parameters_pd.columns=["parameter_values"] + parameters_pd["parameter"]=parameters_pd.index + parameters_pd[["parameter","parameter_values"]].to_excel(path_to_save_output+"parameters_"+iteration_name+"_"+today+".xlsx",index=None) + + intial_states_pd.to_excel(path_to_save_output+"initial_state_considered_"+iteration_name+"_"+today+".xlsx",index=None) + payoff_matrices_pd.to_excel(path_to_save_output+"payoff_matrices_considered_by_timeperiod_"+iteration_name+"_"+today+".xlsx",index=None) + + return(print("done"))