-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_experiments.py
434 lines (338 loc) · 17.6 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import functools
from typing import List, Dict, Tuple, Callable
import haiku as hk
import numpy as np
import pandas as pd
from sklearn.metrics import balanced_accuracy_score
from modules.post_processing import finetuning, weighted_training
from modules.model_components import incompetent_get
from utils.jax.models.bnn import BNN
import jax, jax.numpy as jnp
from jax import jit
from bnn_utils import MyBNN, get_tpr_fpr_tnr_fnr as t_f_t_f_pr_nr_bnn, get_tpr as get_tpr_bnn, accuracy_bnn, ksplit
from bnn_utils import SimpleMLPClassifier, SimpleMLPClassifierWithClassDistributionRandomization, \
get_tpr_pure, get_accuracy, get_tnr_pure
import chex
from itertools import product
from typing import List, Tuple
from tqdm import tqdm
from fairness_datasets import get_adult_data, get_compas_data, get_german_data
from utils.common import load_pickle, save_pickle
from aif360.sklearn.metrics import average_odds_difference, equal_opportunity_difference, \
generalized_entropy_error, consistency_score, statistical_parity_difference
from modules.fairness_algorithms import get_reweight_stats, get_lfr_stats, get_opt_stats, get_adb_stats, \
get_mf_stats, get_calibeo_stats, get_roc_stats
from jaxlib.xla_extension import DeviceArray
from utils.jax.models.bnn import log_prob, get_weight_sampler, restructure, destructure
import optax
onp = np
dataset_hparams = {
'Adult': {
'lr': 0.001,
'num_layers': 0,
'hidden_dim': 128,
'dropout': 0.,
'num_iterations': 100000
},
'German': {
'lr': 0.001,
'num_layers': 0,
'hidden_dim': 128,
'dropout': 0.,
'num_iterations': 100000
}
}
class BNNwProtDistributionShift(MyBNN):
def sample_random_batch(self, key, data_all, prot_attr_mask: chex.Array, batch_size):
data, labels = data_all
fav_mask = (labels == 1).astype(float).flatten()
unfav_mask = (labels == 0).astype(float).flatten()
num_fav, num_unfav = fav_mask.sum(), unfav_mask.sum()
prot_mask = (prot_attr_mask == 1).astype(float).flatten()
prot_alt_mask = (prot_attr_mask == 0).astype(float).flatten()
num_prot, num_prot_alt = prot_mask.sum(), prot_alt_mask.sum()
key, split = ksplit(key)
perc_prot = jax.random.uniform(split)
m_prot_mask = prot_mask * perc_prot
m_protalt_mask = prot_alt_mask * (1 - perc_prot)
selection_prot_probs = (m_prot_mask/num_prot) + (m_protalt_mask/num_prot_alt)
key, split = ksplit(key)
perc_fav = jax.random.uniform(split)
m_fav_mask = fav_mask * perc_fav
m_unfav_mask = unfav_mask * (1 - perc_fav)
selection_probs = (m_fav_mask/num_fav) + (m_unfav_mask/num_unfav)
key, split = ksplit(key)
batch_idx = jax.random.choice(split, jnp.arange(data.shape[0]), (batch_size, ), replace=False, p=selection_probs * selection_prot_probs)
return data[batch_idx], labels[batch_idx]
class BNNwDistributionShift(MyBNN):
def sample_random_batch(self, key, data_all, prot_attr_mask: chex.Array, batch_size):
data, labels = data_all
fav_mask = (labels == 1).astype(float).flatten()
unfav_mask = (labels == 0).astype(float).flatten()
num_fav, num_unfav = fav_mask.sum(), unfav_mask.sum()
key, split = ksplit(key)
perc_fav = jax.random.uniform(split)
m_fav_mask = fav_mask * perc_fav
m_unfav_mask = unfav_mask * (1 - perc_fav)
selection_probs = (m_fav_mask/num_fav) + (m_unfav_mask/num_unfav)
key, split = ksplit(key)
batch_idx = jax.random.choice(split, jnp.arange(data.shape[0]), (batch_size, ), replace=False, p=selection_probs)
return data[batch_idx], labels[batch_idx]
class StatsGenerator:
PTYPE_EPIS = 0
PTYPE_ALEA = 1
def __init__(self, model, train_data, train_labels, test_data, test_labels, protected_attr_idx, batch_size=500, key=7):
self.pre_init()
self._model = model
self._train_data = train_data
self._train_labels = train_labels
self._test_data = test_data
self._test_labels = test_labels
self._rng_seq = hk.PRNGSequence(key)
self._prot_attr_idx = protected_attr_idx
self.BATCH_SIZE=batch_size
self.post_init()
self._non_finetuned_params = None
self._is_trained = False
def pre_init(self):
pass
def post_init(self):
pass
def train(self):
raise NotImplementedError('`train` not implemented')
def key(self):
return next(self._rng_seq)
def transform_data(self, data):
return data
def get_tpr(self, data, labels):
raise NotImplementedError('get_tpr not implemented')
def get_equalized_odds(self, data, labels, protected_attr_idx):
cls0_idxs = np.where(data[:, protected_attr_idx] == 0)[0]
cls1_idxs = np.where(data[:, protected_attr_idx] == 1)[0]
cls0_tpr = self.get_tpr(data[cls0_idxs], labels[cls0_idxs])
cls1_tpr = self.get_tpr(data[cls1_idxs], labels[cls1_idxs])
return np.abs(cls1_tpr - cls0_tpr)
def get_accuracy(self, data, labels):
raise NotImplementedError('get_accuracy not implemented')
def get_balanced_accuracy(self, data, labels):
raise NotImplementedError('get_balanced_accuracy not implemented')
def get_predictions(self, data):
raise NotImplementedError('`get_predictions` not implemented')
def filter_data(self, x, filter_perc, filter_type):
raise NotImplementedError('`filter_data` not implemented')
def save_params(self):
raise NotImplementedError('`save_params` not implemented')
def restore_params(self):
raise NotImplementedError
def get_all_stats(self, data, labels, protected_attr_idx, filter_perc, filter_type):
if not self._is_trained:
self.train()
self._is_trained = True
self.save_params()
else:
self.restore_params()
# Filter the data which is best for predictions
filtered_idxs = self.filter_data(data, filter_perc, filter_type)
non_prot_attrs = [x for x in range(data.shape[1]) if x != protected_attr_idx]
data_fil, labels_fil = data[filtered_idxs], labels[filtered_idxs]
y_true = pd.DataFrame(labels_fil)
prot = np.array(data_fil[:, protected_attr_idx]).flatten()
y_preds = self.get_predictions(data_fil)
y_preds = np.array(y_preds)
ig = incompetent_get
stats = {
'statistical_parity': ig(statistical_parity_difference)(y_true, y_preds, prot_attr=prot),
'avg_odds_diff': ig(average_odds_difference)(y_true, y_preds, prot_attr=prot),
'equal_opportunity_diff': ig(equal_opportunity_difference)(y_true, y_preds, prot_attr=prot),
'generalized_entropy_error': ig(generalized_entropy_error)(y_true.to_numpy().flatten(), y_preds),
'consistency_score': ig(consistency_score)(np.array(data_fil[:, non_prot_attrs]), y_preds),
'accuracy': ig(self.get_accuracy)(data_fil, labels_fil),
'bal_accuracy': ig(balanced_accuracy_score)(y_true, y_preds),
# 'EO': ig(self.get_equalized_odds)(data_fil, labels_fil, protected_attr_idx)
}
# num_minibatches = len(self._train_data) // self.BATCH_SIZE
# # Fine tune the data
# finetuning(self._model, self._train_data, self._train_labels,
# self._test_data, self._test_labels,
# functools.partial(self.filter_data, filter_perc=filter_perc, filter_type=self.PTYPE_ALEA),
# num_minibatches, self.TRAIN_ITERS, extra={
# 'batch_size': self.BATCH_SIZE,
# 'prot_attrs': [self._prot_attr_idx]},
# n=self._num_verifications, verbose=False)
#
#
# # data, labels = data[filtered_idxs], labels[filtered_idxs]
# y_true = pd.DataFrame(labels)
# prot = np.array(data[:, protected_attr_idx]).flatten()
# y_preds = self.get_predictions(data)
# y_preds = np.array(y_preds)
#
# stats2 = {
# 'finetune_statistical_parity': ig(statistical_parity_difference)(y_true, y_preds, prot_attr=prot),
# 'finetune_avg_odds_diff': ig(average_odds_difference)(y_true, y_preds, prot_attr=prot),
# 'finetune_equal_opportunity_diff': ig(equal_opportunity_difference)(y_true, y_preds, prot_attr=prot),
# 'finetune_generalized_entropy_error': ig(generalized_entropy_error)(y_true.to_numpy().flatten(), y_preds),
# 'finetune_consistency_score': ig(consistency_score)(np.array(data[:, non_prot_attrs]), y_preds),
# 'finetune_accuracy': ig(self.get_accuracy)(data, labels),
# 'finetune_bal_accuracy': ig(self.get_balanced_accuracy)(data, labels),
# 'finetune_EO': ig(self.get_equalized_odds)(data, labels, protected_attr_idx)
# }
#
# for k, v in stats2.items():
# stats[k] = v
return stats
class BNNStatsGenerator(StatsGenerator):
_model: BNN
_num_verifications: int = 150
TRAIN_ITERS: int = 50000
def post_init(self):
non_prot_attrs = [x for x in range(self._train_data.shape[1]) if x != self._prot_attr_idx]
self._non_prot_attrs = non_prot_attrs
def train(self):
# td = self.transform_data
self._model.train(
(self._train_data, self._train_labels, ),
(self._test_data, self._test_labels, ),
len(self._train_data) // self.BATCH_SIZE,
num_iterations=self.TRAIN_ITERS, extra={
'batch_size': self.BATCH_SIZE,
'prot_attrs': [self._prot_attr_idx]
}
)
def transform_data(self, data):
return data[:, self._non_prot_attrs]
def get_tpr(self, data, labels):
return get_tpr_bnn(self._model, self.transform_data(data), labels, self._num_verifications)
def get_accuracy(self, data, labels):
return accuracy_bnn(self._model, self.transform_data(data), labels, self._num_verifications).item()
def get_predictions(self, data):
return onp.array(jnp.argmax(self._model.get_mean_predictions(self.transform_data(data), self._num_verifications), axis=1))
def get_balanced_accuracy(self, data, labels):
tpr, fpr, tnr, fnr = t_f_t_f_pr_nr_bnn(self._model, self.transform_data(data), labels, self._num_verifications)
return ((tpr + tnr) / 2).item()
def save_params(self):
self._non_finetuned_params = self._model._baysian_params
def restore_params(self):
self._model._baysian_params = self._non_finetuned_params
def filter_data(self, x, filter_perc, filter_type: int):
# get the number of samples in the final results
num_samples = int(len(x) * filter_perc)
# get the uncertainty
uncertainties = self._model.get_aleatoric_uncertainty_v2(self.transform_data(x), self._num_verifications) \
if filter_type == self.PTYPE_ALEA \
else self._model.get_epistemic_uncertainty(self.transform_data(x), self._num_verifications)
# filter the data based on the uncertainty
unc_sorted = sorted(enumerate(uncertainties.tolist()), key=lambda x: x[1])
filtered_idxs = list(zip(*unc_sorted))[0][:num_samples]
# return the indices
return list(filtered_idxs)
class SimpleMLPStatsGenerator(StatsGenerator):
_model: SimpleMLPClassifier
TRAIN_ITERS: int = 50000
def post_init(self):
non_prot_attrs = [x for x in onp.arange(self._train_data.shape[1]) if x != self._prot_attr_idx]
self._non_prot_attrs = non_prot_attrs
def train(self):
# td = self.transform_data
self._model.fit(self._train_data[:, self._non_prot_attrs], self._train_labels,
num_iterations=self.TRAIN_ITERS, batch_size=self.BATCH_SIZE,
train_data_eval=self._train_data[:, self._non_prot_attrs], test_data=self._test_data[:, self._non_prot_attrs],
train_labels_eval=self._train_labels, test_labels=self._test_labels)
def transform_data(self, data):
return data[:, self._non_prot_attrs]
def get_tpr(self, data, labels):
return get_tpr_pure(self.key(), self.transform_data(data), labels, self._model.params, self._model.apply).item()
def get_accuracy(self, data, labels):
return get_accuracy(self.key(), self.transform_data(data), labels, self._model.params, self._model.apply).item()
def get_predictions(self, data):
return self._model.predict(self.transform_data(data))
def get_balanced_accuracy(self, data, labels):
tpr = self.get_tpr(data, labels)
tnr = get_tnr_pure(self.key(), self.transform_data(data), labels, self._model.params, self._model.apply)
return ((tpr + tnr) / 2).item()
def bnn_pruning_results_mlp_student(bnn: BNN, train_data, train_labels, test_data, test_labels,
prot_attr_idx, dataset_name, bnn_type, BATCH_SIZE=500,
TRAIN_ITERS=50000, NUM_VERIF=150):
bnn_stats_gen = BNNStatsGenerator(bnn, train_data, train_labels, test_data, test_labels,
prot_attr_idx, batch_size=BATCH_SIZE, key=bnn.next_key())
all_results = []
bnn_stats = bnn_stats_gen.get_all_stats(test_data, test_labels, prot_attr_idx, 1., 1)
final_model, weight_mlp_stats = weighted_training(bnn, train_data, train_labels, test_data, test_labels,
prot_attr_idx, TRAIN_ITERS, BATCH_SIZE, NUM_VERIF, dataset_hparams[dataset_name])
all_stats = {}
for k, v in bnn_stats.items():
all_stats[f'bnn_{k}'] = v
for k, v in weight_mlp_stats.items():
all_stats[f'weighted_{k}'] = v
all_stats['dataset'] = dataset_name
all_stats['bnn_version'] = bnn_type
all_results.append(all_stats)
return all_results
def dict_add_pre(pre: str, dict: Dict) -> Dict:
new_dict = {}
for k, v in dict.items():
new_dict[f'{pre}_{k}'] = v
return new_dict
def merge_dicts(*many_dicts):
merged_dict = {}
for d in many_dicts:
for k, v in d.items():
merged_dict[k] = v
return merged_dict
if __name__ == "__main__":
rng_seq = hk.PRNGSequence(7)
LR = 0.001
datasets = [
('Adult', get_adult_data, 1, 500),
('German', get_german_data, 1, 64)
]
all_results = []
all_baseline_results = []
for ds_name, ds_getr_fn, prot_attr_idx, batch_size in tqdm(datasets, desc=' datasets', position=0):
# print('=' * 10)
# print(ds_name)
# print('=' * 10)
for i in tqdm(range(10), desc='repetition', position=1, leave=False):
train_data, train_labels, _, _, test_data, test_labels = ds_getr_fn()
try:
rw_stats = get_reweight_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
lfr_stats = get_lfr_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
opt_stats = get_opt_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
adb_stats = get_adb_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
mf_stats = get_mf_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
calibeo_stats = get_calibeo_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
roc_stats = get_roc_stats(train_data, train_labels, test_data, test_labels, ds_name, prot_attr_idx)
except Exception as e:
print(e)
continue
baseline_results = merge_dicts(
dict_add_pre('rw', rw_stats),
dict_add_pre('lfr', lfr_stats),
dict_add_pre('opt', opt_stats),
dict_add_pre('adb', adb_stats),
dict_add_pre('mf', mf_stats),
dict_add_pre('calibeo', calibeo_stats),
dict_add_pre('roc', roc_stats),
)
baseline_results['dataset'] = ds_name
all_baseline_results.append([baseline_results])
myBNN = BNNwDistributionShift(next(rng_seq), train_data[:10][:, 1:].shape, 3, 256, 2, learning_rate=LR)
results = bnn_pruning_results_mlp_student(myBNN, train_data, train_labels,
test_data, test_labels, prot_attr_idx=prot_attr_idx,
dataset_name=ds_name, bnn_type='LabelShift', BATCH_SIZE=batch_size)
all_results.append(results)
myBNN = BNNwProtDistributionShift(next(rng_seq), train_data[:10][:, 1:].shape, 3, 256, 2, learning_rate=LR)
results = bnn_pruning_results_mlp_student(myBNN, train_data, train_labels,
test_data, test_labels, prot_attr_idx=prot_attr_idx,
dataset_name=ds_name, bnn_type='AttrLabelShift', BATCH_SIZE=batch_size)
all_results.append(results)
# save_pickle(
# [y for x in all_results for y in x],
# f'compiled_results/filter_results_{ds_name}.pkl')
save_pickle(
[y for x in all_results for y in x],
f'compiled_results/filter_results.pkl')
save_pickle(
[y for x in all_baseline_results for y in x],
f'compiled_results/filter_baseline_results.pkl'
)