-
Notifications
You must be signed in to change notification settings - Fork 844
/
Copy patheval1.py
73 lines (52 loc) · 1.89 KB
/
eval1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
# /usr/bin/python2
from __future__ import print_function
import argparse
import tensorflow as tf
from data_load import Net1DataFlow, phns, load_vocab
from hparam import hparam as hp
from models import Net1
from utils import plot_confusion_matrix
from tensorpack.predict.config import PredictConfig
from tensorpack.predict.base import OfflinePredictor
from tensorpack.tfutils.sessinit import SaverRestore
def get_eval_input_names():
return ['x_mfccs', 'y_ppgs']
def get_eval_output_names():
return ['net1/eval/y_ppg_1d', 'net1/eval/pred_ppg_1d', 'net1/eval/summ_loss', 'net1/eval/summ_acc']
def eval(logdir):
# Load graph
model = Net1()
# dataflow
df = Net1DataFlow(hp.test1.data_path, hp.test1.batch_size)
ckpt = tf.train.latest_checkpoint(logdir)
pred_conf = PredictConfig(
model=model,
input_names=get_eval_input_names(),
output_names=get_eval_output_names())
if ckpt:
pred_conf.session_init = SaverRestore(ckpt)
predictor = OfflinePredictor(pred_conf)
x_mfccs, y_ppgs = next(df().get_data())
y_ppg_1d, pred_ppg_1d, summ_loss, summ_acc = predictor(x_mfccs, y_ppgs)
# plot confusion matrix
_, idx2phn = load_vocab()
y_ppg_1d = [idx2phn[i] for i in y_ppg_1d]
pred_ppg_1d = [idx2phn[i] for i in pred_ppg_1d]
summ_cm = plot_confusion_matrix(y_ppg_1d, pred_ppg_1d, phns)
writer = tf.summary.FileWriter(logdir)
writer.add_summary(summ_loss)
writer.add_summary(summ_acc)
writer.add_summary(summ_cm)
writer.close()
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('case', type=str, help='experiment case name')
arguments = parser.parse_args()
return arguments
if __name__ == '__main__':
args = get_arguments()
hp.set_hparam_yaml(args.case)
logdir = '{}/train1'.format(hp.logdir)
eval(logdir=logdir)
print("Done")