-
Notifications
You must be signed in to change notification settings - Fork 1
/
voronoi_coverage.m
44 lines (43 loc) · 1.34 KB
/
voronoi_coverage.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [x,y,data,classifications] = voronoi_coverage(x,y,data,APF)
[rows,cols] = size(data);
[no_of_robots,]= size(x);
centroids = [x,y];
classifications = zeros(rows,cols);
max_iter = 30;
loss = 0;
for i = 1:max_iter
for j=1:rows
for k=1:cols
distance_from_centroid = zeros(1,no_of_robots(1,1));
for l=1:no_of_robots
distance_from_centroid(1,l) = sqrt(((j-centroids(l,1))^2)+((k-centroids(l,2))^2));
end
[M,classifications(j,k)] = min(distance_from_centroid);
end
end
new_centroid = zeros(no_of_robots(1,1),2);
new_loss = 0;
for m=1:no_of_robots
[r,c] = find(classifications == m);
new_centroid(m,1)=mean(r);
new_centroid(m,2)=mean(c);
if isempty(r)
new_centroid(m,:) = centroids(m,:);
end
data(round(new_centroid(m,1))+1,round(new_centroid(m,2))+1) = 255;
for n=1:rows
for o=1:cols
new_loss = new_loss + sqrt(((n-centroids(m,1))^2)+((o-centroids(m,2))^2));
end
end
end
if abs(new_loss-loss) < 0.001
break
end
centroids = new_centroid;
loss = new_loss;
display_sim(data,APF);
end
x = min(rows,max(1,round(centroids(:,1))));
y = min(cols,max(1,round(centroids(:,2))));
end