-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_compositional.py
162 lines (125 loc) · 6.13 KB
/
train_compositional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import typing as T
from pathlib import Path
import wandb
import hydra
import lightning as L
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.utilities import rank_zero_only, rank_zero_info
from lightning.pytorch.callbacks import LearningRateMonitor
from omegaconf import DictConfig, OmegaConf
import torch
import re
from plaid import constants
from plaid.utils import count_parameters
from plaid.denoisers import FunctionOrganismUDiT, FunctionOrganismDiT
from plaid.diffusion import FunctionOrganismDiffusion
def delete_key(d: dict, key: str = "_target_") -> dict:
if key in d:
d.pop(key)
return d
def maybe_resume_job_from_config(cfg: OmegaConf) -> T.Tuple[dict, str, bool]:
# maybe use prior job id, else generate new ID
is_resumed = cfg.resume_from_model_id is not None
job_id = cfg.resume_from_model_id if is_resumed else wandb.util.generate_id()
# save config to disk
config_path = Path(cfg.paths.checkpoint_dir) / job_id / "config.yaml"
if config_path.exists():
cfg = OmegaConf.load(config_path)
rank_zero_info(f"Overriding config from job ID {job_id}!")
# https://github.com/facebookresearch/xformers/issues/920
if hasattr(cfg.trainer, "precision"):
if (
cfg.trainer.precision == "bf16-mixed"
and cfg.denoiser._target_ == "plaid.denoisers.FunctionOrganismUDiT"
):
cfg.trainer.update({"precision": "32"})
print(
"torch.compile does not yet work for memory-efficient attention.\n"
"Overriding precision to 32-bit for FunctionOrganismUDiT denoiser."
)
else:
print(
"Precision is not bf16-mixed or denoiser is not FunctionOrganismUDiT. Skipping override."
)
return cfg, job_id, is_resumed
@hydra.main(version_base=None, config_path="configs", config_name="train_compositional")
def train(cfg: DictConfig) -> None:
import torch
torch.set_float32_matmul_precision("medium")
# current run config specifies checkpoint dir, not loaded config.
ckpt_dir = cfg.paths.checkpoint_dir
# override all else with what's specified in the config
cfg, job_id, is_resumed = maybe_resume_job_from_config(cfg)
log_cfg = OmegaConf.to_container(cfg, throw_on_missing=True, resolve=True)
rank_zero_info(OmegaConf.to_yaml(log_cfg))
####################################################################################################
# Data and model setup
####################################################################################################
# dimensions
input_dim = constants.COMPRESSION_INPUT_DIMENSIONS[cfg.compression_model_id]
shorten_factor = constants.COMPRESSION_SHORTEN_FACTORS[cfg.compression_model_id]
datamodule = hydra.utils.instantiate(cfg.datamodule)
if is_resumed:
denoiser_cls = cfg.denoiser._target_
denoiser_cfg = delete_key(OmegaConf.to_container(cfg.denoiser), "_target_")
diffusion_cfg = delete_key(OmegaConf.to_container(cfg.diffusion), "_target_")
# TODO: make class init based on the _target_ class
if denoiser_cls == "plaid.denoisers.FunctionOrganismUDiT":
denoiser = FunctionOrganismUDiT(**denoiser_cfg, input_dim=input_dim)
elif denoiser_cls == "plaid.denoisers.FunctionOrganismDiT":
denoiser = FunctionOrganismDiT(**denoiser_cfg, input_dim=input_dim)
else:
raise ValueError(f"Unknown denoiser class: {denoiser_cls}")
denoiser = torch.compile(denoiser)
# backwards compatibility:
diffusion = FunctionOrganismDiffusion(**diffusion_cfg, model=denoiser)
else:
denoiser = hydra.utils.instantiate(cfg.denoiser, input_dim=input_dim)
denoiser = torch.compile(denoiser)
diffusion = hydra.utils.instantiate(cfg.diffusion, model=denoiser)
# logging details
trainable_parameters = count_parameters(diffusion, require_grad_only=True)
total_parameters = count_parameters(diffusion, require_grad_only=False)
log_cfg["trainable_params_millions"] = trainable_parameters / 1_000_000
log_cfg["total_params_millions"] = total_parameters / 1_000_000
log_cfg["shorten_factor"] = shorten_factor
log_cfg["input_dim"] = input_dim
logger = hydra.utils.instantiate(cfg.logger, id=job_id)
####################################################################################################
# Callbacks and model saving set-up
####################################################################################################
outdir = Path(ckpt_dir) / job_id
lr_monitor = LearningRateMonitor()
# exponential moving average calculations callback
ema_callback = hydra.utils.instantiate(cfg.callbacks.ema)
# checkpoint callback (also handles EMA logic, if used)
checkpoint_callback = hydra.utils.instantiate(
cfg.callbacks.checkpoint, dirpath=outdir
)
callbacks = [lr_monitor, ema_callback, checkpoint_callback]
# save configs
config_path = Path(ckpt_dir) / job_id / "config.yaml"
if not config_path.parent.exists():
config_path.parent.mkdir(parents=True)
if rank_zero_only.rank == 0:
OmegaConf.save(cfg, config_path)
####################################################################################################
# Trainer
####################################################################################################
rank_zero_info("Initializing training...")
trainer = hydra.utils.instantiate(
cfg.trainer,
logger=logger,
callbacks=callbacks,
)
if rank_zero_only.rank == 0 and isinstance(trainer.logger, WandbLogger):
trainer.logger.experiment.config.update({"cfg": log_cfg}, allow_val_change=True)
if is_resumed:
ckpt_fpath = Path(ckpt_dir) / job_id / "last.ckpt"
assert ckpt_fpath.exists(), f"Checkpoint {ckpt_fpath} not found!"
rank_zero_info(f"Resuming from checkpoint {ckpt_fpath}")
trainer.fit(diffusion, datamodule=datamodule, ckpt_path=ckpt_fpath)
else:
trainer.fit(diffusion, datamodule=datamodule)
if __name__ == "__main__":
train()