Skip to content

Commit d27ea91

Browse files
Add Model Creator
1 parent 5bf8c1c commit d27ea91

File tree

2 files changed

+186
-0
lines changed

2 files changed

+186
-0
lines changed

.gitignore

+2
Original file line numberDiff line numberDiff line change
@@ -8,3 +8,5 @@
88
/captures
99
.externalNativeBuild
1010
/.idea
11+
/MNIST_data
12+
/model

mnist.py

+184
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,184 @@
1+
from __future__ import print_function
2+
import shutil
3+
import os.path
4+
import tensorflow as tf
5+
from tensorflow.examples.tutorials.mnist import input_data
6+
7+
EXPORT_DIR = './model'
8+
9+
if os.path.exists(EXPORT_DIR):
10+
shutil.rmtree(EXPORT_DIR)
11+
12+
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
13+
14+
# Parameters
15+
learning_rate = 0.001
16+
training_iters = 200000
17+
batch_size = 128
18+
display_step = 10
19+
20+
# Network Parameters
21+
n_input = 784 # MNIST data input (img shape: 28*28)
22+
n_classes = 10 # MNIST total classes (0-9 digits)
23+
dropout = 0.75 # Dropout, probability to keep units
24+
25+
# tf Graph input
26+
x = tf.placeholder(tf.float32, [None, n_input])
27+
y = tf.placeholder(tf.float32, [None, n_classes])
28+
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
29+
30+
31+
# Create some wrappers for simplicity
32+
def conv2d(x, W, b, strides=1):
33+
# Conv2D wrapper, with bias and relu activation
34+
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
35+
x = tf.nn.bias_add(x, b)
36+
return tf.nn.relu(x)
37+
38+
39+
def maxpool2d(x, k=2):
40+
# MaxPool2D wrapper
41+
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
42+
padding='SAME')
43+
44+
45+
# Create Model
46+
def conv_net(x, weights, biases, dropout):
47+
# Reshape input picture
48+
x = tf.reshape(x, shape=[-1, 28, 28, 1])
49+
50+
# Convolution Layer
51+
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
52+
# Max Pooling (down-sampling)
53+
conv1 = maxpool2d(conv1, k=2)
54+
55+
# Convolution Layer
56+
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
57+
# Max Pooling (down-sampling)
58+
conv2 = maxpool2d(conv2, k=2)
59+
60+
# Fully connected layer
61+
# Reshape conv2 output to fit fully connected layer input
62+
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
63+
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
64+
fc1 = tf.nn.relu(fc1)
65+
# Apply Dropout
66+
fc1 = tf.nn.dropout(fc1, dropout)
67+
68+
# Output, class prediction
69+
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
70+
return out
71+
72+
73+
# Store layers weight & bias
74+
weights = {
75+
# 5x5 conv, 1 input, 32 outputs
76+
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
77+
# 5x5 conv, 32 inputs, 64 outputs
78+
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
79+
# fully connected, 7*7*64 inputs, 1024 outputs
80+
'wd1': tf.Variable(tf.random_normal([7 * 7 * 64, 1024])),
81+
# 1024 inputs, 10 outputs (class prediction)
82+
'out': tf.Variable(tf.random_normal([1024, n_classes]))
83+
}
84+
85+
biases = {
86+
'bc1': tf.Variable(tf.random_normal([32])),
87+
'bc2': tf.Variable(tf.random_normal([64])),
88+
'bd1': tf.Variable(tf.random_normal([1024])),
89+
'out': tf.Variable(tf.random_normal([n_classes]))
90+
}
91+
92+
# Construct model
93+
pred = conv_net(x, weights, biases, keep_prob)
94+
95+
# Define loss and optimizer
96+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
97+
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
98+
99+
# Evaluate model
100+
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
101+
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
102+
103+
# Initializing the variables
104+
init = tf.initialize_all_variables()
105+
106+
# Launch the graph
107+
with tf.Session() as sess:
108+
sess.run(init)
109+
step = 1
110+
# Keep training until reach max iterations
111+
while step * batch_size < training_iters:
112+
batch_x, batch_y = mnist.train.next_batch(batch_size)
113+
# Run optimization op (backprop)
114+
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
115+
keep_prob: dropout})
116+
if step % display_step == 0:
117+
# Calculate batch loss and accuracy
118+
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
119+
y: batch_y,
120+
keep_prob: 1.})
121+
print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + \
122+
"{:.6f}".format(loss) + ", Training Accuracy= " + \
123+
"{:.5f}".format(acc))
124+
step += 1
125+
print("Optimization Finished!")
126+
127+
# Calculate accuracy for 256 mnist test images
128+
print("Testing Accuracy:", \
129+
sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
130+
y: mnist.test.labels[:256],
131+
keep_prob: 1.}))
132+
WC1 = weights['wc1'].eval(sess)
133+
BC1 = biases['bc1'].eval(sess)
134+
WC2 = weights['wc2'].eval(sess)
135+
BC2 = biases['bc2'].eval(sess)
136+
WD1 = weights['wd1'].eval(sess)
137+
BD1 = biases['bd1'].eval(sess)
138+
W_OUT = weights['out'].eval(sess)
139+
B_OUT = biases['out'].eval(sess)
140+
141+
# Create new graph for exporting
142+
g = tf.Graph()
143+
with g.as_default():
144+
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
145+
146+
WC1 = tf.constant(WC1, name="WC1")
147+
BC1 = tf.constant(BC1, name="BC1")
148+
x_image = tf.reshape(x_2, [-1, 28, 28, 1])
149+
CONV1 = conv2d(x_image, WC1, BC1)
150+
MAXPOOL1 = maxpool2d(CONV1, k=2)
151+
152+
WC2 = tf.constant(WC2, name="WC2")
153+
BC2 = tf.constant(BC2, name="BC2")
154+
CONV2 = conv2d(MAXPOOL1, WC2, BC2)
155+
MAXPOOL2 = maxpool2d(CONV2, k=2)
156+
157+
WD1 = tf.constant(WD1, name="WD1")
158+
BD1 = tf.constant(BD1, name="BD1")
159+
160+
FC1 = tf.reshape(MAXPOOL2, [-1, WD1.get_shape().as_list()[0]])
161+
FC1 = tf.add(tf.matmul(FC1, WD1), BD1)
162+
FC1 = tf.nn.relu(FC1)
163+
164+
W_OUT = tf.constant(W_OUT, name="W_OUT")
165+
B_OUT = tf.constant(B_OUT, name="B_OUT")
166+
167+
# skipped dropout for exported graph.
168+
169+
OUTPUT = tf.nn.softmax(tf.matmul(FC1, W_OUT) + B_OUT, name="output")
170+
171+
sess = tf.Session()
172+
init = tf.initialize_all_variables()
173+
sess.run(init)
174+
175+
graph_def = g.as_graph_def()
176+
tf.train.write_graph(graph_def, EXPORT_DIR, 'mnist_model_graph.pb', as_text=False)
177+
178+
# Test trained model
179+
y_train = tf.placeholder("float", [None, 10])
180+
correct_prediction = tf.equal(tf.argmax(OUTPUT, 1), tf.argmax(y_train, 1))
181+
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
182+
183+
print("check accuracy %g" % accuracy.eval(
184+
{x_2: mnist.test.images, y_train: mnist.test.labels}, sess))

0 commit comments

Comments
 (0)