-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathess.c
390 lines (309 loc) · 13.9 KB
/
ess.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#include "ess.h"
FILE *refSet_history_file;
FILE *best_sols_history_file;
FILE *freqs_matrix_file;
FILE *freq_mat_final_file;
FILE *prob_mat_final_file;
FILE *refSet_final_file;
FILE *stats_file;
FILE *ref_set_stats_history_file;
FILE *user_initial_guesses_file;
FILE *archive_set_file;
/**
* Initialize all the neccessary variable including the scatterSet and refSet formation.
* @param eSSParams Contains all the variable needed by eSS
* @param inp (optional) Input struct containing the simulator input parameters
* @param out (optinoal) Output struct containing the simulator output parameters
* `inp` and `out` use to send and recieve data to and from simulator (objective function)
*/
void init_eSS(eSSType *eSSParams, void *inp, void *out){
init_sampleParams(eSSParams);
init_essParams(eSSParams);
init_report_files(eSSParams);
print_Inputs(eSSParams);
if (!eSSParams->perform_warm_start)
{
init_scatterSet(eSSParams, inp, out);
evaluate_Set(eSSParams, eSSParams->scatterSet, inp, out);
init_refSet(eSSParams, inp, out);
quickSort_Set(eSSParams, eSSParams->refSet, 0, eSSParams->refSet->size - 1, 'c');
write_Set(eSSParams, eSSParams->refSet, refSet_history_file, 0);
eSSParams->best = &(eSSParams->refSet->members[0]);
print_Set(eSSParams, eSSParams->refSet);
write_Ind(eSSParams, eSSParams->best, best_sols_history_file, 0);
}else{
printf("Perform Warm Start...\n");
init_perform_warm_start(eSSParams);
}
// print_Set(eSSParams, eSSParams->refSet);
}
/**
* Main optimization loop
* @param essProblem Contains all the variables needed by eSS
* @param inp Objective function `inp` struct
* @param out Objective function `out` struct
*/
void run_eSS(eSSType *eSSParams, void *inp, void *out){
int label[eSSParams->n_refSet]; /*!< Uses to store the index of Individuals that should be replaced with their children. */
memset(label, 0, eSSParams->n_refSet * sizeof(int));
int candidate_index; /*!< Store the index of candidate for replacement after recombination. */
int n_currentUpdated; /*!< Counter for all updated solutions either from recombination or goBeyond procedure. */
int archive_index = 0; /*!< Track the index of `archiveSet` for storing the best solutions found. */
/**
* It sets to 0 at first, and then increments until it hits the 100. Because we don't wanted
* to spend time and checking archive members that are not already assigned!
*/
eSSParams->archiveSet->size = 0;
for (eSSParams->iter = 1; eSSParams->iter < eSSParams->max_iter; ++eSSParams->iter)
{
n_currentUpdated = 0;
// int i_lCandidate = 0;
for (int i = 0; i < eSSParams->n_refSet; ++i)
{
/**
* Generate a candidate set by combining the `i`th member of the refSet and returning
* the best candidate with respect to it's cost.
*/
candidate_index = recombine(eSSParams, &(eSSParams->refSet->members[i]), i, inp, out);
if (-1 != candidate_index){
eSSParams->stats->n_successful_recombination++;
label[i] = 1;
n_currentUpdated++;
/**
* Copy the selected candidate into the childSet
*/
copy_Ind(eSSParams, &(eSSParams->childsSet->members[i]), &(eSSParams->candidateSet->members[candidate_index]));
/**
* goBeyond for already selected candidate from recombinedSet which is copied to
* the childsSet too. Note that the goBeyond function works with childsSet so it
* need the `i` as a index not the `candidate_index`
*/
if (eSSParams->goBeyond_freqs != 0 && (eSSParams->iter % eSSParams->goBeyond_freqs == 0))
goBeyond(eSSParams, i, inp, out);
/**
* TODO: Implement the local search selection routine as described in the paper
*/
// copy_Ind(eSSParams, &(eSSParams->localSearchCandidateSet->members[i_lCandidate]), &(eSSParams->childsSet->members[i]));
// i_lCandidate++;
// eSSParams->localSearchCandidateSet->size = i_lCandidate;
/**
* Check if the local search is activated and it is not activated only for best
* sol, if so, then check if it's a right moment to run the local search based on
* n1, and n2 values.
* Note that the local search won't apply here if it meant to apply only on best
* sol.
*/
if ( (eSSParams->perform_local_search && !eSSParams->local_onBest_Only)
&& ( (eSSParams->iter > eSSParams->local_N1) || ( eSSParams->iter % eSSParams->local_N2 == 0 ) ) )
{
/**
* This check will prevent the local search operation if the cost of the Individual
* is greater than some value.
*/
if (eSSParams->childsSet->members[i].cost < eSSParams->local_minCostCriteria ){
/**
* Check if the selected child is close to the area that already the
* local search applied on it or not
*/
///////////////////////////////////////
/// Flatzone Detection ///
///////////////////////////////////////
if (eSSParams->perform_flatzone_check){
if ( !is_in_flatzone(eSSParams, eSSParams->refSet, &(eSSParams->childsSet->members[i])) ){
goto local_search;
local_search:
if ( -1 == is_exist(eSSParams, eSSParams->archiveSet, &(eSSParams->childsSet->members[i])) )
{
if (eSSParams->local_SolverMethod == 'n'){
neldermead_localSearch(eSSParams, &(eSSParams->childsSet->members[i]), inp, out);
eSSParams->stats->n_local_search_performed++;
}else if (eSSParams->local_SolverMethod == 'l'){
levmer_localSearch(eSSParams, &(eSSParams->childsSet->members[i]), inp, out);
eSSParams->stats->n_local_search_performed++;
}
}else{
eSSParams->stats->n_duplicate_found++;
}
}
}else{
goto local_search;
}
}
}
}
}
/**
* Update the refSet Individual based on the indexes flagged in `label`, if the n_stuck is
* greater than the max_stuck then the Individual will add to the archiveSet and then randomizes and n_not_randomized and all it's statistics will set to zero.
*/
for (int i = 0; i < eSSParams->n_refSet; ++i)
{
/**
* If an Individual marked, it will replace by its improved child
*/
if (label[i] == 1){
/**
* Check if the candidate is very close to a member of a refSet, if so, then randomize the
* duplicated members in refSet.
*/
int duplicate_index = is_exist(eSSParams, eSSParams->refSet, &(eSSParams->childsSet->members[i]));
if ((duplicate_index != -1) && (duplicate_index != i) && (duplicate_index != 0)){
eSSParams->stats->n_duplicate_found++;
// TODO: I can do this better by picking a random value based on the frequency matrix; then I can promote areas that are not discovered enough yet.
random_Ind(eSSParams, &(eSSParams->refSet->members[duplicate_index]), eSSParams->min_real_var, eSSParams->max_real_var);
evaluate_Individual(eSSParams, &(eSSParams->refSet->members[duplicate_index]), inp, out);
}
/**
* Replace the parent with its better child! If it does pass the flatzone_detection_test
*/
if (eSSParams->perform_flatzone_check){
// todo: maybe i dont need to check this again since i already did it above then i wanted to perform the local search but if the local search is not active the i have to do it.
if (!is_in_flatzone(eSSParams, eSSParams->refSet, &(eSSParams->childsSet->members[i])))
{
goto replace;
replace:
eSSParams->refSet->members[i].n_not_randomized++;
copy_Ind(eSSParams, &(eSSParams->refSet->members[i]), &(eSSParams->childsSet->members[i]));
eSSParams->refSet->members[i].n_stuck = 0;
}
}else{
goto replace;
}
label[i] = 0;
}else{
/**
* Otherwise, the Individual randomzies and all of it's stats and counters set
* to 0. If the flag `perform_elite_presevation` is set true then the first `mac_preserve_elite` will
* be preserved in the refSet.
*/
eSSParams->refSet->members[i].n_stuck++;
if (eSSParams->refSet->members[i].n_stuck > eSSParams->max_stuck
&& (eSSParams->iter % eSSParams->n_randomization_Freqs == 0 )
&& !( eSSParams->perform_elite_preservation && !(i > eSSParams->max_preserve_elite)) )
{
/* Add the stuck Individual to the archiveSet */
if (archive_index == eSSParams->n_archiveSet)
archive_index = 0;
if ((archive_index < eSSParams->n_archiveSet)
&& (eSSParams->archiveSet->size < eSSParams->n_archiveSet))
eSSParams->archiveSet->size++;
copy_Ind(eSSParams, &(eSSParams->archiveSet->members[archive_index]), &(eSSParams->refSet->members[i]));
archive_index++;
/**
* Randomize the stuck refSet member.
*/
random_Ind(eSSParams, &(eSSParams->refSet->members[i]),
eSSParams->min_real_var, eSSParams->max_real_var);
evaluate_Individual(eSSParams, &(eSSParams->refSet->members[i]), inp, out);
/* Store number of all the stuck parameters. */
eSSParams->stats->n_total_stuck++;
eSSParams->refSet->members[i].n_not_randomized = 0;
eSSParams->refSet->members[i].n_stuck = 0;
}
label[i] = 0;
}
}
quickSort_Set(eSSParams, eSSParams->refSet, 0, eSSParams->n_refSet - 1, 'c');
/**
* Apply the local search on the best solution
* The last condition avoid performing local search on solutions that are stuck, since
* the local search algorithm couldn't keep the parameters in boundary so, we have to stop
* over-applying it on solutions before make them really far from defined box constratins.
*/
if (eSSParams->perform_local_search
&& eSSParams->local_onBest_Only
&& (eSSParams->best->cost < eSSParams->local_minCostCriteria)
&& eSSParams->best->n_stuck < eSSParams->max_stuck) // avoid performing local search on the best solution which is stuck for a long time
{
neldermead_localSearch(eSSParams, eSSParams->best, inp, out);
eSSParams->stats->n_local_search_performed++;
}
if (eSSParams->iter % eSSParams->save_freqs == 0){
write_Set(eSSParams, eSSParams->refSet, refSet_history_file, eSSParams->iter);
write_Ind(eSSParams, eSSParams->best, best_sols_history_file, eSSParams->iter);
}
/**
* Check if the best solution found is enough to the predicted solution. Usually this is
* not a good way to check the convergence of stochastic method but it the problem wasn't
* a multi-models problem then it saves a lot of unnecessary iterations.
*/
if (eSSParams->perform_cost_tol_stopping &&
fabs( eSSParams->best->cost - eSSParams->sol ) < eSSParams->cost_tol ){
printf("%s\n", KRED);
printf("Best Solutions converged after %d iterations\n", eSSParams->iter);
printf("%s\n", KNRM);
break;
}
/**
* Check the difference between the cost of best solution and worst solution in the
* refSet. This might not always be the indication of the convergence but it might be
* the indication of saturated referenceSet.
*/
// if ( eSSParams->perform_refSet_convergence_stopping &&
// fabs( eSSParams->refSet->members[0].cost - fabs(eSSParams->refSet->members[eSSParams->n_refSet - 1].cost)) < eSSParams->refSet_convergence_tol ){
// printf("Converged or Stuck after %d iteration!\n", eSSParams->iter);
// break;
// }
/**
* Compute the mean and standard deviation of the set in order to decide if the
* randomization should be applied or not.
*/
if (eSSParams->compute_Set_Stats){
compute_SetStats(eSSParams, eSSParams->refSet);
fprintf(ref_set_stats_history_file, "%lf\t%lf\n", eSSParams->refSet->mean_cost, eSSParams->refSet->std_cost);
/**
* Check if the standard deviation of the set is small and the number of
* updatedMembers is less than 1/4 of the n_refSet then randomize the refSet.
* After randomization all the n_not_randomized values of refSet Individual will
* set to 0.
*/
if (eSSParams->perform_refSet_randomization &&
eSSParams->refSet->std_cost < eSSParams->refSet_std_tol && n_currentUpdated < (eSSParams->n_refSet / 4)){
/**
* Replace the last max_delete members of the refSet with the newly
* randomized solutions in and sort the refSet at the end of the replacement.
*/
for (int i = eSSParams->refSet->size - 1; i > eSSParams->refSet->size - eSSParams->max_delete; --i)
{
random_Ind(eSSParams, &(eSSParams->refSet->members[i]), eSSParams->min_real_var, eSSParams->max_real_var);
evaluate_Individual(eSSParams, &(eSSParams->refSet->members[i]), inp, out);
}
quickSort_Set(eSSParams, eSSParams->refSet, 0, eSSParams->refSet->size - 1, 'c');
eSSParams->stats->n_refSet_randomized++;
}
// update_IndsStats(eSSParams, eSSParams->refSet);
// todo: i can remove this, i dont do anything with it.
}
if (eSSParams->iter % eSSParams->print_freqs == 0){
print_Stats(eSSParams);
}
write_Stats(eSSParams, stats_file);
}
printf("Final refSet: \n");
print_Set(eSSParams, eSSParams->refSet);
printf("bestSol: \n");
print_Ind(eSSParams, eSSParams->best);
print_Stats(eSSParams);
/**
* Performing the local search on the bestSol.
*/
if (eSSParams->perform_local_search && eSSParams->local_atEnd && !eSSParams->local_onBest_Only)
{
printf("Perforimg the last local search\n");
if (eSSParams->local_SolverMethod == 'n')
neldermead_localSearch(eSSParams, eSSParams->best, inp, out);
else
levmer_localSearch(eSSParams, eSSParams->best, inp, out);
printf("Final Result: \n");
print_Ind(eSSParams, eSSParams->best);
}
refSet_final_file = fopen("ref_set_final.csv", "w");
write_Set(eSSParams, eSSParams->refSet, refSet_final_file, -1);
write_Set(eSSParams, eSSParams->archiveSet, archive_set_file, -1);
write_Ind(eSSParams, eSSParams->best, best_sols_history_file, eSSParams->max_iter);
printf("ref_set_final.csv, ref_set_history_file.out, best_sols_history_file.out, and stats_file is generated. \n");
fclose(refSet_final_file);
fclose(best_sols_history_file);
fclose(stats_file);
// fclose(file)
}