Skip to content

Commit a3172c3

Browse files
committed
clean
0 parents  commit a3172c3

10 files changed

+807
-0
lines changed

README.md

+362
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,362 @@
1+
# 机器学习资源 Machine learning
2+
3+
4+
5+
**致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!**
6+
7+
8+
9+
**[Machine learning surveys](https://github.com/metrofun/machine-learning-surveys/)**
10+
11+
12+
13+
**[快速入门TensorFlow](https://github.com/aymericdamien/TensorFlow-Examples)**
14+
15+
16+
17+
- - -
18+
19+
20+
21+
## 预备知识 Prerequisite
22+
23+
24+
25+
- Python
26+
27+
- [Learn X in Y minutes](https://learnxinyminutes.com/docs/python/)
28+
29+
- [Python机器学习互动教程](https://www.springboard.com/learning-paths/machine-learning-python/)
30+
31+
32+
33+
- Markdown
34+
35+
- [Mastering Markdown](https://guides.github.com/features/mastering-markdown/) - Markdown is a easy-to-use writing tool on the GitHu.
36+
37+
38+
39+
- R
40+
41+
- [R Tutorial](http://www.cyclismo.org/tutorial/R/)
42+
43+
44+
45+
- Python和Matlab的一些cheat sheet:http://ddl.escience.cn/f/IDkq 包含:
46+
47+
- Numpy、Scipy、Pandas科学计算库
48+
49+
- Scikit-learn机器学习库、Keras深度学习库
50+
51+
- Matlab科学计算
52+
53+
- Matplotlib画图
54+
55+
56+
57+
- - -
58+
59+
60+
61+
62+
63+
## 理论 Theory
64+
65+
66+
67+
- ### 深度学习 Deep learning
68+
69+
70+
71+
- ### [强化学习 Reinforcement learning](https://github.com/allmachinelearning/ReinforcementLearning)
72+
73+
74+
75+
- ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/)
76+
77+
78+
79+
- ### [分布式学习系统 Distributed learning system](https://github.com/allmachinelearning/Deep-Learning-System-Design)
80+
81+
82+
83+
84+
85+
- - -
86+
87+
88+
89+
90+
91+
## 应用 Applications
92+
93+
94+
95+
- ### 计算机视觉/机器视觉 Computer vision / machine vision
96+
97+
98+
99+
- ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing)
100+
101+
102+
103+
- ### 语音识别 Speech recognition
104+
105+
106+
107+
- ### 生物信息学 Bioinfomatics
108+
109+
110+
111+
- ### 医疗 Medical
112+
113+
114+
115+
- ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition)
116+
117+
118+
119+
- ### [人工智能(多智能体) Artificial Intelligence(Multi-Agent)](http://ddl.escience.cn/f/ILKI)
120+
121+
122+
123+
124+
125+
- - -
126+
127+
128+
129+
## 文档 notes
130+
131+
132+
133+
- [综述文章汇总](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/survey_readme.md)
134+
135+
136+
137+
- [近200篇机器学习资料汇总!](https://zhuanlan.zhihu.com/p/26136757)
138+
139+
140+
141+
- [机器学习入门资料](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/MLMaterials.md)
142+
143+
144+
145+
- [MIT.Introduction to Machine Learning](http://ddl.escience.cn/f/Iwtu)
146+
147+
148+
149+
- [东京大学同学做的人机交互报告](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/FieldResearchinChina927-104.pdf)
150+
151+
152+
153+
- [人机交互简介](https://github.com/jindongwang/HCI)
154+
155+
156+
157+
- [人机交互与创业论坛](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E4%BA%BA%E6%9C%BA%E4%BA%A4%E4%BA%92%E4%B8%8E%E5%88%9B%E4%B8%9A%E8%AE%BA%E5%9D%9B.md)
158+
159+
160+
161+
- [职场机器学习入门](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E8%81%8C%E5%9C%BA-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8.md)
162+
163+
164+
165+
- [机器学习的发展历程及启示](http://mt.sohu.com/20170326/n484898474.shtml), (@Prof. Zhihua Zhang/@张志华教授)
166+
167+
168+
169+
- [常用的距离和相似度度量](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/distance%20and%20similarity.md)
170+
171+
172+
173+
- - -
174+
175+
176+
177+
## 课程与讲座 Course and talk
178+
179+
180+
181+
- [斯坦福机器学习入门课程](https://www.coursera.org/learn/machine-learning),讲师为Andrew Ng,适合数学基础一般的人,适合入门,但是学完会发现只是懂个大概,也就相当于什么都不懂。省略了很多机器学习的细节
182+
183+
- [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细
184+
185+
- [CMU 10-702 Statistical Machine Learning](http://www.stat.cmu.edu/~larry/=sml/), 讲师是Larry Wasserman,应该是统计系开的机器学习,非常数学化,第一节课就提到了RKHS(Reproducing Kernel Hilbert Space),建议数学出身的同学看或者是学过实变函数泛函分析的人看一看
186+
187+
- [CMU 10-715 Advanced Introduction to Machine Learning](https://www.cs.cmu.edu/~epxing/Class/10715/),同样是CMU phd级别的课,节奏快难度高
188+
189+
- Coursera上国立台湾大学[林轩田](https://www.coursera.org/instructor/htlin)开的两门课:[机器学习基石](https://www.coursera.org/course/ntumlone)(适合入门),[机器学习技法](https://www.coursera.org/course/ntumltwo)(适合提高)。
190+
191+
- [Machine Learning for Data Analysis](https://www.coursera.org/learn/machine-learning-data-analysis), Coursera上Wesleyan大学的Data Analysis and Interpretation专项课程第四课。
192+
193+
- [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks), Coursera上的著名课程,由Geoffrey Hinton教授主讲。
194+
195+
- 斯坦福大学Feifei Li教授的[CS231n系列深度学习课程](http://cs231n.stanford.edu/)。Feifei Li目前是Google的科学家,深度学习与图像识别方面的大牛。这门课的笔记可以看[这里](https://zhuanlan.zhihu.com/p/21930884)
196+
197+
- Max Planck Institute for Intelligent Systems Tübingen[德国马普所智能系统研究所2013的机器学习暑期学校视频](https://www.youtube.com/playlist?list=PLqJm7Rc5-EXFv6RXaPZzzlzo93Hl0v91E),仔细翻这个频道还可以找到2015的暑期学校视频
198+
199+
- 知乎Live:[我们一起开始机器学习吧](https://www.zhihu.com/lives/792423196996546560)[机器学习入门之特征工程](https://www.zhihu.com/lives/819543866939174912)
200+
201+
202+
203+
- - -
204+
205+
206+
207+
208+
209+
210+
211+
212+
213+
214+
215+
## 相关书籍 reference book
216+
217+
218+
219+
220+
221+
222+
223+
- 入门读物 [The Elements of Statistical Learning(英文第二版),The Elements of Statistical Learning.pdf](http://ddl.escience.cn/ff/emZH)
224+
225+
226+
227+
- [机器学习](https://book.douban.com/subject/26708119/), (@Prof. Zhihua Zhou/周志华教授)
228+
229+
230+
231+
- [统计学习方法](https://book.douban.com/subject/10590856/), (@Dr. Hang Li/李航博士)
232+
233+
234+
235+
- [一些Kindle读物](http://ddl.escience.cn/f/IwWE):
236+
237+
238+
239+
- 利用Python进行数据分析.azw3
240+
241+
- 跟老齐学Python:从入门到精通.azw3
242+
243+
- Python与数据挖掘 (大数据技术丛书) - 张良均.azw3
244+
245+
- Python学习手册.azw3
246+
247+
- Python性能分析与优化.mobi
248+
249+
- Python数据挖掘入门与实践_7242.azw3
250+
251+
- Python数据分析与挖掘实战(大数据技术丛书) - 张良均.azw3
252+
253+
- Python科学计算(第2版).azw3
254+
255+
- Python计算机视觉编程 [美] Jan Erik Solem.azw3
256+
257+
- python核心编程(第三版).azw3
258+
259+
- Python核心编程(第二版).azw3
260+
261+
- Python高手之路 - [法] 朱利安·丹乔(Julien Danjou).azw3
262+
263+
- Python编程快速上手 让繁琐工作自动化.azw3
264+
265+
- Python编程:从入门到实践.azw3
266+
267+
- Python3 CookBook中文版.mobi
268+
269+
- 终极算法机器学习和人工智能如何重塑世界 - [美 ]佩德罗·多明戈斯.azw3.azw3
270+
271+
- 机器学习系统设计 (图灵程序设计丛书) - [美]Willi Richert & Luis Pedro Coelho.azw3.azw3
272+
273+
- 机器学习实践指南:案例应用解析(第2版) (大数据技术丛书) - 麦好.azw3
274+
275+
- 机器学习实践 测试驱动的开发方法 (图灵程序设计丛书) - [美] 柯克(Matthew Kirk).a.azw3
276+
277+
- 机器学习:实用案例解析 (O'Reilly精品图书系
278+
279+
280+
281+
- [Packt每日限免电子书精选](http://ddl.escience.cn/f/IS4a):
282+
283+
284+
285+
- Learning Data Mining with Python
286+
287+
- Matplotlib for python developers
288+
289+
- Machine Learing with Spark
290+
291+
- Mastering R for Quantitative Finance
292+
293+
- Mastering matplotlib
294+
295+
- Neural Network Programming with Java
296+
297+
- Python Machine Learning
298+
299+
- R Data Visualization Cookbook
300+
301+
- R Deep Learning Essentials
302+
303+
- R Graphs Cookbook second edition
304+
305+
- D3.js By Example
306+
307+
- Data Analysis With R
308+
309+
- Java Deep Learning Essentials
310+
311+
- Learning Bayesian Models with R
312+
313+
- Learning Pandas
314+
315+
- Python Parallel Programming Cookbook
316+
317+
- Machine Learning with R
318+
319+
---
320+
321+
322+
323+
## 其他 Miscellaneous
324+
325+
326+
327+
- [机器学习日报](http://forum.ai100.com.cn/):每天更新学术和工业界最新的研究成果
328+
329+
330+
331+
- - -
332+
333+
334+
335+
## 如何加入 How to contribute
336+
337+
338+
339+
- 直接pull requests
340+
341+
- 或者到[这里](https://github.com/allmachinelearning/MachineLearning/issues/1)留下你的Github账号我们把你加入贡献者列表
342+
343+
- PDF等大文件上传方法:登录 http://mega.nz 创建自己的账号,然后可以进行文件共享。原来的公共空间失效了。
344+
 
345+
- 之后请在贡献者页面加入自己的信息
346+
347+
348+
349+
## 如何开始项目协同合作
350+
351+
[快速了解github协同工作](http://hucaihua.cn/2016/12/02/github_cooperation/)
352+
353+
354+
355+
[及时更新fork项目](https://jinlong.github.io/2015/10/12/syncing-a-fork/)
356+
357+
358+
359+
#### [贡献者 Contributors](https://github.com/allmachinelearning/MachineLearning/blob/master/contributors.md)
360+
361+
362+

_config.yml

+1
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
theme: jekyll-theme-cayman

contributors.md

+32
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,32 @@
1+
## 贡献者 Contributors
2+
3+
| Contributor | Affiliation |
4+
| ----------- | ----------- |
5+
| [Jindong Wang](http://jd92.wang) | 中国科学院计算技术研究所 |
6+
| [Xiandong QI](https://xiandong79.github.io) | 香港科技大学 |
7+
| [Youjie Xia](https://youjiexia.github.io) | 上海交通大学 |
8+
| [Jiapeng Zhang](https://www.zhihu.com/people/jiapengzhang) | 三本大学生 |
9+
| [Zhigang He](https://github.com/Hochikong) | 暨南大学 |
10+
11+
12+
13+
14+
15+
16+
17+
18+
19+
20+
21+
22+
23+
24+
25+
26+
27+
28+
29+
30+
31+
32+

0 commit comments

Comments
 (0)