forked from mit-han-lab/proxylessnas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_tf.py
97 lines (86 loc) · 2.66 KB
/
eval_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os.path as osp
import numpy as np
import argparse
import torch.utils.data
from torchvision import transforms, datasets
from proxyless_nas.utils import AverageMeter
from proxyless_nas_tensorflow import tf_model_zoo
model_names = sorted(name for name in tf_model_zoo.__dict__
if name.islower() and not name.startswith("__")
and callable(tf_model_zoo.__dict__[name]))
parser = argparse.ArgumentParser()
parser.add_argument(
"-p",
'--path',
help='The path of imagenet',
type=str,
default="/ssd/dataset/imagenet")
parser.add_argument(
"-b",
"--batch-size",
help="The batch on every device for validation",
type=int,
default=64)
parser.add_argument(
"-j",
"--workers",
help="The batch on every device for validation",
type=int,
default=4)
parser.add_argument(
'-a',
'--arch',
metavar='ARCH',
default='proxyless_mobile_14',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: proxyless_mobile_14)')
parser.add_argument('--manual_seed', default=0, type=int)
args = parser.parse_args()
net = tf_model_zoo.__dict__[args.arch](pretrained=True)
data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
osp.join(
args.path,
"val"),
transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[
0.485,
0.456,
0.406],
std=[
0.229,
0.224,
0.225]),
])),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
losses = AverageMeter()
top1 = AverageMeter()
for i, (_input, target) in enumerate(data_loader):
images = _input.numpy()
images = np.transpose(images, axes=[0, 2, 3, 1])
labels = net.labels_to_one_hot(1000, target.numpy())
feed_dict = {
net.images: images,
net.labels: labels,
net.is_training: False,
}
fetches = [net.cross_entropy, net.accuracy]
loss, accuracy = net.sess.run(fetches, feed_dict=feed_dict)
losses.update(loss, images.shape[0])
top1.update(accuracy * 100, images.shape[0])
if i % 50 == 0:
print(i, '\tLoss {loss.val:.4f} ({loss.avg:.4f})'.format(loss=losses),
'\tTop 1-acc {top1.val:.3f} ({top1.avg:.3f})'.format(top1=top1))
print('Loss: %.4f' % losses.avg, '\tTop-1: %.3f' % top1.avg)