forked from cms-patatrack/pixeltrack-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cc
182 lines (170 loc) · 6.45 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <algorithm>
#include <cstdlib>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <filesystem>
#include <string>
#include <vector>
#include <tbb/task_scheduler_init.h>
#include <cuda_runtime.h>
#include "CUDACore/getCachingDeviceAllocator.h"
#include "EventProcessor.h"
namespace {
void print_help(std::string const& name) {
std::cout
<< name
<< ": [--numberOfThreads NT] [--numberOfStreams NS] [--maxEvents ME] [--data PATH] [--transfer] [--validation] "
"[--histogram] [--empty]\n\n"
<< "Options\n"
<< " --numberOfThreads Number of threads to use (default 1)\n"
<< " --numberOfStreams Number of concurrent events (default 0=numberOfThreads)\n"
<< " --maxEvents Number of events to process (default -1 for all events in the input file)\n"
<< " --data Path to the 'data' directory (default 'data' in the directory of the executable)\n"
<< " --transfer Transfer results from GPU to CPU (default is to leave them on GPU)\n"
<< " --validation Run (rudimentary) validation at the end (implies --transfer)\n"
<< " --histogram Produce histograms at the end (implies --transfer)\n"
<< " --empty Ignore all producers (for testing only)\n"
<< std::endl;
}
} // namespace
int main(int argc, char** argv) {
// Parse command line arguments
std::vector<std::string> args(argv, argv + argc);
int numberOfThreads = 1;
int numberOfStreams = 0;
int maxEvents = -1;
std::filesystem::path datadir;
bool transfer = false;
bool validation = false;
bool histogram = false;
bool empty = false;
for (auto i = args.begin() + 1, e = args.end(); i != e; ++i) {
if (*i == "-h" or *i == "--help") {
print_help(args.front());
return EXIT_SUCCESS;
} else if (*i == "--numberOfThreads") {
++i;
numberOfThreads = std::stoi(*i);
} else if (*i == "--numberOfStreams") {
++i;
numberOfStreams = std::stoi(*i);
} else if (*i == "--maxEvents") {
++i;
maxEvents = std::stoi(*i);
} else if (*i == "--data") {
++i;
datadir = *i;
} else if (*i == "--transfer") {
transfer = true;
} else if (*i == "--validation") {
transfer = true;
validation = true;
} else if (*i == "--histogram") {
transfer = true;
histogram = true;
} else if (*i == "--empty") {
empty = true;
} else {
std::cout << "Invalid parameter " << *i << std::endl << std::endl;
print_help(args.front());
return EXIT_FAILURE;
}
}
if (numberOfStreams == 0) {
numberOfStreams = numberOfThreads;
}
if (datadir.empty()) {
datadir = std::filesystem::path(args[0]).parent_path() / "data";
}
if (not std::filesystem::exists(datadir)) {
std::cout << "Data directory '" << datadir << "' does not exist" << std::endl;
return EXIT_FAILURE;
}
int numberOfDevices;
auto status = cudaGetDeviceCount(&numberOfDevices);
if (cudaSuccess != status) {
std::cout << "Failed to initialize the CUDA runtime";
return EXIT_FAILURE;
}
std::cout << "Found " << numberOfDevices << " devices" << std::endl;
#if CUDA_VERSION >= 11020
// Initialize the CUDA memory pool
uint64_t threshold = cms::cuda::allocator::minCachedBytes();
for (int device = 0; device < numberOfDevices; ++device) {
cudaMemPool_t pool;
cudaDeviceGetDefaultMemPool(&pool, device);
cudaMemPoolSetAttribute(pool, cudaMemPoolAttrReleaseThreshold, &threshold);
}
#endif
// Initialize EventProcessor
std::vector<std::string> edmodules;
std::vector<std::string> esmodules;
if (not empty) {
edmodules = {
"BeamSpotToCUDA", "SiPixelRawToClusterCUDA", "SiPixelRecHitCUDA", "CAHitNtupletCUDA", "PixelVertexProducerCUDA"};
esmodules = {"BeamSpotESProducer",
"SiPixelFedCablingMapGPUWrapperESProducer",
"SiPixelGainCalibrationForHLTGPUESProducer",
"PixelCPEFastESProducer"};
if (transfer) {
auto capos = std::find(edmodules.begin(), edmodules.end(), "CAHitNtupletCUDA");
assert(capos != edmodules.end());
edmodules.insert(capos + 1, "PixelTrackSoAFromCUDA");
auto vertpos = std::find(edmodules.begin(), edmodules.end(), "PixelVertexProducerCUDA");
assert(vertpos != edmodules.end());
edmodules.insert(vertpos + 1, "PixelVertexSoAFromCUDA");
}
if (validation) {
edmodules.emplace_back("CountValidator");
}
if (histogram) {
edmodules.emplace_back("HistoValidator");
}
}
edm::EventProcessor processor(
maxEvents, numberOfStreams, std::move(edmodules), std::move(esmodules), datadir, validation);
maxEvents = processor.maxEvents();
std::cout << "Processing " << maxEvents << " events, of which " << numberOfStreams << " concurrently, with "
<< numberOfThreads << " threads." << std::endl;
// Initialize tasks scheduler (thread pool)
tbb::task_scheduler_init tsi(numberOfThreads);
// Run work
auto start = std::chrono::high_resolution_clock::now();
try {
processor.runToCompletion();
} catch (std::runtime_error& e) {
std::cout << "\n----------\nCaught std::runtime_error" << std::endl;
std::cout << e.what() << std::endl;
return EXIT_FAILURE;
} catch (std::exception& e) {
std::cout << "\n----------\nCaught std::exception" << std::endl;
std::cout << e.what() << std::endl;
return EXIT_FAILURE;
} catch (...) {
std::cout << "\n----------\nCaught exception of unknown type" << std::endl;
return EXIT_FAILURE;
}
auto stop = std::chrono::high_resolution_clock::now();
// Run endJob
try {
processor.endJob();
} catch (std::runtime_error& e) {
std::cout << "\n----------\nCaught std::runtime_error" << std::endl;
std::cout << e.what() << std::endl;
return EXIT_FAILURE;
} catch (std::exception& e) {
std::cout << "\n----------\nCaught std::exception" << std::endl;
std::cout << e.what() << std::endl;
return EXIT_FAILURE;
} catch (...) {
std::cout << "\n----------\nCaught exception of unknown type" << std::endl;
return EXIT_FAILURE;
}
// Work done, report timing
auto diff = stop - start;
auto time = static_cast<double>(std::chrono::duration_cast<std::chrono::microseconds>(diff).count()) / 1e6;
std::cout << "Processed " << maxEvents << " events in " << std::scientific << time << " seconds, throughput "
<< std::defaultfloat << (maxEvents / time) << " events/s." << std::endl;
return EXIT_SUCCESS;
}