-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgradcam.py
158 lines (127 loc) · 5.7 KB
/
gradcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import cv2
import numpy as np
class GradCAM():
"""
Class to implement the GradCam function with it's necessary Pytorch hooks.
Attributes
----------
model : detectron2 GeneralizedRCNN Model
A model using the detectron2 API for inferencing
layer_name : str
name of the convolutional layer to perform GradCAM with
"""
def __init__(self, model, target_layer_name):
self.model = model
self.target_layer_name = target_layer_name
self.activations = None
self.gradient = None
self.model.eval()
self.activations_grads = []
self._register_hook()
self.model.zero_grad()
def _get_activations_hook(self, module, input, output):
self.activations = output
def _get_grads_hook(self, module, input_grad, output_grad):
self.gradient = output_grad[0]
def _register_hook(self):
for (name, module) in self.model.named_modules():
if name == self.target_layer_name:
self.activations_grads.append(module.register_forward_hook(self._get_activations_hook))
self.activations_grads.append(module.register_backward_hook(self._get_grads_hook))
return True
print(f"Layer {self.target_layer_name} not found in Model!")
def _release_activations_grads(self):
for handle in self.activations_grads:
handle.remove()
def _postprocess_cam(self, raw_cam, img_width, img_height):
cam_orig = np.sum(raw_cam, axis=0) # [H,W]
cam_orig = np.maximum(cam_orig, 0) # ReLU
cam_orig -= np.min(cam_orig)
cam_orig /= np.max(cam_orig)
cam = cv2.resize(cam_orig, (img_width, img_height))
return cam, cam_orig
def _forward_backward_pass(self, inputs, target_instance):
output = self.model.forward([inputs])[0]
if target_instance == None:
target_instance = np.argmax(output['instances'].scores.cpu().data.numpy(), axis=-1)
assert len(output['instances']) >= target_instance, f"Only {len(output['instances'])} objects found but you request object number {target_instance}"
score = output['instances'].scores[target_instance]
score.backward()
return output
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self._release_activations_grads()
def __call__(self, inputs, target_instance):
"""
Calls the GradCAM++ instance
Parameters
----------
inputs : dict
The input in the standard detectron2 model input format
https://detectron2.readthedocs.io/en/latest/tutorials/models.html#model-input-format
target_instance : int, optional
The target category index. If `None` the highest scoring class will be selected
Returns
-------
cam : np.array()
Gradient weighted class activation map
output : list
list of Instance objects representing the detectron2 model output
"""
output = self._forward_backward_pass(inputs, target_instance)
gradient = self.gradient[0].cpu().data.numpy() # [C,H,W]
activations = self.activations[0].cpu().data.numpy() # [C,H,W]
weight = np.mean(gradient, axis=(1, 2)) # [C]
cam = activations * weight[:, np.newaxis, np.newaxis] # [C,H,W]
cam, cam_orig = self._postprocess_cam(cam, inputs["width"], inputs["height"])
return cam, cam_orig, output
class GradCamPlusPlus(GradCAM):
"""
Subclass to implement the GradCam++ function with it's necessary PyTorch hooks.
...
Attributes
----------
model : detectron2 GeneralizedRCNN Model
A model using the detectron2 API for inferencing
target_layer_name : str
name of the convolutional layer to perform GradCAM++ with
"""
def __init__(self, model, target_layer_name):
super().__init__(model, target_layer_name)
def __call__(self, inputs, target_instance):
"""
Calls the GradCAM++ instance
Parameters
----------
inputs : dict
The input in the standard detectron2 model input format
https://detectron2.readthedocs.io/en/latest/tutorials/models.html#model-input-format
target_instance : int, optional
The target category index. If `None` the highest scoring class will be selected
Returns
-------
cam : np.array()
Gradient weighted class activation map
output : list
list of Instance objects representing the detectron2 model output
"""
output = self._forward_backward_pass(inputs, target_instance)
gradient = self.gradient[0].cpu().data.numpy() # [C,H,W]
activations = self.activations[0].cpu().data.numpy() # [C,H,W]
#from https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/grad_cam_plusplus.py
grads_power_2 = gradient**2
grads_power_3 = grads_power_2 * gradient
# Equation 19 in https://arxiv.org/abs/1710.11063
sum_activations = np.sum(activations, axis=(1, 2))
eps = 0.000001
aij = grads_power_2 / (2 * grads_power_2 +
sum_activations[:, None, None] * grads_power_3 + eps)
# Now bring back the ReLU from eq.7 in the paper,
# And zero out aijs where the activations are 0
aij = np.where(gradient != 0, aij, 0)
weights = np.maximum(gradient, 0) * aij
weight = np.sum(weights, axis=(1, 2))
cam = activations * weight[:, np.newaxis, np.newaxis] # [C,H,W]
cam, cam_orig = self._postprocess_cam(cam, inputs["width"], inputs["height"])
return cam, cam_orig, output