-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathmisc_02_kernelConvolution.cpp
32 lines (31 loc) · 1.6 KB
/
misc_02_kernelConvolution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include "misc_02_kernelConvolution.h"
namespace misc {
std::shared_ptr<Eigen::MatrixXd> kernelConvolution(const Eigen::MatrixXd& image, const Eigen::MatrixXd& kernel){
std::shared_ptr<Eigen::MatrixXd> output = std::shared_ptr<Eigen::MatrixXd>(new Eigen::MatrixXd(image));
// support only odd width square kernels
if (kernel.rows() != kernel.cols() || kernel.rows() % 2 != 1) {
return output;
}
// perform convolution computation
const int kernelHalfWidth = kernel.rows() / 2;
for (int imageR = 0; imageR < image.rows(); imageR ++) {
for (int imageC = 0; imageC < image.cols(); imageC++) {
const int startR = imageR - kernelHalfWidth;
const int startC = imageC - kernelHalfWidth;
double accumulator = 0.0f;
for (int kernelR = 0; kernelR < kernel.rows(); kernelR ++) {
for (int kernelC = 0; kernelC < kernel.cols(); kernelC ++) {
const int accumulatorR = startR + kernelR;
const int accumulatorC = startC + kernelC;
// check bounds conditions - implicitly this means image is zero padded
if (accumulatorR >= 0 && accumulatorR < image.rows() && accumulatorC >= 0 && accumulatorC < image.cols()) {
accumulator += image(accumulatorR, accumulatorC) * kernel(kernelR, kernelC);
}
}
}
(*output)(imageR, imageC) = accumulator;
}
}
return output;
}
}