-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path7_model.py
219 lines (144 loc) · 4.83 KB
/
7_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding: utf-8
import json
import pandas as pd
import numpy as np
from tqdm import tqdm
import xgboost as xgb
# In[ ]:
df_train = pd.read_csv('./pair_features_tfidf_profiles_train.csv', dtype='float32')
df_train.fold = df_train.fold.astype('uint8')
df_train.target = df_train.target.astype('uint8').values
# In[ ]:
users12 = set(zip(df_train.user_1, df_train.user_2))
pd_users21 = pd.Series(zip(df_train.user_2, df_train.user_1))
isin_21 = pd_users21.isin(users12)
users21 = set(zip(df_train.user_2, df_train.user_1))
pd_users12 = pd.Series(zip(df_train.user_1, df_train.user_2))
isin_12 = pd_users12.isin(users21)
df_train['is_duplicate'] = isin_12 | isin_21
df_train.is_duplicate = df_train.is_duplicate.astype('uint8')
del users12, pd_users21, users21, pd_users12
del isin_12, isin_21
# In[4]:
from sklearn.metrics import roc_auc_score
print 'baseline auc:', roc_auc_score(df_train.target, df_train.es_score)
# In[18]:
fold = df_train.fold
target = df_train.target
del df_train['user_1'], df_train['user_2']
del df_train['fold'], df_train['target']
X_all = df_train.values
feature_names = list(df_train.columns)
del df_train
# In[16]:
n_estimators = 1000
xgb_pars = {
'eta': 0.15,
'gamma': 0.5,
'max_depth': 6,
'min_child_weight': 1,
'max_delta_step': 0,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 1,
'lambda': 1,
'alpha': 0,
'tree_method': 'approx',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'nthread': 8,
'seed': 42,
'silent': 1
}
dfull = xgb.DMatrix(X_all, target, feature_names=feature_names, missing=np.nan)
del X_all, target
# In[27]:
watchlist = [(dfull, 'train')]
model_full = xgb.train(xgb_pars, dfull, num_boost_round=n_estimators,
verbose_eval=5, evals=watchlist)
# In[29]:
df_test = pd.read_csv('./pair_features_tfidf_profiles_test.csv', dtype='float32')
users21 = set(zip(df_test.user_2, df_test.user_1))
pd_users12 = pd.Series(zip(df_test.user_1, df_test.user_2))
isin_12 = pd_users12.isin(users21)
users12 = set(zip(df_test.user_1, df_test.user_2))
pd_users21 = pd.Series(zip(df_test.user_2, df_test.user_1))
isin_21 = pd_users21.isin(users12)
# In[63]:
df_test['is_duplicate'] = isin_12 | isin_21
df_test.is_duplicate = df_test.is_duplicate.astype('uint8')
del users12, pd_users21, users21, pd_users12, isin_12, isin_21
df_test = df_test[feature_names].copy()
X_test = df_test.values
del df_test
# In[39]:
test_xgb = xgb.DMatrix(X_test, feature_names=feature_names, missing=np.nan)
del X_test
# In[42]:
df_perf_test = pd.read_csv('pair_features_tfidf_profiles_test.csv',
dtype={'user_1': 'uint32', 'user_2': 'uint32'},
usecols=['user_1', 'user_2'])
pred_test = model_full.predict(test_xgb)
df_perf_test['model_score'] = pred_test
df_perf_test.model_score = df_perf_test.model_score.astype('float32')
## result
pairs = [sorted(p) for p in zip(df_perf_test.user_1, df_perf_test.user_2)]
pairs = np.array(pairs)
df_perf_test.user_1 = pairs[:, 0]
df_perf_test.user_2 = pairs[:, 1]
del pairs
df_perf_test.sort_values(by='model_score', ascending=0, inplace=1)
with open('tmp/idx_to_uid.bin', 'rb') as f:
idx_to_uid = cPickle.load(f)
## graph completion
df_test_dedup = []
seen = set()
count = 215307 * 0.5
for _, row in df_perf_test.iterrows():
uid1 = int(row.user_1)
uid2 = int(row.user_2)
if (uid1, uid2) in seen:
continue
seen.add((uid1, uid2))
df_test_dedup.append((uid1, uid2, row.model_score))
count = count - 1
if count <= 0:
break
df_test_dedup = pd.DataFrame(df_test_dedup)
df_test_dedup.columns = ['user_1', 'user_2', 'model_score']
df_certain = df_test_dedup[df_test_dedup.model_score >= 0.8]
import networkx as nx
import itertools
G = nx.Graph()
for u1, u2 in tqdm(zip(df_certain.user_1, df_certain.user_2)):
G.add_edge(u1, u2)
components = list(nx.connected_components(G))
certain_combinations = []
for cmb in tqdm(components):
if len(cmb) >= 20:
continue
for (u1, u2) in list(itertools.combinations(cmb, r=2)):
certain_combinations.append((u1, u2))
## final submission
seen = set()
with open('submission.txt', 'w') as f_out:
for uid1, uid2 in certain_combinations:
seen.add((uid1, uid2))
uid1 = idx_to_uid[uid1]
uid2 = idx_to_uid[uid2]
if uid2 < uid1:
uid2, uid1 = uid1, uid2
f_out.write("%s,%s\n" % (uid1, uid2))
cnt = len(df_test_dedup) - 5000
for uid1, uid2 in tqdm(zip(df_test_dedup.user_1, df_test_dedup.user_2)):
cnt = cnt - 1
if cnt < 0:
break
if (uid1, uid2) in seen or (uid2, uid1) in seen:
continue
seen.add((uid1, uid2))
uid1 = idx_to_uid[uid1]
uid2 = idx_to_uid[uid2]
if uid2 < uid1:
uid2, uid1 = uid1, uid2
f_out.write("%s,%s\n" % (uid1, uid2))