-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path1_prepare_data.py
189 lines (124 loc) · 3.92 KB
/
1_prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding: utf-8
# In[1]:
import json
import pandas as pd
import numpy as np
import networkx as nx
from tqdm import tqdm
import cPickle
from operator import itemgetter
itemgetter_1 = itemgetter(1)
# In[2]:
def process_facts(fact_dicts):
global next_session_id
facts = []
for d in fact_dicts:
fid = d['fid'] - 1
ts = d['ts']
if ts > 1000000000000000:
facts.append((fid, ts / 1000))
else:
facts.append((fid, ts))
facts = sorted(facts, key=itemgetter_1)
return facts
# In[3]:
user_ids = []
with open('../data/facts.json', 'r') as fact_file:
for line in tqdm(fact_file):
d = json.loads(line)
user_ids.append(d['uid'])
# In[5]:
uid_to_idx = {uid: i for (i, uid) in enumerate(user_ids)}
with open('tmp/uid_to_idx.bin', 'wb') as f:
cPickle.dump(uid_to_idx, f)
with open('tmp/idx_to_uid.bin', 'wb') as f:
cPickle.dump(user_ids, f)
# In[6]:
df_train = pd.read_csv('../data/train.csv', header=None)
df_train.columns = ['user_1', 'user_2']
df_train.user_1 = df_train.user_1.apply(uid_to_idx.get)
df_train.user_2 = df_train.user_2.apply(uid_to_idx.get)
train_users = set(df_train.user_1) | set(df_train.user_2)
test_users = set(range(0, len(user_ids))) - train_users
# In[9]:
with open('tmp/train_test_users.bin', 'wb') as f:
cPickle.dump((train_users, test_users), f)
# In[10]:
G = nx.Graph()
for u1, u2 in tqdm(zip(df_train.user_1, df_train.user_2)):
G.add_edge(u1, u2)
components = nx.connected_components(G)
node_to_comp = {}
for idx, component in enumerate(components):
for node in component:
node_to_comp[node] = idx
df_train['component'] = df_train.user_1.apply(node_to_comp.get)
# In[]:
np.random.seed(2)
num_components = df_train.component.max()
component_idx = np.arange(0, num_components)
np.random.shuffle(component_idx)
split = num_components / 2
fold1_comps = set(component_idx[:split])
TRAIN_1 = 1
TRAIN_2 = 2
df_train['fold'] = TRAIN_2
is_fold1 = df_train.component.isin(fold1_comps)
df_train['fold'][is_fold1] = TRAIN_1
df_train.user_1 = df_train.user_1.astype('uint32')
df_train.user_2 = df_train.user_2.astype('uint32')
df_train.component = df_train.component.astype('uint32')
df_train.fold = df_train.fold.astype('uint8')
# In[11]:
with open('tmp/df_train_folds.bin', 'wb') as f:
cPickle.dump(df_train, f)
# In[8]:
## Preparing facts
cnt = 0
code_dict = {}
def encode(token):
if token is None:
return ''
if token in code_dict:
code = code_dict[token]
return np.base_repr(code, base=36)
global cnt
code = cnt
code_dict[token] = code
cnt = cnt + 1
return np.base_repr(code, base=36)
# In[9]:
titles = {}
with open('../data/titles.csv', 'r') as f:
for line in tqdm(f):
uid, title = line.strip().split(',')
tokens = title.split(' ')
code_tokens = [encode(t) for t in tokens]
titles[int(uid)] = ' '.join(code_tokens)
# In[10]:
url_dicts = []
with open('../data/urls.csv', 'r') as f:
for line in tqdm(f):
url_id, url = line.strip().split(',')
url_id = int(url_id)
param = None
if '?' in url:
url, param = url.split('?')
url_tokens = url.split('/')
url_tokens_code = [encode(t) for t in url_tokens]
param = encode(param)
domain = url_tokens_code[0]
address = url_tokens_code[1:]
row_dict = {'url_id': url_id, 'domain': domain,
'address': ' '.join(address), 'param': param,
'title': titles.get(url_id, '') }
url_dicts.append(row_dict)
# In[17]:
df_urls = pd.DataFrame(url_dicts, columns=['url_id', 'domain', 'address', 'param', 'title'])
df_urls.sort_values(by='url_id', inplace=1)
df_urls.reset_index(drop=True, inplace=1)
df_urls.param.fillna('', inplace=1)
df_urls.drop('url_id', axis=1, inplace=1)
# In[25]:
with open('tmp/df_urls.bin', 'wb') as f:
cPickle.dump(df_urls, f)