-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvektor.h
557 lines (478 loc) · 21.1 KB
/
vektor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
////////////////////////////////////////////////////////////////////////
// --- COPYRIGHT NOTICE ---------------------------------------------
// FastCommunityMH - infers community structure of networks
// Copyright (C) 2004 Aaron Clauset
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.gnu.org/licenses/gpl.txt for more details.
//
////////////////////////////////////////////////////////////////////////
// Author : Aaron Clauset ([email protected]) //
// Location : U. Michigan, U. New Mexico //
// Time : January-August 2004 //
// Collaborators: Dr. Cris Moore ([email protected]) //
// : Dr. Mark Newman ([email protected]) //
////////////////////////////////////////////////////////////////////////
#if !defined(vektor_INCLUDED)
#define vektor_INCLUDED
#include <iostream>
#if !defined(vektor_INCLUDED)
#define vektor_INCLUDED
#include "maxheap.h"
#endif
#if !defined(DPAIR_INCLUDED)
#define DPAIR_INCLUDED
class dpair {
public:
int x; double y; dpair *next;
dpair(); ~dpair();
};
dpair::dpair() { x = 0; y = 0.0; next = NULL; }
dpair::~dpair() {}
#endif
struct dppair { dpair *head; dpair *tail; };
class element {
public:
int key; // binary-tree key
double stored; // additional stored value (associated with key)
tuple *heap_ptr; // pointer to element's location in vektor max-heap
bool color; // F: BLACK
// T: RED
element *parent; // pointer to parent node
element *left; // pointer for left subtree
element *right; // pointer for right subtree
element(); ~element();
};
element::element() { key = 0; stored = -4294967296.0; color = false;
parent = NULL; left = NULL; right = NULL; }
element::~element() {}
/* This vector implementation is a pair of linked data structures: a red-black balanced binary
tree data structure and a maximum heap. This pair allows us to find a stored element in time
O(log n), find the maximum element in time O(1), update the maximum element in time O(log n),
delete an element in time O(log n), and insert an element in time O(log n). These complexities
allow a much faster implementation of the fastCommunity algorithm. If we dispense with the
max-heap, then some operations related to updating the maximum stored value can take up to O(n),
which is potentially very slow.
Both the red-black balanced binary tree and the max-heap implementations are custom-jobs. Note
that the key=0 is assumed to be a special value, and thus you cannot insert such an item.
Beware of this limitation.
*/
class vektor {
private:
element *root; // binary tree root
element *leaf; // all leaf nodes
maxheap *heap; // max-heap of elements in vektor
int support; // number of nodes in the tree
void rotateLeft(element *x); // left-rotation operator
void rotateRight(element *y); // right-rotation operator
void insertCleanup(element *z); // house-keeping after insertion
void deleteCleanup(element *x); // house-keeping after deletion
dppair *consSubtree(element *z); // internal recursive cons'ing function
dpair *returnSubtreeAsList(element *z, dpair *head);
void printSubTree(element *z); // display the subtree rooted at z
void deleteSubTree(element *z); // delete subtree rooted at z
element *returnMinKey(element *z); // returns minimum of subtree rooted at z
element *returnSuccessor(element *z); // returns successor of z's key
public:
vektor(int size); ~vektor(); // default constructor/destructor
element* findItem(const int searchKey); // returns T if searchKey found, and
// points foundNode at the corresponding node
void insertItem(int newKey, double newStored); // insert a new key with stored value
void deleteItem(int killKey); // selete a node with given key
void deleteTree(); // delete the entire tree
dpair *returnTreeAsList(); // return the tree as a list of dpairs
dpair *returnTreeAsList2(); // return the tree as a list of dpairs
tuple returnMaxKey(); // returns the maximum key in the tree
tuple returnMaxStored(); // returns a tuple of the maximum (key, .stored)
int returnNodecount(); // returns number of items in tree
void printTree(); // displays tree (in-order traversal)
void printHeap(); // displays heap
int returnArraysize(); //
int returnHeaplimit(); //
};
// ------------------------------------------------------------------------------------
// Red-Black Tree methods
vektor::vektor(int size) {
root = new element;
leaf = new element;
heap = new maxheap(size);
leaf->parent = root;
root->left = leaf;
root->right = leaf;
support = 0;
}
vektor::~vektor() {
if (root != NULL && (root->left != leaf || root->right != leaf)) { deleteSubTree(root); }
support = 0;
delete leaf;
root = NULL;
leaf = NULL;
delete heap;
heap = NULL;
}
void vektor::deleteTree() { if (root != NULL) { deleteSubTree(root); } return; }
void vektor::deleteSubTree(element *z) {
if (z->left != leaf) { deleteSubTree(z->left); }
if (z->right != leaf) { deleteSubTree(z->right); }
delete z;
z = NULL;
return;
}
// Search Functions -------------------------------------------------------------------
// public search function - if there exists a element in the three with key=searchKey,
// it returns TRUE and foundNode is set to point to the found node; otherwise, it sets
// foundNode=NULL and returns FALSE
element* vektor::findItem(const int searchKey) {
element *current; current = root;
if (current->key==0) { return NULL; } // empty tree; bail out
while (current != leaf) {
if (searchKey < current->key) { // left-or-right?
if (current->left != leaf) { current = current->left; } // try moving down-left
else { return NULL; } // failure; bail out
} else { //
if (searchKey > current->key) { // left-or-right?
if (current->right != leaf) { current = current->right; } // try moving down-left
else { return NULL; } // failure; bail out
} else { return current; } // found (searchKey==current->key)
}
}
return NULL;
}
// Return Item Functions -------------------------------------------------------------------
// public function which returns the tree, via pre-order traversal, as a linked list
dpair* vektor::returnTreeAsList() { // pre-order traversal
dpair *head, *tail;
head = new dpair;
head->x = root->key;
head->y = root->stored;
tail = head;
if (root->left != leaf) { tail = returnSubtreeAsList(root->left, tail); }
if (root->right != leaf) { tail = returnSubtreeAsList(root->right, tail); }
if (head->x==0) { return NULL; /* empty tree */} else { return head; }
}
dpair* vektor::returnSubtreeAsList(element *z, dpair *head) {
dpair *newnode, *tail;
newnode = new dpair;
newnode->x = z->key;
newnode->y = z->stored;
head->next = newnode;
tail = newnode;
if (z->left != leaf) { tail = returnSubtreeAsList(z->left, tail); }
if (z->right != leaf) { tail = returnSubtreeAsList(z->right, tail); }
return tail;
}
tuple vektor::returnMaxStored() { return heap->returnMaximum(); }
tuple vektor::returnMaxKey() {
tuple themax;
element *current;
current = root;
while (current->right != leaf) { // search to bottom-right corner of tree
current = current->right; } //
themax.m = current->stored; // store the data found
themax.i = current->key; //
themax.j = current->key; //
return themax; // return that data
}
// private functions for deleteItem() (although these could easily be made public, I suppose)
element* vektor::returnMinKey(element *z) {
element *current;
current = z;
while (current->left != leaf) { // search to bottom-right corner of tree
current = current->left; } //
return current; // return pointer to the minimum
}
element* vektor::returnSuccessor(element *z) {
element *current, *w;
w = z;
if (w->right != leaf) { // if right-subtree exists, return min of it
return returnMinKey(w->right); }
current = w->parent; // else search up in tree
while ((current!=NULL) && (w==current->right)) {
w = current;
current = current->parent; // move up in tree until find a non-right-child
}
return current;
}
int vektor::returnNodecount() { return support; }
int vektor::returnArraysize() { return heap->returnArraysize(); }
int vektor::returnHeaplimit() { return heap->returnHeaplimit(); }
// Heapification Functions -------------------------------------------------------------------
// Insert Functions -------------------------------------------------------------------
// public insert function
void vektor::insertItem(int newKey, double newStored) {
// first we check to see if newKey is already present in the tree; if so, we simply
// set .stored += newStored; if not, we must find where to insert the key
element *newNode, *current;
bool foundFlag;
current = findItem(newKey); // find newKey in tree; return pointer to it O(log k)
if (current != NULL) {
current->stored += newStored; // update its stored value
heap->updateItem(current->heap_ptr, current->stored);
// update corresponding element in heap + reheapify; O(log k)
} else { // didn't find it, so need to create it
tuple newitem; //
newitem.m = newStored; //
newitem.i = -1; //
newitem.j = newKey; //
newNode = new element; // element for the vektor
newNode->key = newKey; // store newKey
newNode->stored = newStored; // store newStored
newNode->color = true; // new nodes are always RED
newNode->parent = NULL; // new node initially has no parent
newNode->left = leaf; // left leaf
newNode->right = leaf; // right leaf
newNode->heap_ptr = heap->insertItem(newitem); // add new item to the vektor heap
support++; // increment node count in vektor
// must now search for where to insert newNode, i.e., find the correct parent and
// set the parent and child to point to each other properly
current = root;
if (current->key==0) { // insert as root
delete root; // delete old root
root = newNode; // set root to newNode
leaf->parent = newNode; // set leaf's parent
current = leaf; // skip next loop
}
while (current != leaf) { // search for insertion point
if (newKey < current->key) { // left-or-right?
if (current->left != leaf) { current = current->left; } // try moving down-left
else { // else found new parent
newNode->parent = current; // set parent
current->left = newNode; // set child
current = leaf; // exit search
}
} else { //
if (current->right != leaf) { current = current->right; } // try moving down-right
else { // else found new parent
newNode->parent = current; // set parent
current->right = newNode; // set child
current = leaf; // exit search
}
}
}
// now do the house-keeping necessary to preserve the red-black properties
insertCleanup(newNode); // do house-keeping to maintain balance
}
return;
}
// private house-keeping function for insertion
void vektor::insertCleanup(element *z) {
if (z->parent==NULL) { // fix now if z is root
z->color = false; return; }
element *temp;
while (z->parent!=NULL && z->parent->color) { // while z is not root and z's parent is RED
if (z->parent == z->parent->parent->left) { // z's parent is LEFT-CHILD
temp = z->parent->parent->right; // grab z's uncle
if (temp->color) {
z->parent->color = false; // color z's parent BLACK (Case 1)
temp->color = false; // color z's uncle BLACK (Case 1)
z->parent->parent->color = true; // color z's grandparent RED (Case 1)
z = z->parent->parent; // set z = z's grandparent (Case 1)
} else {
if (z == z->parent->right) { // z is RIGHT-CHILD
z = z->parent; // set z = z's parent (Case 2)
rotateLeft(z); // perform left-rotation (Case 2)
}
z->parent->color = false; // color z's parent BLACK (Case 3)
z->parent->parent->color = true; // color z's grandparent RED (Case 3)
rotateRight(z->parent->parent); // perform right-rotation (Case 3)
}
} else { // z's parent is RIGHT-CHILD
temp = z->parent->parent->left; // grab z's uncle
if (temp->color) {
z->parent->color = false; // color z's parent BLACK (Case 1)
temp->color = false; // color z's uncle BLACK (Case 1)
z->parent->parent->color = true; // color z's grandparent RED (Case 1)
z = z->parent->parent; // set z = z's grandparent (Case 1)
} else {
if (z == z->parent->left) { // z is LEFT-CHILD
z = z->parent; // set z = z's parent (Case 2)
rotateRight(z); // perform right-rotation (Case 2)
}
z->parent->color = false; // color z's parent BLACK (Case 3)
z->parent->parent->color = true; // color z's grandparent RED (Case 3)
rotateLeft(z->parent->parent); // perform left-rotation (Case 3)
}
}
}
root->color = false; // color the root BLACK
return;
}
// Delete Functions -------------------------------------------------------------------
// public delete function
void vektor::deleteItem(int killKey) {
element *x, *y, *z;
char pauseme;
z = findItem(killKey);
if (z == NULL) { return; } // item not present; bail out
if (z != NULL) {
tuple newmax = heap->returnMaximum(); // get old maximum in O(1)
heap->deleteItem(z->heap_ptr); // delete item in the max-heap O(log k)
}
if (support==1) { // -- attempt to delete the root
root->key = 0; // restore root node to default state
root->stored = -4294967296.0; //
root->color = false; //
root->parent = NULL; //
root->left = leaf; //
root->right = leaf; //
root->heap_ptr = NULL; //
support--; // set support to zero
return; // exit - no more work to do
}
if (z != NULL) {
support--; // decrement node count
if ((z->left == leaf) || (z->right==leaf)) { // case of less than two children
y = z; } // set y to be z
else { y = returnSuccessor(z); } // set y to be z's key-successor
if (y->left!=leaf) { x = y->left; } // pick y's one child (left-child)
else { x = y->right; } // (right-child)
x->parent = y->parent; // make y's child's parent be y's parent
if (y->parent==NULL) { root = x; } // if y is the root, x is now root
else { //
if (y == y->parent->left) { // decide y's relationship with y's parent
y->parent->left = x; // replace x as y's parent's left child
} else { //
y->parent->right = x; } // replace x as y's parent's left child
} //
if (y!=z) { // insert y into z's spot
z->key = y->key; // copy y data into z
z->stored = y->stored; //
z->heap_ptr = y->heap_ptr; //
} //
if (y->color==false) { deleteCleanup(x); } // do house-keeping to maintain balance
delete y; // deallocate y
y = NULL; // point y to NULL for safety
} //
return;
}
void vektor::deleteCleanup(element *x) {
element *w, *t;
while ((x != root) && (x->color==false)) { // until x is the root, or x is RED
if (x==x->parent->left) { // branch on x being a LEFT-CHILD
w = x->parent->right; // grab x's sibling
if (w->color==true) { // if x's sibling is RED
w->color = false; // color w BLACK (case 1)
x->parent->color = true; // color x's parent RED (case 1)
rotateLeft(x->parent); // left rotation on x's parent (case 1)
w = x->parent->right; // make w be x's right sibling (case 1)
}
if ((w->left->color==false) && (w->right->color==false)) {
w->color = true; // color w RED (case 2)
x = x->parent; // examine x's parent (case 2)
} else { //
if (w->right->color==false) { //
w->left->color = false; // color w's left child BLACK (case 3)
w->color = true; // color w RED (case 3)
t = x->parent; // store x's parent
rotateRight(w); // right rotation on w (case 3)
x->parent = t; // restore x's parent
w = x->parent->right; // make w be x's right sibling (case 3)
} //
w->color = x->parent->color; // make w's color = x's parent's (case 4)
x->parent->color = false; // color x's parent BLACK (case 4)
w->right->color = false; // color w's right child BLACK (case 4)
rotateLeft(x->parent); // left rotation on x's parent (case 4)
x = root; // finished work. bail out (case 4)
} //
} else { // x is RIGHT-CHILD
w = x->parent->left; // grab x's sibling
if (w->color==true) { // if x's sibling is RED
w->color = false; // color w BLACK (case 1)
x->parent->color = true; // color x's parent RED (case 1)
rotateRight(x->parent); // right rotation on x's parent (case 1)
w = x->parent->left; // make w be x's left sibling (case 1)
}
if ((w->right->color==false) && (w->left->color==false)) {
w->color = true; // color w RED (case 2)
x= x->parent; // examine x's parent (case 2)
} else { //
if (w->left->color==false) { //
w->right->color = false; // color w's right child BLACK (case 3)
w->color = true; // color w RED (case 3)
t = x->parent; // store x's parent
rotateLeft(w); // left rotation on w (case 3)
x->parent = t; // restore x's parent
w = x->parent->left; // make w be x's left sibling (case 3)
} //
w->color = x->parent->color; // make w's color = x's parent's (case 4)
x->parent->color = false; // color x's parent BLACK (case 4)
w->left->color = false; // color w's left child BLACK (case 4)
rotateRight(x->parent); // right rotation on x's parent (case 4)
x = root; // x is now the root (case 4)
}
}
}
x->color = false; // color x (the root) BLACK (exit)
return;
}
// Rotation Functions -------------------------------------------------------------------
void vektor::rotateLeft(element *x) {
element *y;
// do pointer-swapping operations for left-rotation
y = x->right; // grab right child
x->right = y->left; // make x's RIGHT-CHILD be y's LEFT-CHILD
y->left->parent = x; // make x be y's LEFT-CHILD's parent
y->parent = x->parent; // make y's new parent be x's old parent
if (x->parent==NULL) { root = y; } // if x was root, make y root
else { //
if (x == x->parent->left) // if x is LEFT-CHILD, make y be x's parent's
{ x->parent->left = y; } // left-child
else { x->parent->right = y; } // right-child
} //
y->left = x; // make x be y's LEFT-CHILD
x->parent = y; // make y be x's parent
return;
}
void vektor::rotateRight(element *y) {
element *x;
// do pointer-swapping operations for right-rotation
x = y->left; // grab left child
y->left = x->right; // replace left child yith x's right subtree
x->right->parent = y; // replace y as x's right subtree's parent
x->parent = y->parent; // make x's new parent be y's old parent
if (y->parent==NULL) { root = x; } // if y was root, make x root
else {
if (y == y->parent->right) // if y is RIGHT-CHILD, make x be y's parent's
{ y->parent->right = x; } // right-child
else { y->parent->left = x; } // left-child
}
x->right = y; // make y be x's RIGHT-CHILD
y->parent = x; // make x be y's parent
return;
}
// Display Function -------------------------------------------------------------------
// public
void vektor::printTree() {
tuple max = heap->returnMaximum();
std::cout << "\nTREE SIZE = " << support << std::endl;
std::cout << "HEAP SIZE = " << heap->heapSize() << std::endl;
std::cout << "MAXIMUM (" << max.j<< " " << max.m << ")" << std::endl;
std::cout << "# "; printSubTree(root);
return;
}
void vektor::printHeap() { heap->printHeap(); return; }
//private
void vektor::printSubTree(element *z) {
if (z==leaf) { return; }
else {
std::cout << "(" << z->key << " " << z->stored << " " << z->color << ") [" << z->heap_ptr << "]"<<std::endl;
std::cout << "L "; printSubTree(z->left); std::cout << std::endl;
std::cout << "R "; printSubTree(z->right); std::cout << std::endl;
}
return;
}
// ------------------------------------------------------------------------------------
#endif