-
Notifications
You must be signed in to change notification settings - Fork 1
/
script.Rmd
1026 lines (856 loc) · 50.6 KB
/
script.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Toward the general mechanistic model of liquid chromatographic retention"
author: "Agnieszka Kamedulska, Łukasz Kubik, Julia Jacyna, Wiktoria Struck-Lewicka, Michał J. Markuszewski, Paweł Wiczling"
adress: "Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland"
date: "`r format(Sys.Date())`"
output:
bookdown::html_document2:
toc: true
theme: flatly
toc_float: true
bibliography: "references/references.bib"
csl: "references/analytical-chemistry.csl"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,warning = FALSE, message = FALSE)
```
# Setup
**Load packages:**
```{r message=FALSE}
library(pracma)
library(dplyr)
library(ggplot2)
require(gridExtra)
library(GGally)
library(cmdstanr)
library(rstan)
library(knitr)
library(reshape2)
library(bayesplot)
library(posterior)
set.seed(10271998) ## not required but assures repeatable results
```
# Introduction
Large datasets of chromatographic retention times measurements are relatively easy to collect. It is particularly true when mixtures of compounds are analyzed under a series of gradient conditions using chromatographic techniques coupled with mass spectrometry detection. Such datasets carry a lot of information about chromatographic retention that, if extracted, can provide useful predictive information. In this work, we proposed a generative model that jointly explains the relationship between pH, organic modifier type, temperature, organic modifier content, and analyte retention based on liquid chromatography retention data of 187 small molecules.
# Data
The data was collected using a mixture of 300 analytes and 84 gradient liquid chromatography experiments. The experiments differed in gradient duration (30, 90, and 270 min) and pH of the mobile phase (from 2.5 to 10.5). Experiments were conducted in MeOH or ACN as organic modifiers and at two temperatures ($25^0C$ and $35^0C$).
The molecular structure of the analytes was converted from SMILE format to MDL mol format using OpenBabel. The input molecules were then analyzed for the presence of approxi-mately 204 functional groups and structural elements using Checkmol (version 0.5b N. Haider, University of Vienna, 2003-2018). Functional groups that were not present on any analyte and functional groups merging other simpler functional groups were excluded from the analysis. The lipophilicity (log P), dissociation constant (pKalit) and pKaerror ($\epsilon$) were added to the dataset. They were calculated using ACD/Labs program based on the structures of analytes generated from smiles strings.
## Load data
```{r}
data = read.csv('data/1-X_Bridge_Shield_C18_5cm.csv')
data$Mod = as.character(data$Mod)
data$Mod2 = ifelse(data$Mod=="MeOH",1,2) # MeOH = 1, ACN = 2
dataNames = read.csv('data/4-compounds-names.csv')
dataACD = read.csv('data/2-ACD-pKas-logP.csv')
functional_groups = read.csv('data/6-checkmol-functional-groups.csv')
functional_groups_names = read.csv('data/Legend-checkmol-functional-group-names.csv')
```
Predictors:
```{r}
pKaslit = dataACD[,3:7] # pKa values as predicted by ACD
pKasliterror = dataACD[,25:29] # pKa error as predicted by ACD
chargesA = abs(dataACD[,13:18]) # number of ionized groups (anions)
chargesB = abs(dataACD[,19:24]) # number of ionized groups (cations)
charges = chargesA+chargesB # absolute charge
groupsA = (chargesA[,2:5] - chargesA[,1:4]) # acidic group
groupsB = -(chargesB[,2:5] - chargesB[,1:4]) # basic group
R = rowSums(pKaslit<14) # number of dissociation steps
logP = dataACD$logP
functional_groups=functional_groups[,2:ncol(functional_groups)]
# combine nr of caroboxylic acid and carboxyalic acid salt functional groups
functional_groups[,76]=functional_groups[,76]+functional_groups[,77]
functional_groups[which(functional_groups[,202]>5.5),202] = 6; # heterocyclic compounds with more than 6 heterocycles are treated as if they have six
########
idx_included <- c(4,5,9,11,14,18,19,20,21,24,26,29,30,31,32,33,34,38,39,40,41,45,49,50,52,53,54,56,57,59,63,64,68,69,70,71,76,78,79,81,82,83,84,85,88,90,106,108,113,114,115,127,131,133,137,138,150,164,166,167)
functional_groups_names <- functional_groups_names[idx_included,]
functional_groups <- functional_groups[,idx_included]
########
```
## Prepare data
Measurments with low score were removed from dataset.
```{r}
data <- data[-which(data$Score<95),]
```
Analytes that have less than 42 measurements collected were also removed.
```{r}
ID_freq <- as.data.frame(table(data$METID))
ID <- ID_freq[which(ID_freq$Freq>42),1]
data <- data[which(data$METID %in% ID),]
rm(ID_freq,ID)
```
Only measurements with the highest score (if several) were left.
```{r}
data$METEXPID = data$METID*100+data$EXPID
data <- data %>%
group_by(METEXPID) %>%
slice(which.max(Score))
```
Dilevalol is repeated in the dataset, so it has been removed.
```{r}
data <- data[-which(data$METID==72),]
```
Only analytes with max two dissociation steps were analyzed.
```{r}
data = data[which(data$METID %in% which(R<=2)),]
```
Prepare predictors:
```{r}
maxR =2 # max two dissociation steps
pKaslit = pKaslit[which(dataACD$METID %in% data$METID),1:maxR] # pKa values as predicted by ACD
pKasliterror = pKasliterror[which(dataACD$METID %in% data$METID),1:maxR] # pKa error as predicted by ACD
chargesA = chargesA[which(dataACD$METID %in% data$METID),1:(maxR+1)] # number of ionized groups (anions)
chargesB = chargesB[which(dataACD$METID %in% data$METID),1:(maxR+1)] # number of ionized groups (cations)
charges = charges[which(dataACD$METID %in% data$METID),1:(maxR+1)] # absolute charge
groupsA = groupsA[which(dataACD$METID %in% data$METID),1:maxR] # acidic group
groupsB = groupsB[which(dataACD$METID %in% data$METID),1:maxR] # basic group
R = R[which(dataACD$METID %in% data$METID)] # number of dissociation steps
logP = logP[which(dataACD$METID %in% data$METID)] # logP
nrfungroups=functional_groups[which(dataACD$METID %in% data$METID),]
K <- ncol(nrfungroups)
```
## Plot data
Retention time for a few selected analytes:
```{r}
analyte_ID_sample <- c(8,9,17,33,58,180)
temp.labs <- c("25\u00b0C","35\u00b0C")
names(temp.labs) <- c('25','35')
mod.labs <- c("ACN","MeOH")
names(mod.labs) <- c('2','1')
for(i in 1:length(analyte_ID_sample)){
p <- ggplot(data[which(data$METID %in% analyte_ID_sample[i]),])+
geom_point(aes(x = pHs, y = RT, color = as.factor(tg)))+
facet_grid(Temp~Mod2, labeller = labeller(Temp=temp.labs,Mod2=mod.labs))+
labs(title=paste(dataNames$Name[analyte_ID_sample[i]]), x ="pH", y = "Retention time, min", color = "Gradient time, min")
print(p)
}
```
Raw data:
```{r}
ggplot(data, aes(x = pHs, y = RT, color = as.factor(tg), group=interaction(METID, tg)))+
geom_point(size=1,alpha=0.5)+ geom_line(size=.5,alpha=0.3)+
facet_grid(Temp~Mod, labeller = labeller(Temp=temp.labs))+
labs(title="", x ="pH", y = "Retention time", color = "Gradient time")
```
# Methods
## Model
Retention time $t_{R,z}$ under organic modifier gradient was calculated utilizing the well-known integral equation:
\begin{equation}
\int_0^{t_{R,z}-t_0-t_e}\frac{dt}{t_0\cdot ki_{i[z],m[z],b[z],T[z],j[z]} (t) }=1,
(\#eq:int)
\end{equation}
where $ki_{i[z],m[z],b[z],T[z],j[z]} (t)$ denotes instantaneous isocratic retention factor corresponding to the mobile phase composition at time t at column inlet for a particular measurement $z$, $t_0$ denotes column hold-up (dead) time and $t_e$ denotes extra column-time. On the other hand, the subscripts correspond, respectively: r - dissociation step, i - analyte, m - organic modifier (1 for MeOH, 2 for ACN), j - organic modifier content, b - pH (b=1..9, corresponding to nominal pH of 2.5, 3.3, 4.1, 4.9, 5.8, 6.8, 8.9, 9.7, 10.5, respectively), T - temperature (1-$25^0C$ and 2-$35^0C$).
The following function described the relationship between the isocratic retention factor and pH for an analyte with R dissociation steps and R+1 forms:
\begin{equation}
ki_{i,m,b,T,j}=\frac{k_{1,i,m,b,T,j}+\sum_{r=1}^R k_{r+1,i,m,b,T,j} \cdot 10^{r\cdot pH_{m,b,T,j}-\sum_{r=1}^R pKa_{r,i,m,j} } }{1+\sum_{r=1}^R 10^{r\cdot pH_{m,b,T,j}-\sum_{r=1}^R pKa_{r,i,m,j} } }.
\end{equation}
Further, it was assumed that $k_{r,i,m,b,T,j}$ depends on the organic modifier content, pH and temperature:
\begin{align}
logk_{r,m,i,b,T,j}&=logkw_{r,i}-\frac{S1_{r,i,m}\cdot (1+S2_m )\cdot \varphi_j}{1+S2_m \cdot \varphi_j }+dlogkT_i\cdot (T_t-25)/10+ \\ &+ |chargeA_{r,i} | \cdot apHA \cdot (pH_{m,b,T,j}-7)+ \\ &+ |chargeB_{r,i} | \cdot apHB \cdot (pH_{m,b,T,j}-7),
\end{align}
where $logkw_{r,i}$ represents logarithm of retention factors extrapolated to $0\%$ of organic modifier content for the neutral and ionized forms of analytes; $S1_{r,i,m}$ and $S2_m$ are the slopes in the Neue equation; $dlogkT_i$ denotes the change in logkw due to the increase in temperature by $10^0C$.In this parametrization of Neue equation, S1 parameter reflects the difference betweenlogarithm of retention factors corresponding to water ($0\%$ of organic modifier content) and MeOH or ACN ($100\%$ of organic modifier content) as eluents, apH denotes the pH effects (common for all analytes); $chargeA_{r,i}$ and $chargeB_{r,i}$ denote a charge state of an analyte ($chargeA_{r,i}=\{0, -1, -2, \ldots\}$ for acids, and $chargeB_{r,i}=\{0, -1, -2, \ldots\}$ for bases), and $|.|$ denotes absolute value.
The relationship between pH and the content of organic modifier for various combinations of organic modifier and buffer was experimentally determined prior to the chromatographic analysis. In this settings pH and consequently pKa values correspond to ${_w^s}pH$ or ${_w^s}pKa$ scale. The obtained relationships was then described using quadratic equations for each nominal pH, temperature and organic modifier (36 equations in total):
\begin{equation}
pH_{m,b,T,j}=pHo_{m,b,T}+\alpha 1_{m,b,T}\cdot \varphi_j+\alpha 2_{m,b,T}\cdot {\varphi_j}^2,
\end{equation}
where $pHo_{m,b,T}$,$\alpha 1_{m,b,T}$ and $\alpha 2_{m,b,T}$ are regression coefficient specific for a given condition.
Further a linear relationship between pKa values and the organic modifier content was assumed:
\begin{equation}
pKa_{r,i,m,j}=pKaw_{r,i}+\alpha_{r,i,m}\cdot\varphi_j
\end{equation}
where $pKa_{r,i,m,j}$ denotes dissociationconstant of an analyte in given chromatographic conditions, $pKaw_{r,i}$ denotes aqueous pKa, and $\alpha_{r,i,m}\cdot\varphi_j$ denotes the slope due to changes in organic modifier.The linear relationshipis generally valid for $\varphi_j<0.8$.
### The analyte-level model
The $logkw_{r,i}$, $S1_{r,i,m}$ parameters were calculated based on retention parameters of the neutral form of an analyte, and the difference in logkw and S1 values between the neutral and ionized form of an analyte.
\begin{align}
&logkw_{r,i}=logkwN_i+|chargeA_{r,i} |\cdot dlogkwA_{r,i}+ |chargeB_{r,i} |\cdot dlogkwB_{r,i} \\
&S1_{r,i,m=1}=S1mN_i+|chargeA_{r,i} |\cdot dS1mA_{r,i}+ |chargeB_{r,i} |\cdot dS1mB_{r,i} \\
&S1_{r,i,m=2}=S1aN_i+|chargeA_{r,i} |\cdot dS1aA_{r,i}+ |chargeB_{r,i} |\cdot dS1aB_{r,i}
\end{align}
Similarly the $\alpha$ parameters were assumed to be different for acids and bases:
\begin{align}
&\alpha_{r,i,m=1}=\alpha mA_{r,i}\cdot groupA_{r,i}+\alpha mB_{r,i} \cdot groupB_{r,i}\\
&\alpha_{r,i,m=2}=\alpha aA_{r,i}\cdot groupA_{r,i}+\alpha aB_{r,i} \cdot groupB_{r,i}
\end{align}
where $groupA_{r,i}$ and $groupB_{r,i}$ denote the type of dissociating group ($groupA_{r,i}=1$ if acidic and 0 otherwise, $groupB_{r,i}=1$ if basic and 0 otherwise).
The second-level part of the model describes the relationship between analyte-specific parameters and predictors. The pa-rameters for the neutral form of an analyte were assumed to be correlated and related to log P and functional groups:
\begin{align}
\begin{bmatrix}
logkwN_i\\
S1mN_i\\
S1aN_i
\end{bmatrix} \sim
MNV \begin{pmatrix}
\theta_{\log kwN}+\beta_{\log kwN}\cdot (\log P_i -2.2)+\pi_{\log kwN}\cdot X & \\
\theta_{S1mN}+\beta_{S1mN}\cdot (\log P_i -2.2)+\pi_{S1mN}\cdot X & \Omega \\
\theta_{S1aN}+\beta_{S1aN}\cdot (\log P_i -2.2)+\pi_{S1aN}\cdot X &
\end{pmatrix}
\end{align}
where *MVN* denotes the multivariate normal distribution; $\theta_{\log kwN}$, $\theta_{S1mN}$ and $\theta_{S1aN}$ are the mean values of individual chromatographic parameters that correspond to a typical analyte with logP=2.2, with no functional groups at $25^0C$; $\beta_{\log kwN}$, $\beta_{S1mN}$ and $\beta_{S1aN}$ are regression coefficients between the individual chromatographic parameters and the $\log P_i$ values; $\pi_i$ is an effect of each functional group on chromatographic parameters with separate values for $\log kwN$, $S1mN$ and $S1aN$. $\pi$ represents the difference in chromatographic parameters due to the presence of a functional group, assuming all else being equal. $X$ is a matrix of size 187 x 60 that decodes the number of functional groups present on each analyte.
## Format data for Stan
### Initialize variables and parameters
The numerical solution of this integral equation \@ref(eq:int) was carried out using method of steps with 4 and 10 steps for methanol and acetonitrile gradients using method proposed by Nikitas et al. @Nikitas2002
```{r}
nObs = length(data$METID)
nAnalytes = length(unique(data$METID))
npH = length(unique(data$pH))
analyte=match(data$METID, unique(data$METID))
pHid=match(data$pH, unique(data$pH))
steps=4*(1-data$Mod2) + 10*(data$Mod2)
hplcparam=cbind(data$tg,data$td,data$to,data$te,data$fio,data$fik,data$Mod2+1,
data$pHo,data$alpha1,data$alpha2,(data$Temp-25)/10)
mod=data$Mod2
logPobs=logP
trobs=data$RT
```
The next step was to create Stan data set:
```{r}
datastruct = with(data,
list(nAnalytes=nAnalytes,
nObs=nObs,
npH=npH,
analyte=match(data$METID, unique(data$METID)),
pHid=match(data$pH, unique(data$pH)),
steps=4*(1-data$Mod2) + 10*(data$Mod2),
hplcparam=cbind(data$tg,data$td,data$to,data$te,data$fio,data$fik,data$Mod2+1,data$pHo,
data$alpha1,data$alpha2,(data$Temp-25)/10),
mod=data$Mod2,
logPobs=logP,
maxR=maxR,
R=R,
pKaslit=pKaslit,
pKasliterror=pKasliterror,
groupsA=groupsA,
groupsB=groupsB,
chargesA=chargesA,
chargesB=chargesB,
trobs=data$RT,
K=K,
nrfungroups=nrfungroups))
stan_rdump(c("nAnalytes",
"nObs",
"npH",
"analyte",
"pHid",
"steps",
"hplcparam",
"mod",
"logPobs",
"maxR",
"R",
"pKaslit",
"pKasliterror",
"groupsA",
"groupsB",
"chargesA",
"chargesB",
"K",
"nrfungroups"),
file="stan/model.data.R")
```
and initialize the values for each variable in each chain:
```{r}
init <- function(){
list( logkwHat = rnorm(1,2.2,2),
S1mHat = rnorm(1,4,1),
S1aHat = rnorm(1,5,1),
dlogkwHat = rnorm(2,-1,0.125),
dSmHat = rnorm(2,0,0.5),
dSaHat = rnorm(2,0,0.5),
S2mHat = rlnorm(1,log(0.2),0.05),
S2aHat = rlnorm(1,log(2),0.05),
beta = rnorm(3,c(0.75,0.5,0.5),0.125),
alphaAHat = rnorm(2,2,0.2),
alphaBHat = rnorm(2,-1,0.2),
dlogkTHat = rnorm(1,-0.087,0.0022),
omegadlogkT = rlnorm(1,log(0.022),0.2),
apH = rnorm(2,c(-0.0238,0.0851),c(0.0010, 0.0009)),
sigma = rlnorm(nAnalytes,log(0.2),0.2),
msigma = rlnorm(1,log(0.2),0.2),
ssigma = rlnorm(1,log(0.5),0.2),
omega = c(1,1,1)*exp(rnorm(3,0, 0.5)),
rho1 = matrix(c(1, 0.75, 0.75,
0.75, 1, 0.75,
0.75, 0.75, 1),3,3,byrow=TRUE),
L2 = matrix(c(1, 0,0.75, 0.6614),2,2,byrow=TRUE),
kappa = c(0.25,0.25,0.25)* exp(rnorm(3,0, 0.2)),
tau = c(0.5,0.5)*exp(rnorm(2,0, 0.2)),
pilogkw = rep(0,K),
piS1m = rep(0,K),
piS1a = rep(0,K),
sdpi = c(0.1,0.1,0.1)* exp(rnorm(3,0,0.1)),
param = c(2+logP, 4*matrix(1,nAnalytes,1)+0.5*logP,
5*matrix(1,nAnalytes,1)+0.5*logP),
dlogkwA = -1*matrix(1,nAnalytes,maxR+1),
dlogkwB = -1*matrix(1,nAnalytes,maxR+1),
dSmA = matrix(0,nAnalytes,maxR+1),
dSmB = matrix(0,nAnalytes,maxR+1),
dSaA = matrix(0,nAnalytes,maxR+1),
dSaB = matrix(0,nAnalytes,maxR+1),
dlogkT = rnorm(nAnalytes,-0.0868,0.0217),
pKaw = pKaslit,
etaStd1 = matrix(0,2,nAnalytes),
etaStd2 = matrix(0,2,nAnalytes)
)
}
```
## Fitting the model
```{r eval = FALSE}
mod1 <- cmdstan_model("hplc-gra-redsum.stan")
fit <- mod1$sample(
data = datastruct,
output_dir = "Tmpstan1",
init = init,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
parallel_chains = 4,
refresh = 500,
adapt_delta=0.9
)
```
```{r eval = FALSE}
mod_prior <- cmdstan_model("hplc-gra-redsum-priors.stan")
fit_prior <- mod_prior$sample(
data = datastruct,
output_dir = "Tmpstan2",
init = init,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
parallel_chains = 4,
refresh = 500,
adapt_delta=0.9
)
```
Loading saved files:
```{r}
fit <- cmdstanr::as_cmdstan_fit(c('C:/Users/agnie/Desktop/HPLC_2022/X_Bridge_Shield_C18/csv_files/csv/Feq4Okp2JaerpsFyxOxYk2-output-1.csv',
'C:/Users/agnie/Desktop/HPLC_2022/X_Bridge_Shield_C18/csv_files/csv/Feq4Okp2JaerpsFyxOxYk2-output-2.csv',
'C:/Users/agnie/Desktop/HPLC_2022/X_Bridge_Shield_C18/csv_files/csv/Feq4Okp2JaerpsFyxOxYk2-output-3.csv',
'C:/Users/agnie/Desktop/HPLC_2022/X_Bridge_Shield_C18/csv_files/csv/Feq4Okp2JaerpsFyxOxYk2-output-4.csv'))
```
# Results
## Priors
```{r include=TRUE, eval = FALSE}
bayesplot::mcmc_areas(fit_prior$draws(c("logkwHat","S1mHat","S1aHat")))
bayesplot::mcmc_areas(fit_prior$draws(c("dlogkwHat","dSmHat","dSaHat")))
bayesplot::mcmc_areas(fit_prior$draws(c("S2mHat","S2aHat")))
bayesplot::mcmc_areas(fit_prior$draws(c("beta")))
bayesplot::mcmc_areas(fit_prior$draws(c("alphaAHat","alphaBHat"))
bayesplot::mcmc_areas(fit_prior$draws(c("dlogkTHat","omegadlogkT")))
bayesplot::mcmc_areas(fit_prior$draws(c("apH")))
bayesplot::mcmc_areas(fit_prior$draws(c("msigma","ssigma")))
bayesplot::mcmc_areas(fit_prior$draws(c("omega")))
bayesplot::mcmc_areas(fit_prior$draws(c("rho1","L2")))
bayesplot::mcmc_areas(fit_prior$draws(c("kappa")))
bayesplot::mcmc_areas(fit_prior$draws(c("tau")))
```
## Posteriors
```{r include=TRUE}
bayesplot::mcmc_areas(fit$draws(c("logkwHat","S1mHat","S1aHat")))
bayesplot::mcmc_areas(fit$draws(c("dlogkwHat","dSmHat","dSaHat")))
bayesplot::mcmc_areas(fit$draws(c("S2mHat","S2aHat")))
bayesplot::mcmc_areas(fit$draws(c("beta")))
bayesplot::mcmc_areas(fit$draws(c("alphaAHat","alphaBHat")))
bayesplot::mcmc_areas(fit$draws(c("dlogkTHat","omegadlogkT")))
bayesplot::mcmc_areas(fit$draws(c("apH")))
bayesplot::mcmc_areas(fit$draws(c("msigma","ssigma")))
bayesplot::mcmc_areas(fit$draws(c("omega")))
bayesplot::mcmc_areas(fit$draws(c("rho1","L2")))
bayesplot::mcmc_areas(fit$draws(c("kappa")))
bayesplot::mcmc_areas(fit$draws(c("tau")))
```
## Summary of model parameters
```{r}
fit$print(c("logkwHat","S1mHat","S1aHat", "dlogkwHat", "dSmHat", "dSaHat", "S2mHat", "S2aHat", "beta", "alphaAHat", "alphaBHat","dlogkTHat","omegadlogkT","apH","msigma","ssigma","omega","rho1","L2","kappa","tau"), max_rows=50)
```
## Extract sample
```{r}
draws_df <- fit$draws(format = "df")
```
## Goodness of Fit Plots, GOF
```{r}
tr_Cond_Mean <- apply(draws_df[,which(colnames(draws_df) %in% grep("trCond", names(draws_df), value = TRUE))], MARGIN = 2, FUN = mean)
tr_Pred_Mean <- apply(draws_df[,which(colnames(draws_df) %in% grep("trPred", names(draws_df), value = TRUE))], MARGIN = 2, FUN = mean)
plot_popul <- ggplot()+geom_point(aes(tr_Pred_Mean,data$RT),col="red")+
labs(x =expression("Population predicted retention time (tR"[z]*")"), y = expression("Observed retention time (tRobs"[z]*")"))+
xlim(0,350)+ylim(0,350) + geom_line(aes(seq(0,350,by=0.1),seq(0,350,by=0.1)),size=1)
plot_indiv <- ggplot()+geom_point(aes(tr_Cond_Mean,data$RT),col="red")+
labs(x =expression("Individual predicted retention time (tR"[z]*")"), y = expression("Observed retention time (tRobs"[z]*")"))+
xlim(0,350)+ylim(0,350) + geom_line(aes(seq(0,350,by=0.1),seq(0,350,by=0.1)),size=1)
plot_resid <- ggplot()+geom_point(aes(data$EXPID,data$RT-tr_Cond_Mean),col="red")+
labs(x ="Experiment ID", y = expression("Residuals (tRobs"[z]*" - tR"[z]*")"))+
geom_line(aes(seq(0,84,by=0.1),rep(0,841)),size=1)+
xlim(0,84)+ylim(-50,50)
grid.arrange(plot_popul, plot_indiv,plot_resid, ncol=1)
```
## Posterior distribution
```{r}
parameters <- c("logkwHat","S1mHat","S1aHat","S2mHat","S2aHat","dlogkwHat[1]","dlogkwHat[2]","dSmHat[1]","dSmHat[2]",
"dSaHat[1]","dSaHat[2]","dlogkTHat","beta[1]","beta[2]","beta[3]","alphaAHat[1]","alphaAHat[2]",
"alphaBHat[1]","alphaBHat[2]","omega[1]","omega[2]","omega[3]","omegadlogkT","kappa[1]","kappa[2]","kappa[3]",
"tau[1]","tau[2]","apH[1]","apH[2]","msigma","ssigma")
data_to_plot_par <- draws_df[,which(colnames(draws_df) %in% parameters)]
lab <- c(expression(theta["logkwN"]),
expression(theta["S1mN"]),expression(theta["S1aN"]),
expression(theta["S2m"]),expression(theta["S2a"]),
expression(theta["dlogkwA"]),expression(theta["dlogkwB"]),
expression(theta["dSmA"]),expression(theta["dSmB"]),
expression(theta["dSaA"]),expression(theta["dSaB"]),
expression(theta["dlogkT"]),
expression(beta["logkwN"]),expression(beta["S1mN"]),
expression(beta["S1aN"]),
expression(alpha["mA"]),expression(alpha["aA"]),
expression(alpha["mB"]),expression(alpha["aB"]),
expression(omega["logkwN"]),expression(omega["S1mN"]),
expression(omega["S1aN"]),expression(omega["dlogkT"]),
expression(kappa["logkwN"]),expression(kappa["S1mN"]),
expression(kappa["S1aN"]),
expression(tau["m"]),expression(tau["a"]),
expression(apH["A"]),expression(apH["B"]),
expression(m[sigma]),expression(s[sigma]))
library(reshape2)
pp <- melt(data_to_plot_par)
ggplot(data = pp, aes(x=variable, y=value)) + geom_boxplot(aes(fill=variable))+ coord_flip()+
theme(legend.position = "none")+ scale_x_discrete(labels=rev(lab),limits=rev)+
labs(y="Marginal posterior distributions",x="")
```
## Individual Parameters - Neutral Form
```{r}
param <- apply(draws_df[,which(colnames(draws_df) %in% grep("param", names(draws_df), value = TRUE))], MARGIN = 2, FUN = mean)
param <- melt(param)
param1 <- param[1:nAnalytes,]
param2 <- param[(nAnalytes+1):(2*nAnalytes),]
param3 <- param[(2*nAnalytes+1):(3*nAnalytes),]
data_to_plot_param <- cbind(dataACD$logP[which(dataACD$METID %in% data$METID)],param1,param2,param3)
colnames(data_to_plot_param) <- c(expression('logP'[i]),expression('logkwN'[i]),expression('S1mN'[i]),expression('S1aN'[i]))
ggpairs(as.data.frame(data_to_plot_param), columnLabels = colnames(data_to_plot_param) ,
labeller = "label_parsed",upper = list(continuous = "points"))
```
## Effect of dissociation
```{r}
dlogkwA <- apply(draws_df[,which(colnames(draws_df) %in% grep("dlogkwA", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dlogkwA <- melt(dlogkwA)[,1]
dlogkwB <- apply(draws_df[,which(colnames(draws_df) %in% grep("dlogkwB", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dlogkwB <- melt(dlogkwB)[,1]
dlogkwN <- (dlogkwA*melt(chargesA)[,2]+dlogkwB*melt(chargesB)[,2])/melt(charges)[,2]
dS1mA <- apply(draws_df[,which(colnames(draws_df) %in% grep("dSmA", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dS1mA <- melt(dS1mA)[,1]
dS1mB <- apply(draws_df[,which(colnames(draws_df) %in% grep("dSmB", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dS1mB <- melt(dS1mB)[,1]
dS1m <- (dS1mA*melt(chargesA)[,2]+dS1mB*melt(chargesB)[,2])/melt(charges)[,2]
dS1aA <- apply(draws_df[,which(colnames(draws_df) %in% grep("dSaA", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dS1aA <- melt(dS1aA)[,1]
dS1aB <- apply(draws_df[,which(colnames(draws_df) %in% grep("dSaB", names(draws_df), value = TRUE)[1:((maxR+1)*nAnalytes)])], MARGIN = 2, FUN = mean)
dS1aB <- melt(dS1aB)[,1]
dS1a <- (dS1aA*melt(chargesA)[,2]+dS1aB*melt(chargesB)[,2])/melt(charges)[,2]
chargesAB <- melt(chargesA-chargesB)[,2]
chargesAB_n <- ifelse(chargesAB<0,"anions",ifelse(chargesAB>0,"cations",ifelse(chargesAB==0,"zwitterions",NaN)))
data_to_plot_dis <- cbind(dlogkwN,dS1m,dS1a,chargesAB_n)
data_to_plot_dis <- as.data.frame(data_to_plot_dis[!is.nan(data_to_plot_dis[,1]),])
data_to_plot_dis[, 1:3] <- sapply(data_to_plot_dis[, 1:3], as.numeric)
ggpairs(data_to_plot_dis,columns = 1:3, columnLabels = c("dlogkw[r.i]","dS1m[r.i]","dS1a[r.i]"),
labeller = "label_parsed",
aes(color = chargesAB_n, alpha = 0.5),
upper = list(continuous = "points"))
```
## Sigmas
```{r}
hist(melt(apply(log(draws_df[,which(colnames(draws_df) %in% grep("sigma", names(draws_df), value = TRUE)[3:(nAnalytes+2)])]),
MARGIN = 2, FUN = mean))[,1],main="",xlab=expression(sigma[i]),probability = TRUE)
```
## Effect of temperature
```{r}
hist(melt(apply(draws_df[,which(colnames(draws_df) %in% grep("dlogkT", names(draws_df), value = TRUE)[3:(nAnalytes+2)])],
MARGIN = 2, FUN = mean))[,1],main="",xlab=expression("dlogkT"[i]),probability = TRUE)
```
## Individual predictions based on preliminary data
```{r}
Mod_2 = rep(rep(c(2,1),each=3*2),9*nAnalytes)
pHo_1 <- c(2.494082, 2.514011, 2.507084, 2.483992, #pH=1 - 2.5
3.402085, 3.431361, 3.428675, 3.398003, #pH=2 - 3.3
6.843702, 7.331219, 7.356560, 6.810815, #pH=6 - 6.8
10.502949, 10.195814, 10.190990, 10.517369, #pH=9 - 10.5
4.938005, 4.957298, 4.947208, 4.928445, #pH=4 - 4.9
5.777102, 5.791394, 5.838224, 5.817305, #pH=5 - 5.8
8.875880, 8.568016, 8.580016, 8.890530, #pH=7 - 8.9
9.620316, 9.319468, 9.329717, 9.628639, #pH=8 - 9.7
4.172955, 4.202902, 4.178003, 4.149028) #pH=3 - 4.1
alpha1_1 <- c(0.57873300, 0.44117918, 0.54090500, 0.42792546, #pH=1
0.82783763, 0.73291100, 0.56586591, 0.56910464, #pH=2
5.60764807, 4.37780336, 2.76084717, 5.24573418, #pH=6
-0.93599336,-1.48119846,-0.83424655,-0.67501446, #pH=9
1.58296990, 1.52743172, 0.95662418, 0.95381600, #pH=4
1.82029346, 1.87782264, 0.13722716, 0.08902752, #pH=5
-0.91137517,-1.11923744,-1.19447681,-0.85834636, #pH=7
-0.38487309,-0.49551890,-0.91021527,-0.61291100, #pH=8
0.34560244, 0.24743708, 0.56910464, 0.59363500) #pH=3
alpha2_1 <- c(1.74974831, 1.98438471, 1.37875120, 1.54409339, #pH=1
1.67822641, 1.78324944, 1.49943237, 1.52847810, #pH=2
-4.36394988,-4.14747778,-1.66462461,-3.89936811, #pH=6
-0.29501981, 0.60115669,-0.08490950,-0.16084395, #pH=9
1.32742851, 1.27379244, 1.46813752, 1.56200064, #pH=4
0.42009211, 0.06698083, 2.02037057, 2.27064368, #pH=5
-0.43138053,-0.22808182, 0.44239049, 0.04022705, #pH=7
-1.05481418,-1.03917747, 0.13854557,-0.18324944, #pH=8
2.30183142, 2.37780872, 1.52847810, 1.52625040) #pH=3
nObs2 = 9*3*2*2*nAnalytes
analyte2=rep(1:nAnalytes,each=9*3*2*2)
pHid2=rep(rep(c(1,2,6,9,4,5,7,8,3),each=12),nAnalytes)
pHs_qq=rep(rep(c(2.5,3.3,6.8,10.5,4.9,5.8,8.9,9.7,4.1),each=12),nAnalytes)
steps2=4*(1-Mod_2) + 10*(Mod_2)
hplcparam2=cbind(rep(c(30,90,270),by=9*2*2*nAnalytes),rep(2.1,by=9*3*2*2*nAnalytes),rep(0.532,by=9*3*2*2*nAnalytes),
rep(0.04,by=9*3*2*2*nAnalytes),rep(0.05,by=9*3*2*2*nAnalytes),rep(0.8,by=9*3*2*2*nAnalytes),
Mod_2,
rep(rep(pHo_1,each=3),nAnalytes),rep(rep(alpha1_1,each=3),nAnalytes),rep(rep(alpha2_1,each=3),nAnalytes),
(rep(c(25,25,25,35,35,35,35,35,35,25,25,25),9*nAnalytes)-25)/10)
mod2=Mod_2
stan_rdump(c("nAnalytes",
"nObs",
"npH",
"analyte",
"pHid",
"steps",
"hplcparam",
"mod",
"logPobs",
"maxR",
"R",
"pKaslit",
"pKasliterror",
"groupsA",
"groupsB",
"chargesA",
"chargesB",
"K",
"nrfungroups",
"trobs",
"nObs2",
"analyte2",
"pHid2",
"steps2",
"hplcparam2",
"mod2"),
file="stan/model_qq.data.R")
```
```{r eval = FALSE}
model_qq <- cmdstan_model("stan/hplc-gra-redsum_qsrr_qq.stan")
fit_qq <- model_qq$generate_quantities(fit,data = "stan/model_qq.data.R",seed = 123)
```
```{r}
#fit_qq$save_object(file = "stan_fit/fit_qq.RDS")
fit_qq <- readRDS("stan_fit/fit_qq.RDS")
draws_qq_df <- fit_qq$draws(format = "df")
```
```{r}
tr_Cond <- apply(draws_df[,which(colnames(draws_df) %in% grep("trCond", names(draws_df), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
tr_Pred <- apply(draws_df[,which(colnames(draws_df) %in% grep("trPred", names(draws_df), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
df <- cbind(rep("df",nrow(data)),data$METID,as.data.frame(t(tr_Cond)),as.data.frame(t(tr_Pred)),data$RT,data$pHs,data$tg,data$Temp,data$Mod2)
colnames(df) <- c("dataset","METID","trCond_Low","trCond_Median","trCond_High","trPred_Low","trPred_Median","trPred_High","RT","pHs","tg","Temp","Mod")
tr_qq_Cond <- apply(draws_qq_df[,which(colnames(draws_qq_df) %in% grep("trCond", names(draws_qq_df), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
tr_qq_Pred <- apply(draws_qq_df[,which(colnames(draws_qq_df) %in% grep("trPred", names(draws_qq_df), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
df_qq <- cbind(rep("df_qq",3*9*2*2*nAnalytes),rep(unique(data$METID),each=12*9),
as.data.frame(t(tr_qq_Cond)),as.data.frame(t(tr_qq_Pred)),
rep(NA,by=3*9*2*2*nAnalytes),
pHs_qq,rep(c(30,90,270),by=9*2*2*nAnalytes),
rep(c(25,25,25,35,35,35,35,35,35,25,25,25),9*nAnalytes),mod2)
colnames(df_qq) <- c("dataset","METID","trCond_Low","trCond_Median","trCond_High","trPred_Low","trPred_Median","trPred_High","RT","pHs","tg","Temp","Mod")
df_all <- rbind(df,df_qq)
for(i in 1:length(analyte_ID_sample)){
df_all1 <- df_all[which(df_all$METID %in% analyte_ID_sample[i]),]
p <- ggplot(df_all1)+
geom_point(data=df_all1[which(df_all1$dataset=="df"),],aes(x = pHs, y = RT, color = as.factor(tg)))+
geom_line(data=df_all1[which(df_all1$dataset=="df_qq"),],aes(x = pHs, y = trCond_Median, color = as.factor(tg)))+
geom_ribbon(data=df_all1[which(df_all1$dataset=="df_qq"),],aes(x = pHs, ymin = trCond_Low, ymax = trCond_High, color = as.factor(tg)), alpha = 0.25)+
facet_grid(Temp~Mod,labeller = labeller(Temp=temp.labs,Mod=mod.labs))+
labs(title=paste(dataNames$Name[analyte_ID_sample[i]]), x ="pH", y = "Retention time, min", color = "Gradient time, min")
print(p)
}
for(i in 1:length(analyte_ID_sample)){
df_all1 <- df_all[which(df_all$METID %in% analyte_ID_sample[i]),]
p <- ggplot(df_all1)+
geom_point(data=df_all1[which(df_all1$dataset=="df"),],aes(x = pHs, y = RT, color = as.factor(tg)))+
geom_line(data=df_all1[which(df_all1$dataset=="df_qq"),],aes(x = pHs, y = trPred_Median, color = as.factor(tg)))+
geom_ribbon(data=df_all1[which(df_all1$dataset=="df_qq"),],aes(x = pHs, ymin = trPred_Low, ymax = trPred_High, color = as.factor(tg)), alpha = 0.25)+
facet_grid(Temp~Mod,labeller = labeller(Temp=temp.labs,Mod=mod.labs))+
labs(title=paste(dataNames$Name[analyte_ID_sample[i]]), x ="pH", y = "Retention time, min", color = "Gradient time, min")
print(p)
}
```
## Limited data predictions
```{r}
metidx = c(8, 9, 17, 33, 58, 180)
expidx = c(10, 58, 38)
#hplcparam_sim((ismember(hplcparam_sim.expid,expidx)),:)
#idx = find(ismember(unique(data.METID),metidx));
# Predictions based on selected measurments
data_red <- data[which(data$METID %in% metidx & data$EXPID %in% expidx),]
nObs = length(data_red$METID)
nAnalytes = length(unique(data_red$METID))
npH = length(unique(data_red$pH))
analyte=match(data_red$METID, unique(data_red$METID))
pHid=match(data_red$pH, unique(data_red$pH))
steps=4*(1-data_red$Mod2) + 10*(data_red$Mod2)
hplcparam=cbind(data_red$tg,data_red$td,data_red$to,
data_red$te,data_red$fio,data_red$fik,
data_red$Mod2+1,data_red$pHo,
data_red$alpha1,data_red$alpha2,
(data_red$Temp-25)/10)
mod=data_red$Mod2+1
R=R[which(unique(data$METID) %in% metidx)]
pKaslit=pKaslit[which(unique(data$METID) %in% metidx),]
pKasliterror=pKasliterror[which(unique(data$METID) %in% metidx),]
groupsA=groupsA[which(unique(data$METID) %in% metidx),]
groupsB=groupsB[which(unique(data$METID) %in% metidx),]
chargesA=chargesA[which(unique(data$METID) %in% metidx),]
chargesB=chargesB[which(unique(data$METID) %in% metidx),]
trobs=data_red$RT
K=ncol(functional_groups)
nrfungroups=nrfungroups[which(unique(data$METID) %in% metidx),]
# Functional group effects
pilogkw = matrix(c(0.0889968428595548, 0.177471413490907,0.220089668251250, 0.105968524228844,-0.0771815195591502, 0.160325195284994,
-0.0581799102143500, 0.185308852260919,-0.0201489460052250, 0.179988182045063,0.0307316725699825, 0.188612904909725,
0.0543621082853000, 0.120183861760715,0.0324279323432999, 0.182588420787220,-0.0559667868367500, 0.171610973282035,
-0.0415813552520000, 0.127933551854748,-0.0180587034066250, 0.180318487129278,-0.233834863103000, 0.119557887197776,
0.180337220964750, 0.0846757399085927,0.222922921009750, 0.108777856957033,-0.000501192305000001, 0.131647570428321,
0.0498735976307500, 0.146940875915100,0.0513917052316499, 0.132389150840822,0.287699338262500, 0.111017971807696,
0.124327135344325, 0.0609063261016972,0.125937048681750, 0.173498858874232,-0.0935018665000727, 0.119702270923968,
0.110744323446425, 0.155684606307299,0.0988604463651751, 0.154538855196298,0.0143156623489500, 0.102276959128834,
0.172177835703000, 0.132273861408408,-0.0643482931813277, 0.149964201815220,-0.0329482021954501, 0.151168437643277,
0.423955068749999, 0.0885875918043772,0.0993908985895301, 0.114247980097966,0.0298201324193250, 0.182464612224784,
0.262131928062750, 0.162515143173171,0.125264699990745, 0.139539749944581,0.108892420331975, 0.106826055058630,
0.0343301783096001, 0.0934536247436581,0.143383295807107, 0.151605033204463,-0.101369205041500, 0.147919735532570,
-0.0913377286217774, 0.104111219920434,0.114594420303100, 0.100462396653018,0.137289133807375, 0.172043654639451,
-0.159722669718600, 0.165543368574018,-0.100180180674275, 0.123600934733901,-0.172452433209500, 0.143307896625322,
-0.151108470096749, 0.161005113067004,-0.0716024258115749, 0.147898507889060,-0.410842843382499, 0.140738135836306,
0.000433213414249995, 0.175875588073256,0.0476187438239748, 0.0922153601330513,0.00506268302377501, 0.182678051432591,
0.0826298697423501, 0.167920419044898,-0.00806687702650001, 0.182219831488352,0.0879922134395501, 0.181998003635673,
0.160473326353290, 0.166060658904532,-0.00545335401175000, 0.180062747952312,0.0491115158007500, 0.148776460100283,
-0.0790377194335501, 0.152635415304690,0.0804110515920003, 0.186671844754081,0.0556822471320525, 0.132266474042620,
0.100240845222148, 0.109456712990130,-0.0393841636146501, 0.187559603506411,0.0723208501620699, 0.182642665955130),60,2,byrow=TRUE)
piS1m=matrix(c(0.0217000559264250, 0.154957706487726,0.106134236236000, 0.103414295235257,0.0778085607394998, 0.145230648283856,
0.0655436159672500, 0.159787278072099,0.00522921446779999, 0.160644821033471,-0.00690202034879999, 0.169823560721250,
0.208429806273775, 0.116246517233544,-0.0118745781861125, 0.159477133102472,0.100122203701200, 0.154500566094926,
0.0644238794738526, 0.120777670402343,0.0397175303883750, 0.156209567867953,-0.00329354588375000, 0.124583226054949,
0.197713133829750, 0.0897640046925205,0.0623477881566750, 0.108635663842868,-0.00735698785372498, 0.133018819334084,
0.0655856143230000, 0.135373389640694,-0.0676902528240000, 0.127087050009747,0.147878240230000, 0.110581200578122,
0.244202023450001, 0.0675280219418342,-0.0442913221941248, 0.150922383973941,0.173501527884500, 0.113705291932268,
-0.0365348548789000, 0.138043420187343,-0.105239627925450, 0.145407961486631,0.0317578123057000, 0.101285112390947,
-0.00892374372052501, 0.119905477353245,0.0149970674375000, 0.135600616114253,-0.0448266668852501, 0.130958829322927,
0.301479356809751,0.0906550705894951,0.0594514271803000, 0.112569001623926,0.0431497501975751, 0.168617953959701,
0.0485574303400775, 0.140023445586041,0.0769855942661501, 0.128243679718009,0.145813218572550, 0.107365014749321,
0.0279250855683500, 0.0932651788037824,0.0303524569695750, 0.129411974521634,0.178533757770950, 0.139406109232078,
-0.0842705905559500, 0.104531826953638,0.154872312716500, 0.0996907059774276,0.132141557586992, 0.152110361897885,
-0.0405228301690000, 0.157263720169405,-0.140858090681658, 0.118152826876805,0.156149595732875, 0.133036941759429,
0.134440491507875, 0.138817968012840,0.139985368892750, 0.133760811454953,-0.201352129304250, 0.130151112570089,
0.103264498479375, 0.158431454882315,0.176517505312900, 0.107967439587904,-0.142850163107775, 0.176517622964707,
0.0640129549986750, 0.150302065640594,0.0308196197489499, 0.163472973013075,0.0309345101660500, 0.154618187499486,
0.0439905966312500, 0.141494845812313,0.0335519910824000, 0.160873678513828,-0.0415121552322499, 0.129682894598821,
0.0865000891908250, 0.135453887389572,-0.0418402961457725, 0.162897804074594,0.107768039835750, 0.128110626150208,
0.144802405712934, 0.113721157394385,0.193430843130750, 0.169572416239922,0.0939918425327248, 0.162166456557561),60,2,byrow=TRUE)
piS1a =matrix(c(0.0698588119030001, 0.266997955870408,-0.0144656829931750, 0.148733155306423,-0.0732117244065000, 0.227686995189610,
-0.161391291165675, 0.275901409852163,0.0338917363063001, 0.271877410824601,-0.0126832724365000, 0.298346663477855,
0.0203286872035000, 0.177806814002461,0.111895183797900, 0.271521660214816,-0.0993323177924252, 0.241436538993382,
0.0941978176669001, 0.180301450303532,-0.0231392560610000, 0.274114484568687,0.462180803630000, 0.188957918025456,
0.596185300750001, 0.126331207619497,0.0747870440726349, 0.160085514634547,0.215890568380500, 0.201692251523540,
0.0111592813609250, 0.214000122466492,-0.174233959451578, 0.189218817192267,0.301355481089251, 0.159306379551736,
0.370040966425000, 0.0916786440894036,0.0844944851305248, 0.246941048748585,0.216316038603325, 0.168665961619620,
0.0142375086965000, 0.218564066263434,0.0210094238269000, 0.223810574360652,-0.112519956732200, 0.140485010893325,
0.147743851832600, 0.182825344199810,0.301887597099050, 0.213382465113893,0.0615851100933250, 0.203977937016960,
0.350459336138750, 0.127671681824427,0.196511031060970, 0.162785467231247,-0.207562572348100, 0.319149603000405,
-0.240331138083249, 0.215819497157118,-0.710979029074999, 0.204438130939904,0.0522476095115002, 0.153576361682664,
0.0590822581768752, 0.134308875041780,-0.196431292645900, 0.195638042452994,-0.100291397251750, 0.204207737155929,
-0.197336832944275, 0.145253622132466,0.144002680948375, 0.145300767608426,-0.0980488794257999, 0.264017658442989,
0.474931054038000, 0.248261603630060,-0.0508391006226000, 0.172241816537243,0.564059040740000, 0.210695763630808,
0.0679908603261500, 0.226609867181402,-0.351798112383883, 0.206893336516015,0.142693050118950, 0.187933820047448,
-0.247756557571000, 0.262197661810480,0.538594641175001, 0.145058363009612,0.589749770952500, 0.303034971268726,
-0.0625016822134999, 0.255047107307086,0.0519043844712500, 0.283839486679962,-0.116257019861325, 0.274911738051457,
0.0535596520790248, 0.222526855386509,0.0484423938490250, 0.291964169639225,0.170557791367350, 0.200459681659015,
-0.230579356470800, 0.217900375881488,0.0139409652806000, 0.267260001573277,-0.106784199815388, 0.193770940997105,
-0.566092862437250, 0.157219504776589,-0.400852275487326, 0.285199083543308,-0.112792394288325, 0.274935172540649),60,2,byrow=TRUE)
mpilogkw=pilogkw[,1]
spilogkw=pilogkw[,2]
mpiS1m=piS1m[,1]
spiS1m=piS1m[,2]
mpiS1a=piS1a[,1]
spiS1a=piS1a[,2]
logPobs=logP[which(unique(data$METID) %in% metidx)]
```
```{r,message=FALSE,warning=FALSE}
datastruct_small = with(data_red,
list(nAnalytes=nAnalytes,
nObs=nObs,
npH=npH,
analyte=analyte,
pHid=pHid,
steps=steps,
hplcparam=hplcparam,
mod=mod,
logPobs=logPobs,
maxR=maxR,
R=R,
pKaslit=pKaslit,
pKasliterror=pKasliterror,
groupsA=groupsA,
groupsB=groupsB,
chargesA=chargesA,
chargesB=chargesB,
mpilogkw=mpilogkw,
spilogkw=spilogkw,
mpiS1m=mpiS1m,
spiS1m=spiS1m,
mpiS1a=mpiS1a,
spiS1a=spiS1a,
trobs=trobs,
K=K,
nrfungroups=nrfungroups))
init <- function(){
list( logkwHat = rnorm(1,3.1543,0.0871),
S1mHat = rnorm(1,4.5141,0.0971),
S1aHat = rnorm(1,5.5600,0.1348),
dlogkwHat = rnorm(2,c(-0.7357,-0.9359),c(0.0588,0.0461)),
dSmHat = rnorm(2,c(0.3311,0.1098),c(0.1030,0.0704)),
dSaHat = rnorm(2,c(0.8910,-0.4577),c(0.1057,0.0670)),
S2mHat = rnorm(1,0.3741,0.0250),
S2aHat = rnorm(1,0.8194,0.0342),
beta = rnorm(3,c(0.7442,0.3553,0.3895),c(0.0313,0.0393,0.0513)),
alphaAHat = rnorm(2,c(1.9736,2.1454),c(0.1703,0.1844)),
alphaBHat = rnorm(2, c(-1.0005,-0.8940),c(0.1405,0.1641)),
dlogkTHat = rnorm(1,-0.0946,0.0026),
omegadlogkT = rnorm(1,0.0344,0.0021),
apH = rnorm(2,c(-0.0238,0.0851),c(0.0010, 0.0009)),
sigma = ifelse(rlnorm(nAnalytes,log(0.3671),1)>4,3.9,rlnorm(nAnalytes,log(0.3671),1)),
msigma = rnorm(1,0.3671, 0.0278),
ssigma = rnorm(1,0.9989,0.0536),
omega = c(0.6150,0.6762,0.9206)*exp(rnorm(3,c(0.0393,0.0469,0.0631), 0.5)),
rho1 = matrix(c(1, 0.7811, 0.7135,
0.7811, 1, 0.9148,
0.7135, 0.9148, 1),3,3,byrow=TRUE),
L2 = matrix(c(1, 0,
0.9408, 0.3355),2,2,byrow=TRUE),
kappa = c(0.5305,0.5526,0.5409)* exp(rnorm(3,c(0.0276,0.0447,0.0422), 0.2)),
tau = c(2.2561,2.5580)*exp(rnorm(2,c(0.1644,0.1841), 0.2)),
pilogkw = rnorm(K,pilogkw[,1],pilogkw[,2]),
piS1m = rnorm(K,piS1m[,1],piS1m[,2]),
piS1a = rnorm(K,piS1a[,1],piS1a[,2]),
sdpi = c(0.1964,0.1736,0.3162)* exp(rnorm(3,c(0.0301,0.0288,0.0387), 0.1)),
param = c(2+0.75*logPobs, 4*matrix(1,nAnalytes,1)+0.3*logPobs,
5*matrix(1,nAnalytes,1)+0.3*logPobs),
dlogkwA = -0.7357*matrix(1,nAnalytes,maxR+1),
dlogkwB = -0.9359*matrix(1,nAnalytes,maxR+1),
dSmA = 0.3311*matrix(1,nAnalytes,maxR+1),
dSmB = 0.1098*matrix(1,nAnalytes,maxR+1),
dSaA = 0.8910*matrix(1,nAnalytes,maxR+1),
dSaB = -0.4577*matrix(1,nAnalytes,maxR+1),
dlogkT = rnorm(nAnalytes,-0.0946,0.0217),
pKaw = pKaslit,
etaStd1 =matrix(0,2,nAnalytes),
etaStd2 =matrix(0,2,nAnalytes)
)
}
mod1 <- cmdstan_model("stan/hplc-gra-redsum_qsrr_fixed.stan")
fit <- mod1$sample(
data = datastruct_small,
init = init,
output_dir = "tmpstan",
seed = 123,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
parallel_chains = 4,
refresh = 500
)
#fit$summary()
#fit$cmdstan_summary()
#fit$cmdstan_diagnose()
#fit$save_object(file = "fit.RDS")
#fit$output_files()
```
```{r}
Mod_2 = rep(rep(c(2,1),each=3*2),9*nAnalytes)
nObs2 = 9*3*2*2*nAnalytes
analyte2=rep(1:nAnalytes,each=9*3*2*2)
pHid2=rep(rep(c(1,2,6,9,4,5,7,8,3),each=12),nAnalytes)
pHs_qq=rep(rep(c(2.5,3.3,6.8,10.5,4.9,5.8,8.9,9.7,4.1),each=12),nAnalytes)
steps2=4*(1-Mod_2) + 10*(Mod_2)
hplcparam2=cbind(rep(c(30,90,270),by=9*2*2*nAnalytes),rep(2.1,by=9*3*2*2*nAnalytes),rep(0.532,by=9*3*2*2*nAnalytes),
rep(0.04,by=9*3*2*2*nAnalytes),rep(0.05,by=9*3*2*2*nAnalytes),rep(0.8,by=9*3*2*2*nAnalytes),
Mod_2,
rep(rep(pHo_1,each=3),nAnalytes),rep(rep(alpha1_1,each=3),nAnalytes),rep(rep(alpha2_1,each=3),nAnalytes),
(rep(c(25,25,25,35,35,35,35,35,35,25,25,25),9*nAnalytes)-25)/10)
mod2=Mod_2
stan_rdump(c("nAnalytes",
"nObs",
"npH",
"analyte",
"pHid",
"steps",
"hplcparam",
"mod",
"logPobs",
"maxR",
"R",
"pKaslit",
"pKasliterror",
"groupsA",
"groupsB",
"chargesA",
"chargesB",
"K",
"nrfungroups",
"mpilogkw",
"spilogkw",
"mpiS1m",
"spiS1m",
"mpiS1a",
"spiS1a",
"trobs",
"nObs2",
"analyte2",
"pHid2",
"steps2",
"hplcparam2",
"mod2"),
file="stan/model_fixed_qq.data.R")
model_qq <- cmdstan_model("stan/hplc-gra-redsum_qsrr_fixed_qq.stan")
fit_qq <- model_qq$generate_quantities(fit,data = "stan/model_fixed_qq.data.R",
seed = 123)
#fit_qq$save_object(file = "stan/fit_qq.RDS")
#fit_qq <- readRDS("stan/fit_qq.RDS")
```
```{r}
draws_qq_df11 <- fit_qq$draws(format = "df")
draws_df11 <- fit$draws(format = "df")
tr_Cond <- apply(draws_df11[,which(colnames(draws_df11) %in% grep("trCond", names(draws_df11), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
tr_Pred <- apply(draws_df11[,which(colnames(draws_df11) %in% grep("trPred", names(draws_df11), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
df11 <- cbind(rep("df11",nrow(data_red)),data_red$METID,as.data.frame(t(tr_Cond)),as.data.frame(t(tr_Pred)),data_red$RT,data_red$pHs,data_red$tg,data_red$Temp,data_red$Mod2)
colnames(df11) <- c("dataset","METID","trCond_Low","trCond_Median","trCond_High","trPred_Low","trPred_Median","trPred_High","RT","pHs","tg","Temp","Mod")
tr_qq_Cond <- apply(draws_qq_df11[,which(colnames(draws_qq_df11) %in% grep("trCond", names(draws_qq_df11), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
tr_qq_Pred <- apply(draws_qq_df11[,which(colnames(draws_qq_df11) %in% grep("trPred", names(draws_qq_df11), value = TRUE))], MARGIN = 2, FUN = quantile, probs = c(.025,.5,.975))
df_qq11 <- cbind(rep("df_qq11",3*9*2*2*nAnalytes),rep(unique(data_red$METID),each=12*9),
as.data.frame(t(tr_qq_Cond)),as.data.frame(t(tr_qq_Pred)),
rep(NA,by=3*9*2*2*nAnalytes),
pHs_qq,rep(c(30,90,270),by=9*2*2*nAnalytes),
rep(c(25,25,25,35,35,35,35,35,35,25,25,25),9*nAnalytes),mod2)
colnames(df_qq11) <- c("dataset","METID","trCond_Low","trCond_Median","trCond_High","trPred_Low","trPred_Median","trPred_High","RT","pHs","tg","Temp","Mod")
df_all11 <- rbind(df11,df_qq11)
for(i in 1:length(analyte_ID_sample)){