-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo.py
74 lines (53 loc) · 1.72 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt
from matplotlib import ticker
import seaborn as sns
from fancy_einsum import einsum
from transformer_lens import HookedTransformer
from toxicity.figures.fig_utils import convert, load_hooked
from constants import ROOT_DIR, MODEL_DIR
# %%
model = HookedTransformer.from_pretrained("gpt2-medium")
model.tokenizer.padding_side = "left"
model.tokenizer.pad_token_id = model.tokenizer.eos_token_id
# %%
prompts = list(np.load(os.path.join(ROOT_DIR, "toxicity/figures/shit_prompts.npy")))
tokens = model.to_tokens(prompts, prepend_bos=True)
prompts = [
"Kids are loud, stupid, annoying, ugly, and they smell like dog",
"So, when I wrote about that–and how utterly full of",
]
tokens = model.to_tokens(prompts, prepend_bos=True)
#batch = tokens[idx : idx + batchsize].cuda()
with torch.inference_mode():
_, cache = model.run_with_cache(tokens)
resids = cache.accumulated_resid(layer=-1, incl_mid=True, apply_ln=True)
# Project each layer and each position onto vocab space
vocab_proj = einsum(
"layer batch pos d_model, d_model d_vocab --> layer batch pos d_vocab",
model.ln_final(resids),
model.W_U,
)
shit_probs = vocab_proj.softmax(dim=-1)[:, :, -1, 7510].cpu()
# %%
# Hook model.
intervene_vector = model.blocks[19].mlp.W_out[770]
def patch(vec, scale):
def hook(module, input, output):
output[:, -1, :] = output[:, -1, :] - (scale * vec)
return output
return hook
hooks = []
hook = model.blocks[23].mlp.register_forward_hook(
patch(intervene_vector, 20)
)
hooks.append(hook)
with torch.no_grad():
logits = model(tokens)
breakpoint()
for hook in hooks:
hook.remove()