diff --git a/docs/source/examples.rst b/docs/source/examples.rst index f43d695..26175c4 100644 --- a/docs/source/examples.rst +++ b/docs/source/examples.rst @@ -1979,10 +1979,16 @@ Let's consider the precision and recall metrics as the criteria to be optimized. for fvar, fval in zip(var, val): print(fvar, fval) - # Plot the Pareto set z[0]-z[1] - fv1 = [-trial.function_values[0].value for trial in sol.best_trials] - fv2 = [-trial.function_values[1].value for trial in sol.best_trials] - plt.plot(fv1, fv2, 'ro') - plt.show() +At the end of the execution of the program presented in the previous listing, we obtain the Pareto set: +[0.9107572752988098, 0.9831768388106417] +[0.9592640468256907, 0.980399061032864] + +[0.9647457731704308, 0.9747261345852894] + +[0.967120202394175, 0.9719483568075118] + +[0.9647147147147146, 0.9747652582159624] + +[0.9695575278152937, 0.957942097026604]