-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChem1.py
366 lines (284 loc) · 12.9 KB
/
Chem1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
from tensorflow import set_random_seed
import numpy as np
from rdkit import Chem
from rdkit.Chem import Draw, Descriptors
from matplotlib import pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
smifile = 'chembl_smiles.txt'
data = pd.read_csv(smifile, delimiter="\t", names=["smiles", "No", "Int"])
smiles_train, smiles_test = train_test_split(data["smiles"], random_state=42)
print(smiles_train.shape)
print(smiles_test.shape)
charset = set("".join(list(data.smiles))+"!E")
char_to_int = dict((c,i) for i,c in enumerate(charset))
int_to_char = dict((i,c) for i,c in enumerate(charset))
embed = max([len(smile) for smile in data.smiles]) + 5
print(str(charset))
print(len(charset), embed)
def vectorize(smiles):
one_hot = np.zeros((smiles.shape[0], embed, len(charset)), dtype=np.int8)
for i, smile in enumerate(smiles):
# encode the startchar
one_hot[i, 0, char_to_int["!"]] = 1
# encode the rest of the chars
for j, c in enumerate(smile):
one_hot[i, j + 1, char_to_int[c]] = 1
# Encode endchar
one_hot[i, len(smile) + 1:, char_to_int["E"]] = 1
# Return two, one for input and the other for output
return one_hot[:, 0:-1, :], one_hot[:, 1:, :]
X_train, Y_train = vectorize(smiles_train.values)
X_test, Y_test = vectorize(smiles_test.values)
print (smiles_train.iloc[0])
plt.matshow(X_train[0].T)
plt.show()
#smiles_train.iloc[0]
from numpy.random import seed
seed(123)
from tensorflow import set_random_seed
set_random_seed(234)
import sklearn
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn import decomposition
import scipy
import tensorflow as tf
from keras.models import Model, load_model
from keras.layers import Input, Dense, Layer, InputSpec
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras import regularizers, activations, initializers, constraints, Sequential
from keras import backend as K
from keras.constraints import UnitNorm, Constraint
"""""""""
n_dim = 5
cov = sklearn.datasets.make_spd_matrix(n_dim, random_state=None)
mu = np.random.normal(0, 0.1, n_dim)
n = 1000
X = np.random.multivariate_normal(mu, cov, n)
print("XXXXXXXXXXXXXXXXX:",X)
X_train, X_test = train_test_split(X, test_size=0.5, random_state=123)# Scale the data between 0 and 1.
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
print(X_train_scaled)
"""""""""
nb_epoch = 100
batch_size = 16
input_dim = X_train.shape[1] #num of predictor variables,
encoding_dim = 2
learning_rate = 1e-3
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias = True)
decoder = Dense(input_dim, activation="linear", use_bias = True)
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train, X_train,epochs=200,
shuffle=True,
verbose=0)
train_predictions = autoencoder.predict(X_train)
print('Train reconstrunction error\n', sklearn.metrics.mean_squared_error(X_train, train_predictions))
test_predictions = autoencoder.predict(X_test)
print('Test reconstrunction error\n', sklearn.metrics.mean_squared_error(X_test, test_predictions))
"""""""""
class DenseTied(Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
tied_to=None,
**kwargs):
self.tied_to = tied_to
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super().__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
if self.tied_to is not None:
self.kernel = K.transpose(self.tied_to.kernel)
self._non_trainable_weights.append(self.kernel)
else:
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias = True)
decoder = DenseTied(input_dim, activation="linear", tied_to=encoder, use_bias = True)
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train_scaled, X_train_scaled,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
verbose=0)
w_encoder = np.round(np.transpose(autoencoder.layers[0].get_weights()[0]), 3)
w_decoder = np.round(autoencoder.layers[1].get_weights()[0], 3)
print('Encoder weights\n', w_encoder)
print('Decoder weights\n', w_decoder)
b_encoder = np.round(np.transpose(autoencoder.layers[0].get_weights()[1]), 3)
b_decoder = np.round(np.transpose(autoencoder.layers[1].get_weights()[0]), 3)
print('Encoder bias\n', b_encoder)
print('Decoder bias\n', b_decoder)
class WeightsOrthogonalityConstraint (Constraint):
def __init__(self, encoding_dim, weightage = 1.0, axis = 0):
self.encoding_dim = encoding_dim
self.weightage = weightage
self.axis = axis
def weights_orthogonality(self, w):
if(self.axis==1):
w = K.transpose(w)
if(self.encoding_dim > 1):
m = K.dot(K.transpose(w), w) - K.eye(self.encoding_dim)
return self.weightage * K.sqrt(K.sum(K.square(m)))
else:
m = K.sum(w ** 2) - 1.
return m
def __call__(self, w):
return self.weights_orthogonality(w)
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias=True, kernel_regularizer=WeightsOrthogonalityConstraint(encoding_dim, weightage=1., axis=0))
decoder = Dense(input_dim, activation="linear", use_bias = True, kernel_regularizer=WeightsOrthogonalityConstraint(encoding_dim, weightage=1., axis=1))
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train_scaled, X_train_scaled,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
verbose=0)
w_encoder = autoencoder.layers[0].get_weights()[0]
print('Encoder weights dot product\n', np.round(np.dot(w_encoder.T, w_encoder), 2))
w_decoder = autoencoder.layers[1].get_weights()[0]
print('Decoder weights dot product\n', np.round(np.dot(w_decoder, w_decoder.T), 2))
class UncorrelatedFeaturesConstraint (Constraint):
def __init__(self, encoding_dim, weightage = 1.0):
self.encoding_dim = encoding_dim
self.weightage = weightage
def get_covariance(self, x):
x_centered_list = []
for i in range(self.encoding_dim):
x_centered_list.append(x[:, i] - K.mean(x[:, i]))
x_centered = tf.stack(x_centered_list)
covariance = K.dot(x_centered, K.transpose(x_centered)) / tf.cast(x_centered.get_shape()[0], tf.float32)
return covariance
# Constraint penalty
def uncorrelated_feature(self, x):
if(self.encoding_dim <= 1):
return 0.0
else:
output = K.sum(K.square(self.covariance - K.dot(self.covariance, K.eye(self.encoding_dim))))
return output
def __call__(self, x):
self.covariance = self.get_covariance(x)
return self.weightage * self.uncorrelated_feature(x)
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias = True, activity_regularizer=UncorrelatedFeaturesConstraint(encoding_dim, weightage = 1.))
decoder = Dense(input_dim, activation="linear", use_bias = True)
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train_scaled, X_train_scaled,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
verbose=0)
encoder_layer = Model(inputs=autoencoder.inputs, outputs=autoencoder.layers[0].output)
encoded_features = np.array(encoder_layer.predict(X_train_scaled))
print('Encoded feature covariance\n', np.round(np.cov(encoded_features.T), 3))
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias = True, kernel_constraint=UnitNorm(axis=0))
decoder = Dense(input_dim, activation="linear", use_bias = True, kernel_constraint=UnitNorm(axis=1))
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train_scaled, X_train_scaled,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
verbose=0)
w_encoder = np.round(autoencoder.layers[0].get_weights()[0], 2).T # W in Figure 3.
w_decoder = np.round(autoencoder.layers[1].get_weights()[0], 2) # W' in Figure 3.print('Encoder weights norm, \n', np.round(np.sum(w_encoder ** 2, axis = 1),3))
print('Decoder weights norm, \n', np.round(np.sum(w_decoder ** 2, axis = 1),3))
encoder = Dense(encoding_dim, activation="linear", input_shape=(input_dim,), use_bias = True, kernel_regularizer=WeightsOrthogonalityConstraint(encoding_dim, weightage=1., axis=0), kernel_constraint=UnitNorm(axis=0))
decoder = DenseTied(input_dim, activation="linear", tied_to=encoder, use_bias = False)
autoencoder = Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
autoencoder.fit(X_train_scaled, X_train_scaled,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
verbose=0)
train_predictions = autoencoder.predict(X_train_scaled)
print('Train reconstrunction error\n', sklearn.metrics.mean_squared_error(X_train_scaled, train_predictions))
test_predictions = autoencoder.predict(X_test_scaled)
print('Test reconstrunction error\n', sklearn.metrics.mean_squared_error(X_test_scaled, test_predictions))
"""""""""