Skip to content

Commit 908d364

Browse files
committed
Bimodule rather than module
1 parent 07ccc28 commit 908d364

File tree

3 files changed

+48
-47
lines changed

3 files changed

+48
-47
lines changed

CHANGELOG.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ New modules
8181

8282
* `Algebra.Construct.Sub.Group` for the definition of subgroups.
8383

84-
* `Algebra.Module.Construct.Sub.Module` for the definition of submodules.
84+
* `Algebra.Module.Construct.Sub.Bimodule` for the definition of subbimodules.
8585

8686
* `Algebra.Properties.BooleanRing`.
8787

Lines changed: 47 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
------------------------------------------------------------------------
2+
-- The Agda standard library
3+
--
4+
-- Definition of submodules
5+
------------------------------------------------------------------------
6+
7+
{-# OPTIONS --cubical-compatible --safe #-}
8+
9+
open import Algebra.Bundles using (Ring)
10+
open import Algebra.Module.Bundles using (Bimodule; RawBimodule)
11+
12+
module Algebra.Module.Construct.Sub.Bimodule {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm) where
13+
14+
private
15+
module R = Ring R
16+
module S = Ring S
17+
module M = Bimodule M
18+
19+
open import Algebra.Construct.Sub.Group M.+ᴹ-group
20+
open import Algebra.Module.Structures using (IsBimodule)
21+
open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism)
22+
import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism
23+
open import Level using (suc; _⊔_)
24+
25+
record Submodule cm′ ℓm′ : Set (cr ⊔ cs ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where
26+
field
27+
domain : RawBimodule R.Carrier S.Carrier cm′ ℓm′
28+
29+
private
30+
module N = RawBimodule domain
31+
32+
field
33+
ι : N.Carrierᴹ M.Carrierᴹ
34+
ι-monomorphism : IsBimoduleMonomorphism domain M.rawBimodule ι
35+
36+
module ι = IsBimoduleMonomorphism ι-monomorphism
37+
38+
isBimodule : IsBimodule R S N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N.-ᴹ_ N._*ₗ_ N._*ᵣ_
39+
isBimodule = BimoduleMonomorphism.isBimodule ι-monomorphism R.isRing S.isRing M.isBimodule
40+
41+
bimodule : Bimodule R S _ _
42+
bimodule = record { isBimodule = isBimodule }
43+
44+
open Bimodule bimodule public hiding (isBimodule)
45+
46+
subgroup : Subgroup cm′ ℓm′
47+
subgroup = record { ι-monomorphism = ι.+ᴹ-isGroupMonomorphism }

src/Algebra/Module/Construct/Sub/Module.agda

Lines changed: 0 additions & 46 deletions
This file was deleted.

0 commit comments

Comments
 (0)