|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Definition of submodules |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +open import Algebra.Bundles using (Ring) |
| 10 | +open import Algebra.Module.Bundles using (Bimodule; RawBimodule) |
| 11 | + |
| 12 | +module Algebra.Module.Construct.Sub.Bimodule {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm) where |
| 13 | + |
| 14 | +private |
| 15 | + module R = Ring R |
| 16 | + module S = Ring S |
| 17 | + module M = Bimodule M |
| 18 | + |
| 19 | +open import Algebra.Construct.Sub.Group M.+ᴹ-group |
| 20 | +open import Algebra.Module.Structures using (IsBimodule) |
| 21 | +open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism) |
| 22 | +import Algebra.Module.Morphism.BimoduleMonomorphism as BimoduleMonomorphism |
| 23 | +open import Level using (suc; _⊔_) |
| 24 | + |
| 25 | +record Submodule cm′ ℓm′ : Set (cr ⊔ cs ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where |
| 26 | + field |
| 27 | + domain : RawBimodule R.Carrier S.Carrier cm′ ℓm′ |
| 28 | + |
| 29 | + private |
| 30 | + module N = RawBimodule domain |
| 31 | + |
| 32 | + field |
| 33 | + ι : N.Carrierᴹ → M.Carrierᴹ |
| 34 | + ι-monomorphism : IsBimoduleMonomorphism domain M.rawBimodule ι |
| 35 | + |
| 36 | + module ι = IsBimoduleMonomorphism ι-monomorphism |
| 37 | + |
| 38 | + isBimodule : IsBimodule R S N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N.-ᴹ_ N._*ₗ_ N._*ᵣ_ |
| 39 | + isBimodule = BimoduleMonomorphism.isBimodule ι-monomorphism R.isRing S.isRing M.isBimodule |
| 40 | + |
| 41 | + bimodule : Bimodule R S _ _ |
| 42 | + bimodule = record { isBimodule = isBimodule } |
| 43 | + |
| 44 | + open Bimodule bimodule public hiding (isBimodule) |
| 45 | + |
| 46 | + subgroup : Subgroup cm′ ℓm′ |
| 47 | + subgroup = record { ι-monomorphism = ι.+ᴹ-isGroupMonomorphism } |
0 commit comments