-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathset_clear.v
138 lines (111 loc) · 4.45 KB
/
set_clear.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat div seq.
From mathcomp Require Import choice fintype prime tuple finfun finset bigop.
Require Import tree_traversal rank_select insert_delete.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section update.
Variable T : Type.
(* Simple wrapper around set_nth to stop the padding behavior
* of set_nth, which is confusing
*)
Definition update (s : seq T) x i :=
if i < size s then set_nth x s i x else s.
Lemma set_nth_default_sizel (s : seq T) y y' x i :
i < size s -> set_nth y s i x = set_nth y' s i x.
Proof. elim: s i => [|h t IHt] [|j] //= H. by rewrite IHt. Qed.
Lemma size_update (s : seq T) x i :
size s = size (update s x i).
Proof.
rewrite /update. case: ifP => Hi.
by rewrite size_set_nth maxnE subnKC. exact.
Qed.
Lemma update_cons (s : seq T) h x i :
update (h::s) x i.+1 = h :: update s x i.
Proof. rewrite /update /= ltnS; by case: ifPn. Qed.
Lemma update_ith (s : seq T) x0 x i :
i < size s -> nth x0 (update s x i) i = x.
Proof.
move => H. rewrite /update H.
rewrite (set_nth_default_sizel x x0 x H).
by rewrite nth_set_nth //= eq_refl.
Qed.
Lemma update_jth (s : seq T) x0 x i j :
i != j -> nth x0 (update s x i) j = nth x0 s j.
Proof.
move => H. rewrite /update. case: ifP => // Hsize.
rewrite (set_nth_default_sizel x x0 x Hsize).
by rewrite nth_set_nth //= ifN // eq_sym.
Qed.
Lemma update_oversize (s : seq T) x i :
i >= size s -> update s x i = s.
Proof. by rewrite /update ltnNge => ->. Qed.
Lemma update_cat (s t : seq T) x i :
update (s ++ t) x i = if i < size s
then (update s x i) ++ t
else s ++ update t x (i - size s).
Proof.
elim: s i => [|h s IHs] [|i] //=.
by rewrite !update_cons subSS cat_cons -(fun_if (cons _)) -IHs.
Qed.
End update.
Section bit_set_clear.
Definition bit_set (s : seq bool) i := update s true i.
Definition bit_clear (s : seq bool) i := update s false i.
Definition bit_toggle (s : seq bool) i :=
update s (~~ (nth true s i)) i.
Lemma size_bit_set (s : seq bool) i : size (bit_set s i) = size s.
Proof. rewrite /bit_set. by rewrite (size_update s true i). Qed.
Lemma size_bit_clear (s : seq bool) i : size (bit_clear s i) = size s.
Proof. rewrite /bit_set. by rewrite (size_update s false i). Qed.
Lemma bit_set_over (s : seq bool) i : i >= size s -> bit_set s i = s.
Proof. rewrite /bit_set /update leqNgt. by move/negbTE => ->. Qed.
Lemma bit_clear_over (s : seq bool) i : i >= size s -> bit_clear s i = s.
Proof. rewrite /bit_clear /update leqNgt. by move/negbTE => ->. Qed.
Lemma nth_bit_set (s : seq bool) b0 i :
i < size s -> nth b0 (bit_set s i) i = true.
Proof. move => H. by rewrite /bit_set update_ith. Qed.
Lemma nth_bit_clear (s : seq bool) b0 i :
i < size s -> nth b0 (bit_clear s i) i = false.
Proof. move => H. by rewrite /bit_clear update_ith. Qed.
Lemma count_bit_set (s : seq bool) b0 i : i < size s ->
count_mem true (bit_set s i) = ~~ (nth b0 s i) + count_mem true s.
Proof.
elim: s i => [|b s IHs] [|j] //=.
by case: b.
rewrite ltnS => /= Hi.
by rewrite addnCA -IHs // /bit_set update_cons.
Qed.
Lemma true_count_pos (s : seq bool) b0 i :
i < size s -> nth b0 s i <= count_mem true s.
Proof.
elim: s i => [|b s IHs] //= [|i] Hi /=.
by case: b => //; rewrite eqxx.
move: Hi; rewrite ltnS => /IHs /leq_trans; apply.
by apply leq_addl.
Qed.
Lemma count_bit_clear (s : seq bool) b0 i : i < size s ->
count_mem true (bit_clear s i) = count_mem true s - nth b0 s i.
Proof.
elim: s i => [|b s IHs] [|j] //=.
case: b => /=; by rewrite ?addKn ?subn0.
rewrite ltnS => /= Hj.
rewrite -addnBA; last by apply true_count_pos.
by rewrite -IHs // /bit_clear update_cons.
Qed.
Lemma count_bit_toggle (s : seq bool) b0 i :
i < size s -> count_mem true (bit_toggle s i) =
if nth b0 s i
then count_mem true s - 1
else count_mem true s + 1.
Proof.
rewrite /bit_toggle /update => H; rewrite H.
elim: s i H => [|b s IHs] [|j] //=.
by case Hb: b => //=; rewrite add1n add0n ?addn1 // subn1 succnK.
rewrite ltnS => H.
rewrite IHs //; case: ifP => Hnth.
move: (true_count_pos b0 H); rewrite Hnth => Ht.
by rewrite addnBA.
by rewrite addnA.
Qed.
End bit_set_clear.