-
Notifications
You must be signed in to change notification settings - Fork 111
/
solution.cpp
76 lines (57 loc) · 1.82 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <bits/stdc++.h>
using namespace std;
string ltrim(const string &);
string rtrim(const string &);
// Complete the sumXor function below.
/*
XOR represents binary addition without the "carry" for each digit. We want to see
how many values of x that will give us n+x = n^x, which is when XOR is the same as
ADDITION. This happens when there are no "carries". To make sure there are no
carries, for each digit in "n" that is a 1, we must have the corresponding digit in
"x" be a 0. For each digit in "n" that is a 0, we can have the corresponding digit
in "x" be either 0 or 1. Now we calculate the number of possibilities for "x" by
counting the number of 0s in "n" (up to the most significant 1 in n), and doing
2^(number of 0s) (where ^ is exponentiation in this case) to count all combinations.
**/
long sumXor(long n)
{
long count = 0;
long bit = log2(n); // calculating Most Significant bit
for(bit;bit>=0;bit--) // Calculating number of 0's.
{
long mask = (1L<<bit);
if(!(n&mask))
{
count++;
}
}
long ans = (1L<<count); // Findind all combinations of the 0's == 2^count
return ans;
}
int main()
{
ofstream fout(getenv("OUTPUT_PATH"));
string n_temp;
getline(cin, n_temp);
long n = stol(ltrim(rtrim(n_temp)));
long result = sumXor(n);
fout << result << "\n";
fout.close();
return 0;
}
string ltrim(const string &str) {
string s(str);
s.erase(
s.begin(),
find_if(s.begin(), s.end(), not1(ptr_fun<int, int>(isspace)))
);
return s;
}
string rtrim(const string &str) {
string s(str);
s.erase(
find_if(s.rbegin(), s.rend(), not1(ptr_fun<int, int>(isspace))).base(),
s.end()
);
return s;
}